Topology II

Sheet 8

Exercise 1. Show that $H_{c}^{n}(X \times \mathbb{R} ; G) \simeq H_{c}^{n-1}(X ; G)$ for all n.

Exercise 2. Show that the Betti number $b_{2 n+1}(M)$ is even for a compact connected orientable manifold M of dimension $4 n+2$.

Exercise 3. Let $T_{i}\left(\right.$ resp. $\left.T^{i}\right)$ be the torsion subgroup of the integral homology group $H_{i}(M ; \mathbb{Z})$ (resp. cohomology group $H^{i}(M ; \mathbb{Z})$) where M is a compact connected orientable manifold.

- Prove that if $\operatorname{dim}(M)=3$ then $T_{i}=0$ for $i \neq 1, T^{i}=0$ for $i \neq 2$ and $T_{1} \simeq T^{2}$.
- What is the analogous statement for $\operatorname{dim}(M)=4$?

Exercise 4. Compute the cup product structure in $H^{*}\left(\left(S^{2} \times S^{8}\right) \sharp\left(S^{4} \times S^{6}\right) ; \mathbb{Z}\right)$, and in particular show that the only nontrivial cup products are those given by the projections on summands, e.g. $\pi_{1}:\left(S^{2} \times S^{8}\right) \sharp\left(S^{4} \times S^{6}\right) \rightarrow S^{2} \times S^{8}$.
How does it generalize to a connected sum of $S^{i} \times S^{n-i}$,s for fixed n and varying i ?

Hand in: Tuesday, July 4th, during the exercise class.

