LUDWIG-MAXIMILIANSUNIVERSITÄT MÜNCHEN

Mathematical Gauge Theory II

Sheet 5

Exercise 1. (Invariants of 4-manifolds) Let M and N be two closed, connected, simply connected, oriented, smooth 4-manifolds.

1. Prove that M and N are homeomorphic if and only if the the following invariants agree:

- Euler characteristic χ
- signature σ
- parity (even or odd) of the intersection form.

2. Determine a simple 4-manifold homeomorphic to $M \# \overline{\mathbb{C P}}^{2}$.
3. Assume $\sigma(M)=-\sigma(N)$ and even intersection forms Q_{M}, Q_{N}. Determine a 4-manifold homeomorphic to $M \# N$.

Exercise 2. (Embedded surfaces in $\mathbb{C P}^{2}$) A projective line is a linear $\mathbb{C P}^{1}$ in $\mathbb{C P}^{2}$ (coming from a linear subspace $\mathbb{C}^{2} \subset \mathbb{C}^{3}$). Let $d \geq 0$ be a natural number.

1. We call d projective lines in $\mathbb{C P}^{2}$ in general position if all intersections between them are transverse and if at most two projective lines intersect in a given point p for all $p \in \mathbb{C P}^{2}$. Prove that there exists d projective lines in $\mathbb{C P}^{2}$ in general position for all $d \geq 0$.
2. Determine a smooth surface representing the class $d\left[\mathbb{C P}^{1}\right] \in H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$. What is its genus?

Exercise 3. (The double of a manifold) Let M be a compact oriented manifold with non-empty boundary and let \bar{M} denote the same manifold with the opposite orientation. The double of M is obtained by gluing together M and \bar{M} along the boundary via the identity map:

$$
M \bigcup_{\partial M=\partial \bar{M}} \bar{M} .
$$

Now let $D(e)$ denote the disc bundle with Euler class e over S^{2}. Show that the double of $D(e)$ is diffeomorphic to $S^{2} \times S^{2}$ if and and only if e is even and to $S^{2} \widetilde{\times} S^{2}$ if and only if e is odd.

Exercise 4. (Complete intersections) Let $d=\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ be an r-tuple of natural numbers and consider the intersection of r smooth hypersurfaces $X_{d_{i}}$ of degree d_{i} in $\mathbb{C P}^{r+2}$:

$$
S_{d}=X_{d_{1}} \cap X_{d_{2}} \ldots \cap X_{d_{r}}
$$

We assume that for all $k=2, \ldots, r$ the hypersurface $X_{d_{k}}$ intersects $X_{d_{1}} \cap \ldots \cap X_{d_{k-1}}$ transversely. Then S_{d} is a smooth complex surface, called a complete intersection of multidegree d.

1. Suppose submanifolds M and N of a manifold W intersect transversely. Show that the normal bundles in W are related by $\nu(M \cap N)=\left.\left.\nu(M)\right|_{M \cap N} \oplus \nu(N)\right|_{M \cap N}$.
2. Calculate the Chern classes $c_{1}\left(S_{d}\right)$ and $c_{2}\left(S_{d}\right)$.
3. Determine those multidegrees d for which S_{d} is a $K 3$ surface.
[Cheat: you may use without proof that all complete intersections are simply connected.]

You can email the solutions until Tuesday, May 26th at noon.

