

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2018

Prof. D. Kotschick G. Placini

Geometric Group Theory

Sheet 1

Exercise 1. Show that the quotient group A = G/[G,G] of a group G by its commutator subgroup is abelian.

Exercise 2. The index [G:H] of a subgroup $H \subset G$ is the cardinality of the set of cosets G/H.

- a) Let $H, K \subset G$ be subgroups of finite index. Show that $H \cap K$ also has finite index in G.
- b) Let $H \subset G$ be a subgroup and $S \subset G$ be a set of representatives of the cosets $\{g \cdot H | g \in G\}$. Show that

$$\bigcap_{g \in G} g \cdot H \cdot g^{-1} = \bigcap_{g \in S} g \cdot H \cdot g^{-1}.$$

c) Let $H \subset G$ be a subgroup of finite index. Show that there exists a normal subgroup $N \subset G$ of finite index with $N \subset H$.

Exercise 3. Determine the groups $Out(\mathbb{Z})$ and $Out(\mathbb{Z}/p\mathbb{Z})$ for a prime $p \in \mathbb{N}$.

Exercise 4. Let $3 \le n \in \mathbb{N}$ and let $X_n \subset \mathbb{R}^2$ be a regular *n*-gon. Describe the group D_n of symmetries of X_n . How many elements does D_n contain?