

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2018

Prof. T. Vogel G. Placini

Topology II

Sheet 4

Exercise 1. Let X, Y be topological spaces and G, H, L abelian groups.

- a) Show that a group homomorphism $\varphi: G \to H$ induces a chain map $\varphi_*: C_*(X; G) \to C_*(X; H)$.
- b) Show that a short exact sequence $0 \to G \to H \to L \to 0$ induces a long exact sequence in homology:

$$\cdots \longrightarrow H_i(X;L) \xrightarrow{B} H_{i-1}(X;G) \rightarrow H_{i-1}(X;H) \rightarrow H_{i-1}(X;L) \xrightarrow{B} H_{i-2}(X;G) \longrightarrow \cdots$$

c) Prove the naturality of the connecting homomorphism $B: H_i(-;\mathbb{Z}_2) \to H_{i-1}(-;\mathbb{Z}_2)$ associated to the sequence $0 \to \mathbb{Z}_2 \xrightarrow{\cdot 2} \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0$ i.e., show that $f_* \circ B = B \circ f_*$ for a continuous map $f: X \to Y$.

Exercise 2. Give a description of the map $B : H_i(X; \mathbb{Z}_2) \to H_{i-1}(X; \mathbb{Z}_2)$ from the previous exercise when $X = \mathbb{R}P^{\infty}$.

Exercise 3. Prove the equality

$$\sum_{i} (-1)^{i} \cdot \operatorname{trace} \left(f_{i} : C_{i}^{CW}(|K|;\mathbb{R}) \longrightarrow C_{i}^{CW}(|K|;\mathbb{R}) \right)$$
$$= \sum_{i} (-1)^{i} \cdot \operatorname{trace} \left(f_{i} : H_{i}(|K|;\mathbb{R}) \longrightarrow H_{i}(|K|;\mathbb{R}) \right)$$

where $f: |K| \to |K|$ is a continuous map and K a simplicial complex.

Exercise 4. Prove the following statements:

- a) Every continuous map $\mathbb{R}P^n \longrightarrow \mathbb{R}P^n$ for *n* even has a fixed point.
- b) If $f: |K| \longrightarrow |K|$ is homotopic to the identity and $\chi(|K|) \neq 0$, then f has a fixed point.

Hand in: during the lecture on Monday, May 7th.