Topology II

Sheet 5

Exercise 1. Using the cup product structure, show there is no map $\mathbb{R P}^{n} \rightarrow \mathbb{R} P^{m}$ inducing a nontrivial map $H^{1}\left(\mathbb{R} \mathrm{P}^{m} ; \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(\mathbb{R} \mathrm{P}^{n} ; \mathbb{Z}_{2}\right)$ if $n>m$. What is the corresponding result for maps $\mathbb{C} P^{n} \rightarrow \mathbb{C P}^{m}$?

Exercise 2 (Borsuk-Ulam Theorem). Prove by contradiction that for every map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there exists an $x \in S^{n}$ such that $f(x)=f(-x)$. Namely, suppose $f: S^{n} \rightarrow \mathbb{R}^{n}$ satisfies $f(x) \neq f(-x)$ for all $x \in S^{n}$ and define $g: S^{n} \rightarrow S^{n-1}$ by

$$
g(x)=\frac{f(x)-f(-x)}{|f(x)-f(-x)|}
$$

so $g(-x)=-g(x)$ and g induces a map $\mathbb{R P}^{n} \rightarrow \mathbb{R P}^{n-1}$. Conclude by using the previous exercise.

Exercise 3. Show that the ring $H^{*}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z}_{2 k}\right)$ is isomorphic to $\mathbb{Z}_{2 k}[\alpha, \beta] /\left(2 \alpha, 2 \beta, \alpha^{2}-k \beta\right)$ where $\operatorname{deg}(\alpha)=1$ and $\operatorname{deg}(\beta)=2$.
[Hint: Use the coefficient map $\mathbb{Z}_{2 k} \rightarrow \mathbb{Z}_{2}$ and the computation of the ring $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$.]

Exercise 4. Using cup products, show that every map $S^{k+l} \rightarrow S^{k} \times S^{l}$ induces the trivial homomorphism $f^{*}: \tilde{H}^{*}\left(S^{k} \times S^{l} ; R\right) \rightarrow \tilde{H}^{*}\left(S^{k+l} ; R\right)$, assuming $k, l>0$.

