Geometric Group Theory

Sheet 8

Exercise 1. For each of the following group actions name one of the conditions of the Schwarz-Milnor lemma that is satisfied, and one that is not.
a) The action of $\operatorname{SL}(2, \mathbb{Z})$ on \mathbb{R}^{2} given by matrix multiplication.
b) The action of \mathbb{Z} on $X:=\left\{\left(r^{3}, s\right) \mid r, s \in \mathbb{Z}\right\}$ (with respect to the metric induced from the Euclidean metric on \mathbb{R}^{2}) that is given by

$$
\begin{aligned}
\mathbb{Z} \times X & \rightarrow X \\
\left(n,\left(r^{3}, s\right)\right) & \mapsto\left(r^{3}, s+n\right)
\end{aligned}
$$

Exercise 2. Characterise all group homomorphisms between finitely generated groups that are quasi-isometries.

Exercise 3.

a) Is the property of being generated by 2018 elements invariant under quasi-isometries for finitely generated groups?
b) Is the property of being isomorphic to a subgroup of \mathbb{Z}^{2018} invariant under quasi-isometries for finitely generated groups?
c) Is the property of being infinite and torsion-free invariant under quasi-isometries for finitely generated groups?
d) Is the property of being a 2018-torsion group invariant under quasi-isometries for finitely generated groups?
e) Is the property of being a free product of two non-trivial groups invariant under quasi-isometries for finitely generated groups?

Exercise 4. Let G be a finitely generated group with finite generating set $S \subset G$ and let $H \subset G^{\prime} \subset G$ be subgroups. Moreover, let $H \subset G^{\prime}$ be quasi-dense with respect to d_{S}, i.e., there exists a $c \in \mathbb{R}_{>0}$ with

$$
\forall g \in G^{\prime} \quad \exists h \in H \quad d_{S}(g, h) \leq c .
$$

Prove that then H has finite index in G^{\prime}.

Exercise 5. Let X, X^{\prime} and Y be metric spaces and suppose that X and X^{\prime} are quasi-isometric.
a) Are $X \times Y$ and $X^{\prime} \times Y$ then also quasi-isometric?
b) Does the same answer hold when X, X^{\prime} and Y are finitely generated groups and X and X^{\prime} are quasi-isometric?

Exercise 6.

a) Let G and H be finitely generated groups and suppose that there is a quasi-isometric embedding $G \rightarrow H$. Does this imply that there is a quasi-isometric embedding $H \rightarrow G$?
b) For which finitely generated groups G are G and $\operatorname{Hom}(G, \mathbb{Z} / 2)$ quasi-isometric?

