

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2018

Prof. D. Kotschick G. Placini

Geometric Group Theory

Sheet 2

Exercise 1. Let $\alpha_1 : A \to G_1$ and $\alpha_2 : A \to G_2$ be injective group homomorphisms. Consider the amalgamated product $G = G_1 *_A G_2$ as the pushout of G_1 and G_2 over A with respect to α_1 and α_2 :

Show that the homomorphism $\beta_1 \circ \alpha_1 = \beta_2 \circ \alpha_2$ is injective.

Exercise 2.

- a) Is the additive group \mathbb{Q} finitely generated?
- b) Is the symmetric group S_X of an infinite set X finitely generated?

Exercise 3. Let S be a set and let F be the free group generated by S.

- a) Prove that if $S' \subset F$ is a generating set of F, then $|S'| \ge |S|$.
- b) Conclude that all free generating sets of a free group have the same cardinality.
- c) Show that the free group generated by two elements contains a subgroup that cannot be generated by two elements.

Exercise 4. For $n \in \mathbb{N}$ we define

$$G_n := \left\langle a_1, \dots, a_n, b_1, \dots, b_n | \prod_{i=1}^n [a_i, b_i] \right\rangle.$$

- a) Prove that for all $n, m \in \mathbb{N}$ we have $G_n \cong G_m$ if and only if n = m.
- b) For which $n \in \mathbb{N}$ is the group G_n Abelian?

You can hand in your solutions during the exercise classes.