

MATHEMATISCHES INSTITUT

Summer term 2019

Prof. D. Kotschick G. Placini

Topology II

Sheet 1

Exercise 1. Show that Ext(H,G) is a contravariant functor of H for fixed G, and a covariant functor of G for fixed H.

Exercise 2. Prove the following statements:

- 1. Every short exact sequence $0 \to A \to B \to C \to 0$ of free Abelian groups splits.
- 2. $\operatorname{Ext}(H_1 \oplus H_2, G) = \operatorname{Ext}(H_1, G) \oplus \operatorname{Ext}(H_2, G)$ for arbitrary Abelian groups H_1, H_2 and G.

Exercise 3. Show that the maps $G \xrightarrow{n} G$ and $H \xrightarrow{n} H$ multiplying each element by the integer n induce multiplication by n in $\operatorname{Ext}(H,G)$.

Exercise 4.

- 1. Compute $\operatorname{Hom}(H,G)$ and $\operatorname{Ext}(H,G)$ for $H=\mathbb{Z},\mathbb{Z}_n$ and $G=\mathbb{Z},\mathbb{Z}_n$.
- 2. Let X be a topological space with finitely generated homology groups $H_i(X,\mathbb{Z})$. Deduce from the first part that $H^i(X,\mathbb{Z}) \cong F_i \oplus T_{i-1}$ where T_i is the torsion subgroup of $H_i(X,\mathbb{Z})$, $F_i = H_i(X,\mathbb{Z})/T_i$ and $H^i(X,\mathbb{Z})$ is the i-th cohomology group of X with integer coefficients.

Hand in: during the lecture on Thursday, May 2nd.