

MATHEMATISCHES INSTITUT

Summer term 2020

Prof. D. Kotschick G. Placini

Mathematical Gauge Theory II

Sheet 2

Exercise 1. (Anti-linear automorphism II) Let $J, J' \colon V \to V'$ be complex anti-linear isomorphisms between standard Clifford modules. Show that there exists a number $\lambda \in S^1$ so that $J'(\lambda \phi) = \lambda J(\phi)$ for all $\phi \in V$.

Exercise 2. (The group $\mathrm{Spin}(n)$) Let $J_0 \colon \mathbb{C}^N \to \mathbb{C}^N$ be a complex anti-linear automorphism of the standard Clifford module γ_0 . The group $\mathrm{Spin}(n)$ is defined as the set of pairs $(\tau, \sigma) \in \mathrm{Spin}^c(n)$ so that σ commutes with J_0 . Prove that the homomorphism

$$q \colon \mathrm{Spin}(n) \longrightarrow \mathrm{SO}(n)$$

 $(\tau, \sigma) \longmapsto \tau$

is surjective with kernel $\{(I_n, \pm I_N)\} \cong \mathbb{Z}_2$.

Exercise 3. (Spin^c(n) reconstructed from Spin(n)) We consider the quotient

$$(\operatorname{Spin}(n) \times S^1)/\mathbb{Z}_2,$$

where (τ, σ, λ) gets identified with $(\tau, -\sigma, -\lambda)$. Prove that the homomorphism

$$(\operatorname{Spin}(n) \times S^1)/\mathbb{Z}_2 \longrightarrow \operatorname{Spin}^c(n)$$

 $[\tau, \sigma, \lambda] \longmapsto (\tau, \lambda \sigma)$

is an isomorphism.

Exercise 4. (Fundamental representation of SU(2)) Show that there exists a fixed matrix $M \in SU(2)$ such that

$$MAM^{\dagger} = \bar{A} \quad \forall A \in SU(2).$$

You can email the solutions until Tuesday, May 5th at noon.