

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2019

Prof. D. Kotschick G. Placini

Topology II

Sheet 7

Exercise 1. Let G be a (discrete) group and M a manifold. Recall that an action of G on M is called a covering space action if the following condition is satisfied: For any $p \in M$, there exists a neighbourhood $U \subset M$ of p, s.t. for all $g \in G$, $gU \cap U \neq \emptyset$ implies $g = e_G$.

Show that the quotient M/G is a manifold if G acts by a covering action by homeomorphisms on M that satisfies the following condition

• For any $p, q \in M$ there exist open neighbourhoods $U \ni p$ and $V \ni q$ such that $g \cdot U \cap V$ is non-empty only for finitely many $g \in G$.

Exercise 2. Show that $H_c^0(X;G) = 0$ if X is path-connected and noncompact.

Exercise 3. Show that $H_c^n(X \times \mathbb{R}; G) \simeq H_c^{n-1}(X; G)$ for all n.

Exercise 4.

- a) Use the Universal Coefficient Theorem to show that if $H_*(X;\mathbb{Z})$ is finitely generated, so the Euler characteristic $\chi(X) = \sum_n (-1)^n \operatorname{rank} H_n(X;\mathbb{Z})$ is defined, then we have $\chi(X) = \sum^n (-1)^n \dim H^n(X;F)$ with coefficient field $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z}_p for p prime.
- b) Show that the Euler characteristic $\chi(X)$ of a compact odd dimensional manifold M vanishes.

Hand in: during the exercise class on Monday, June 24th.