

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2018

Prof. D. Kotschick G. Placini

Geometric Group Theory

Sheet 7

Exercise 1. Let $c, c' \in \mathbb{R}_{>0}$ and $b, b' \in \mathbb{R}_{>0}$.

- a) Let $c' \ge c$ and $b' \ge b$. Is every (c, b)-quasi-isometric embedding then also a (c', b')-quasi-isometric embedding?
- b) Let $c' \leq c$ and $b' \leq b$. Is every (c, b)-quasi-isometric embedding then also a (c', b')-quasi-isometric embedding?

Exercise 2.

- a) Are the metric spaces \mathbb{N} and \mathbb{Z} (with respect to the standard metric induced from \mathbb{R}) quasi-isometric?
- b) Are the metric spaces \mathbb{Z} and $\{n^3 | n \in \mathbb{Z}\}$ (with respect to the standard metric induced from \mathbb{R}) quasi-isometric?

Exercise 3.

- a) Show that every map at finite distance from a quasi-isometric embedding is a quasi-isometric embedding.
- b) Show that every map at finite distance from a quasi-isometry is a quasi-isometry.

Exercise 4. Let X, Y, Z be metric spaces and let $f, f' : X \to Y$ be maps that have finite distance from each other.

- a) Show that for all maps $g: Z \to X$ the compositions $f \circ g$ and $f' \circ g$ have finite distance from each other.
- b) Show that if $g: Y \to Z$ is a quasi-isometric embedding, then $g \circ f$ and $g \circ f'$ also have finite distance from each other.

(please turn)

Conclude the following:

- c) Compositions of quasi-isometric [bilipschitz] embeddings are quasi-isometric [bilipschitz] embeddings.
- d) Compositions of quasi-isometries [bilipschitz equivalences] are quasi-isometries [bilipschitz equivalences].

You can hand in your solutions during the exercise classes.