

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2017

Prof. D. Kotschick G. Placini

Topology II

Sheet 9

Exercise 1. Show that if M is a compact contractible *n*-manifold then its boundary ∂M is a homology (n-1)-sphere, that is, $H_i(\partial M; \mathbb{Z}) \simeq H_i(S^{n-1}; \mathbb{Z})$ for all i.

Exercise 2. Prove that $\sigma(M \sharp N) = \sigma(M) + \sigma(N)$ for any compact, connected oriented manifolds M and N.

Exercise 3.

- (a) Show that there exist a continuous surjective map $\pi : \mathbb{C}P^{2m+1} \to \mathbb{H}P^m$ such that $\pi^{-1}(x)$ is homeomorphic to $\mathbb{C}P^1$ for all $x \in \mathbb{H}P^m$.
- (b) Use point (a) to conclude that the odd dimensional complex projective space $\mathbb{C}P^{2m+1}$ is bordant to the empty manifold.

Exercise 4. For any embedding $i: S^k \to S^n$ compute the reduced homology groups $\tilde{H}_i(S^n \setminus i(S^k); \mathbb{Z})$ for all i.

Hand in: Tuesday, July 11th, during the exercise class.