

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2018

Prof. D. Kotschick G. Placini

Geometric Group Theory

Sheet 4

Exercise 1.

- a) Is there a free isometric action of \mathbb{Z}_2 on \mathbb{R} ?
- b) Is there a free isometric action of \mathbb{Z}_2 on $\mathbb{R} \setminus \{0\}$?
- c) Is there a free isometric action of \mathbb{Z}_3 on \mathbb{R} ?
- d) Is there a free isometric action of \mathbb{Z}^2 on \mathbb{R} ?

Exercise 2. Let $n \in \mathbb{N}$, let $a \in \operatorname{GL}(n, \mathbb{R})$ and let $G := \langle a \rangle_{GL(n, \mathbb{C})}$.

- a) Suppose that G acts freely by matrix multiplication on $\mathbb{R}^n \setminus \{0\}$. Show that G then also acts freely by matrix multiplication on $\mathbb{C}^n \setminus \{0\}$.
- b) Let $n \geq 2$. Give an example of a non-trivial element $a \in SL(n, \mathbb{R})$ such that G acts freely on $\mathbb{R}^n \setminus \{0\}$.

Exercise 3. Prove (without using the characterisation of free groups in terms of free actions on trees) that every action of a finite group on a non-empty tree has a global fixed point (i.e., a vertex or an edge on which all group elements act trivially).

Exercise 4.

- a) Is every action of a free group on a tree free?
- b) Suppose that a free group acts freely on a graph X. Is X then a tree?

You can hand in your solutions during the exercise classes.