

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2018

Prof. T. Vogel G. Placini

Topology II

Sheet 2

Exercise 1. Compute the homology of the Klein bottle with coefficients in \mathbb{Z}, \mathbb{Z}_2 and \mathbb{Q} . [Hint: use CW-structure.]

Exercise 2. Assume that the rows in the following commutative diagram of Abelian groups are exact. Show that if f_2 , f_4 are isomorphism while f_1 is surjective and f_5 is injective, then f_3 is an isomorphism.

A_1 ·	$\longrightarrow A_2 -$	$\longrightarrow A_3 -$	$\longrightarrow A_4 -$	$\longrightarrow A_5$
r.	£.	£	£.	£
J1	J2	J 3 Y	J4	J_{5}
B_1 -	$\longrightarrow B_2 -$	$\rightarrow B_3 -$	$\longrightarrow B_4 -$	$\longrightarrow B_5$

Exercise 3. Show that $Z_m \otimes Z_n \cong \mathbb{Z}_d$ if gcd(m, n) = d.

Exercise 4. Let X be a path connected space. Show that there exists an isomorphism

$$\pi_1(X)_{ab} \otimes G \longrightarrow H_1(X;G)$$

where G is an Abelian group and $\pi_1(X)_{ab}$ the abelianization of $\pi_1(X)$.

Exercise 5. Let G be a group (not necessarily Abelian) and denote by $\operatorname{Aut}(G)$ the group of isomorphisms $\varphi: G \to G$. Show that $G = \mathbb{Z}_2$ if and only if $\operatorname{Aut}(G) = \{1\}$.

Hand in: during the lecture on Monday, April 23rd.