Topology II

Sheet 8

Exercise 1. The direct limit $\xrightarrow{\lim } G_{i}$ of a sequence of homomorphisms of abelian groups $G_{1} \xrightarrow{\alpha_{1}}$ $G_{2} \xrightarrow{\alpha_{2}} G_{3} \rightarrow \cdots$ is defined to be the quotient of the direct sum $\oplus_{i} G_{i}$ by the subgroup consisting of elements of the form $\left(g_{1}, g_{2}-\alpha_{1}\left(g_{1}\right), g_{3}-\alpha_{2}\left(g_{2}\right), \ldots\right)$.
a) Prove that every element of $\underset{\rightarrow}{\lim } G_{i}$ is represented by an element $g_{i} \in G_{i}$ for some i, and two such representatives $g_{i} \in G_{i}$ and $g_{j} \in G_{j}$ define the same element of $\underset{\longrightarrow}{\lim } G_{i}$ if and only if they have the same image in some G_{k} under the appropriate composition of α_{l} 's.
b) Give a description of $\underset{\rightarrow}{\lim } G_{i}$ where $G_{i}=\mathbb{Z}$ for all i and all maps are multiplication by a prime p.
c) Show that $\xrightarrow{\lim } G_{i}=\mathbb{Q}$ when $G_{i}=\mathbb{Z}$ and the map α_{i} is multiplication by i for all i.

Exercise 2. Let X be a topological space and $C_{1} \subset C_{2} \subset C_{3} \subset \cdots$ be subsets of X such that any compact set $K \subset X$ is contained in C_{i} for some i. Prove that $\underset{\longrightarrow}{\lim } H_{n}\left(C_{i} ; G\right)=H_{n}(X ; G)$.

Exercise 3. Given a sequence of group homomorphisms $\cdots \rightarrow G_{2} \xrightarrow{\alpha_{2}} G_{1} \xrightarrow{\alpha_{1}} G_{0}$, the inverse limit $\lim _{\longleftarrow} G_{i}$ is defined to be the subgroup of $\Pi_{i} G_{i}$ consisting of sequences $\left(g_{i}\right)$ with $\alpha_{i}\left(g_{i}\right)=g_{i-1}$ for all i.
a) Show that $\operatorname{Hom}\left(\underset{\longrightarrow}{\lim } G_{i}, G\right)=\underset{\longleftarrow}{\lim } \operatorname{Hom}\left(G_{i}, G\right)$ for any abelian group G.
b) Given X and C_{i} 's as in exercise 2, define a natural map $\lambda: H^{n}(X ; G) \rightarrow \underset{\longleftarrow}{\lim } H^{n}\left(C_{i} ; G\right)$.
c) Prove that the map λ is an isomorphism when $G=\mathbb{Q}$.

Exercise 4.

a) Given an abelian group G and a short exact sequence of abelian groups $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ show that there exists an exact sequence

$$
0 \rightarrow \operatorname{Hom}(G, A) \rightarrow \operatorname{Hom}(G, B) \rightarrow \operatorname{Hom}(G, C) \rightarrow \operatorname{Ext}(G, A) \rightarrow \operatorname{Ext}(G, B) \rightarrow \operatorname{Ext}(G, C) \rightarrow 0
$$

b) Prove that the group $\operatorname{Hom}(\mathbb{Q}, \mathbb{Q} / \mathbb{Z})$ is uncountable.
[Hint: Construct a homomorphism for each sequence $a_{1}, a_{2}, \ldots \in \mathbb{Q} / \mathbb{Z}$ with $n a_{n}=a_{n-1}$.]
c) Use the short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ to prove that $\operatorname{Ext}(\mathbb{Q}, \mathbb{Z})$ is uncountable.

Exercise 5. The mapping telescope of a sequence of maps $X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} X_{3} \rightarrow \cdots$ is the union of the mapping cylinders $M_{f_{i}}$ with the copies of X_{i} in $M_{f_{i}}$ and $M_{f_{i-1}}$ identified for all i.
a) Consider the mapping telescope T of the sequence $S^{1} \xrightarrow{f_{1}} S^{1} \xrightarrow{f_{2}} S^{1} \rightarrow \cdots$ with $\operatorname{deg}\left(f_{i}\right)=i$. Use exercise 2 to compute $H_{*}(T, \mathbb{Z})$.
b) Use the Universal Coefficient Theorem and exercise 4 to conclude that the analogue of exercise 2 in cohomology (i.e. a generalization to arbitrary abelian groups of 3.c)) cannot hold.

Hand in: during the lecture on Monday, June 11th.

