

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2017

Prof. D. Kotschick G. Placini

Topology II

Sheet 1

Exercise 1. Show that Ext(H, G) is a contravariant functor of H for fixed G, and a covariant functor of G for fixed H.

Exercise 2. Prove the following statements:

- 1. Every short exact sequence $0 \to A \to B \to C \to 0$ of free Abelian groups splits.
- 2. $\operatorname{Ext}(H_1 \oplus H_2, G) = \operatorname{Ext}(H_1, G) \oplus \operatorname{Ext}(H_2, G)$ for arbitrary Abelian groups H_1, H_2 and G.

Exercise 3. Show that the maps $G \xrightarrow{n} G$ and $H \xrightarrow{n} H$ multiplying each element by the integer n induce multiplication by n in Ext(H, G).

Exercise 4.

- 1. Compute Hom(H, G) and Ext(H, G) for $H = \mathbb{Z}, \mathbb{Z}_n$ and $G = \mathbb{Z}, \mathbb{Z}_n$.
- 2. Let X be a topological space with finitely generated homology groups $H_i(X, \mathbb{Z})$. Deduce from the first part that $H^i(X, \mathbb{Z}) \cong F_i \oplus T_{i-1}$ where T_i is the torsion subgroup of $H_i(X, \mathbb{Z})$, $F_i = H_i(X, \mathbb{Z})/T_i$ and $H^i(X, \mathbb{Z})$ is the *i*-th cohomology group of X with integer coefficients.

Hand in: Tuesday, May 2nd, during the exercise class.