

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2019

Prof. D. Kotschick G. Placini

Topology II

Sheet 4

Exercise 1.

Let X be a topological space and R a commutative ring.

- a) Show that $2 \cdot \alpha \smile \alpha = 0 \in H^{2k}(X; R)$ for all $\alpha \in H^k(X; R)$ with k odd.
- b) Prove that $H^*(X; R)$ is a commutative ring if $H^k(X; R) = 0$ whenever k is odd.

Exercise 2. Let X and Y be topological spaces with $x \in X$ and $y \in Y$ such that x (respectively y) has a contractible neighbourhood $U \subset X$ (resp. $V \subset Y$). Show that

$$\alpha \smile \beta = 0 \in H^{k+l}(X \lor Y; G)$$

for $\alpha \in H^k(X;G)$, $\beta \in H^l(Y;G)$ and k, l > 0 where we use the isomorphism $H^i(X \vee Y;G) \simeq H^i(X;G) \oplus H^i(Y;G)$ when i > 0.

Exercise 3.

- a) Determine the cup product $\sim: H^1(T^2; \mathbb{Q}) \times H^1(T^2; \mathbb{Q}) \longrightarrow H^2(T^2; \mathbb{Q}).$
- b) Prove that every map $f: S^2 \longrightarrow T^2$ induces the trivial map on cohomology groups of positive degree with coefficients in \mathbb{Q} .

Exercise 4. Compute the cup product structure in $H^*(\Sigma_g; \mathbb{Q})$ for Σ_g the closed orientable surface of genus g by using the quotient map from Σ_g to the one point union of g tori.

Hand in: during the lecture on Thursday, May 23rd.