

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2018

Prof. T. Vogel G. Placini

Topology II

Sheet 10

Exercise 1. Show that if M is a compact contractible *n*-manifold then its boundary ∂M is a homology (n-1)-sphere, that is, $H_i(\partial M; \mathbb{Z}) \simeq H_i(S^{n-1}; \mathbb{Z})$ for all i.

Exercise 2. For a space X, let X^+ be the one-point compactification. If the added point, denoted ∞ , has a neighborhood in X^+ that is a cone with ∞ the cone point, show that the evident map $H^n_c(X;G) \to H^n(X^+,\infty;G)$ is an isomorphism for all n. [Question: Does $X = \mathbb{Z} \times \mathbb{R}$ satisfy the hypothesis?]

Exercise 3. Let M be a 7-dimensional topological manifold with

 $H_7(M;\mathbb{Z}) = \mathbb{Z}$ $H_6(M;\mathbb{Z}) = \mathbb{Z}$ $H_5(M;\mathbb{Z}) = \mathbb{Z}_2$ $H_4(M;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}_3$

and denote by T_3 the torsion subgroup of $H_3(M; \mathbb{Z})$. Compute the homology and cohomology groups of M up to torsion in terms of T_3 .

Exercise 4. In the setting of the previous exercise, discuss how the ring structure of $H^*(M;\mathbb{Z})$ depends on T_3 .

Hand in: during the lecture on Monday, July 2nd.