

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2017

Prof. D. Kotschick G. Placini

Topology II

Sheet 2

Exercise 1. Let X be a topological space and G an Abelian group. Regarding a cochain $\varphi \in C^1(X; G)$ as a function from paths in X to G, show that if φ is a cocycle and $f, g : [0, 1] \to X$ are paths, then

- 1. $\varphi(f \cdot g) = \varphi(f) + \varphi(g)$ where f(1) = g(0) and $f \cdot g$ is the concatenation of f and g,
- 2. φ takes the value 0 on constant paths,
- 3. $\varphi(f) = \varphi(g)$ if $f \simeq g$,
- 4. φ is a coboundary if and only if $\varphi(f)$ depends only on the endpoints of f, for all f.

Exercise 2.

- 1. Compute the cohomology groups $H^i(S^n; G)$ for $i, n \ge 0$ and G an arbitrary Abelian group.
- 2. Show that if $f: S^n \to S^n$ has degree d then $f^*: H^n(S^n; G) \to H^n(S^n; G)$ is multiplication by d.

Exercise 3. Given two topological spaces X, Y and an Abelian group G, compute the cohomology groups $H^n(X \vee Y; G)$ of the wedge sum $X \vee Y$.

Exercise 4. Compute the cohomology groups $H^i(\mathbb{R}P^n; G)$ for all *i* and *n* with arbitrary coefficients. [You can assume the homology of $\mathbb{R}P^n$]

Hand in: Tuesday, May 9th, during the exercise class.