

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2020

Prof. D. Kotschick G. Placini

Mathematical Gauge Theory II

Sheet 5

Exercise 1. (Invariants of 4-manifolds) Let M and N be two closed, connected, simply connected, oriented, smooth 4-manifolds.

- 1. Prove that M and N are homeomorphic if and only if the the following invariants agree:
 - Euler characteristic χ
 - signature σ
 - parity (even or odd) of the intersection form.
- 2. Determine a simple 4-manifold homeomorphic to $M # \overline{\mathbb{CP}^2}$.
- 3. Assume $\sigma(M) = -\sigma(N)$ and even intersection forms Q_M , Q_N . Determine a 4-manifold homeomorphic to M # N.

Exercise 2. (Embedded surfaces in \mathbb{CP}^2) A projective line is a linear \mathbb{CP}^1 in \mathbb{CP}^2 (coming from a linear subspace $\mathbb{C}^2 \subset \mathbb{C}^3$). Let $d \ge 0$ be a natural number.

- 1. We call d projective lines in \mathbb{CP}^2 in general position if all intersections between them are transverse and if at most two projective lines intersect in a given point p for all $p \in \mathbb{CP}^2$. Prove that there exists d projective lines in \mathbb{CP}^2 in general position for all $d \ge 0$.
- 2. Determine a smooth surface representing the class $d[\mathbb{CP}^1] \in H_2(\mathbb{CP}^2;\mathbb{Z})$. What is its genus?

Exercise 3. (The double of a manifold) Let M be a compact oriented manifold with non-empty boundary and let \overline{M} denote the same manifold with the opposite orientation. The double of M is obtained by gluing together M and \overline{M} along the boundary via the identity map:

$$M \bigcup_{\partial M = \partial \overline{M}} \overline{M}.$$

Now let D(e) denote the disc bundle with Euler class e over S^2 . Show that the double of D(e) is diffeomorphic to $S^2 \times S^2$ if and only if e is even and to $S^2 \times S^2$ if and only if e is odd.

(please turn)

Exercise 4. (Complete intersections) Let $d = (d_1, d_2, \ldots, d_r)$ be an *r*-tuple of natural numbers and consider the intersection of *r* smooth hypersurfaces X_{d_i} of degree d_i in \mathbb{CP}^{r+2} :

$$S_d = X_{d_1} \cap X_{d_2} \dots \cap X_{d_r}.$$

We assume that for all k = 2, ..., r the hypersurface X_{d_k} intersects $X_{d_1} \cap ... \cap X_{d_{k-1}}$ transversely. Then S_d is a smooth complex surface, called a *complete intersection of multidegree d*.

- 1. Suppose submanifolds M and N of a manifold W intersect transversely. Show that the normal bundles in W are related by $\nu(M \cap N) = \nu(M)|_{M \cap N} \oplus \nu(N)|_{M \cap N}$.
- 2. Calculate the Chern classes $c_1(S_d)$ and $c_2(S_d)$.
- 3. Determine those multidegrees d for which S_d is a K3 surface. [Cheat: you may use without proof that all complete intersections are simply connected.]

You can email the solutions until Tuesday, May 26th at noon.