Perspectives on Martin-Lof Type Theory and Univalent Type Theory

Tosif Petrakis

University of Bern
Winter term 17/18

Contents

Chapter 1. Identity in Martin-Lof’s intensional type theory
1.1. The J-rule
1.2. Some fundamental implications of the J-rule
1.3. The based J-rule
1.4. Dependent pair types (> -types)
1.5. The M-rule and the based M-rule
1.6. The J-judgement and the Yoneda lemma
1.7. Notes

Chapter 2. The axiom of univalence
2.1. Voevodsky’s axiom of univalence
2.2. A Yoneda-version of the axiom of univalence
2.3. A strong Yoneda-version of the axiom of univalence

Chapter 3. Equivalence relations on types
3.1. Setoids
3.2. Typoids
3.3. Univalent typoids
3.4. “Higher” typoids

Bibliography

ST W N ==

13
13
16
19

27
27
28
37
41

45

CHAPTER 1

Identity in Martin-Lof’s intensional type theory

1.1. The J-rule

DEFINITION 1.1.1. Form,—,,: If x : A and y : A, the equality type

T=2y:U.
Introgz— ,,:
refla: H:c =A Z.
z:A
Ind_ ,: If
C: H H u
T, APT=AY

is a dependent family of types in U, and if
c: H C(x,z,refl,)
z:A
is a dependent function, there is a dependent function

F: H H C(x,y,p)

T APT=4aY
such that
F(z,z,refl,) = c(x).

This is the inductive definition of the type family =4: A - A — U with

two indices in A and with constructor
z: A

refl,:x=px

The type x =4 y is not defined inductively, but the type family is.
In the rest A, B denote always some types in the universe U.

DEFINITION 1.1.2. We call the following judgement and its associated

computation rule

J: H H H H C(z,y,p)

Cilyya Hp:x:AyZ/{ c[1,.4 Clz,z,refly) T,y: AP:T=2Y

1

2 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

J(Cyc,x,x,refl,) =c(x), z:A

the J-judgement and the J-computation rule.

1.2. Some fundamental implications of the J-rule

DEFINITION 1.2.1. The judgement a : A implies the judgement b : B,
if from a : A we can derive a judgement o' : B. In this case, if r is a
computation rule of a : A and s a computation rule of b : B, we say that r
implies s, if from r we can derive s’, where s’ is same to s, but with respect
to ¥'. The judgements are equivalent, if one implies the other, while the
computations rules of two equivalent judgements are equivalent, if one rule
implies the other.

ProposiTIiON 1.2.2. The J-judgement and the J-computation rule im-
ply the following LeastRefl-judgement and LeastRefl-computation rule,
respectively,

LeastRefl : H H H H R(%Z/)a

R:A—A—UrT],. 4 R(z,x) z,y:Ap:x=4ay
LeastRefl(R,r, z,z,refl,) =r(zx), z:A.
PRrROOF. O

As Coquand mentions in [6], the J-judgement is just the LeastRefl-
judgement together with the presence of proof-terms.

ProposiTiON 1.2.3. The J-judgement and the J-computation rule im-
ply the following Transport-judgement and Transport-computation rule,
respectively,

Transport : H H H (P(z) — P(y))

P:A—=U x,y: A p:x=aY
Transport(P, z,7,refl,) =idp), z:A4A.
Proor. g
If A and x,y are fixed we use the notation p!’ for Transport(P,z,y,p).

PROPOSITION 1.2.4. The LeastRefl and the Transport-judgement are
equivalent. Moreover, the LeastRefl-computation rule is equivalent to the
Transport-computation rule.

PROOF. |

1.3. THE BASED J-RULE 3

PROPOSITION 1.2.5. Let the dependent functions C : [[, 411,z ,, U

and ¢ : [[, 4 Oz, refly). If F\G], . allpece,y C(@,y,p) such that
F(z,z,refl,) = c(x) = G(z,x, refl,),

the following judgement and computation rule are derived

H: H H F(z,y,p) =C(z,y.p) G(z,y,p),

Y APT=AY
H(z,r,refl;) =refly,), w:A.

PROOF. O
In the proof of Proposition 1.2.4 we have e.g., that from the LeastRef1-
judgement we get a judgement T": [[p 41/ [1, yoa [1p0e ,, (P(2) = P(y)),
and this term 7' is not necessarily judgementaly identical to Transport,
a fact that explains our formulation of Definition 1.2.1. Through Propo-

sition 1.2.5 though T is pointwise equal to Transport, and by function
extensionality it is propositionally equal to it.

PROPOSITION 1.2.6. The J-judgement and the J-computation rule imply
the following Application-judgement and Application-computation rule,
respectively,

Application: H H H f(z) =5 f(y)

[:A=>Bzy: Ap:r=aY
Application(f,r,x,refl;) =refls,), z:A.
ProOOF. U

The standard notation for Application(f) is ap;.

1.3. The based J-rule
DEFINITION 1.3.1. We call the following judgement and its rule

A I II 11 II ¢t

a:AC:I],. 4 Hp:a:Az U c:C(a,refl,) T:Ap:a=AT

jla,C,c,a,refl,) =c

the j-judgement and the j-computation rule. Usually, we denote j(a) by jq,
for every a : A.

4 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

For the following judgements and their corresponding computation rules

leastrefl:H H H H H R, (x)

a:A Ry:A—=Urq:Re(a) T:Ap:a=aT

leastrefl(a, Ry, 7q,a,refly) = rg,
transport : H H H H (P(a) — P(x))
a:A P:A—U x:Ap:a=az
transport(a, P, a,refl,) = idp(g),

one can prove the corresponding Propositions 1.2.2—1.2.4. We use the no-
tations leastrefl, = leastrefl(a) and transport, = transport(a), for
every a : A.

DEFINITION 1.3.2. A family of judgments (i, : P(a))q.a implies the
judgement b : B, if given (i, : P(a))q.4, we can derive a judgement o' : B
In this case, if r, is a computation rule of i, : P(a) and s is a computation
rule adjusted to b : B, the family of computation rules r(a)q.4 implies s, if
from 7(a)q.4 we can derive s’, where s’ is same to s, but with respect to ¥'.
The converse implications are defined similarly.

PRroPOSITION 1.3.3. The family of judgements
(j“ : 11 IT II II c@np)
CHIAHPQ AIUCC(arefla) T A pra=ax a:A

implies the judgement

J I1 11 I[I <@y,

C:Hz,y:A Hp:z:Ay u C:H.’E:A C(x7x’refll) Hz,y:A Hp:z:Ay

and the family of computation rules (jo(C,c,a,refly) = ¢)q.4 implies the
computation rule J(C,c,z,x,refl,) = c(x), for every x : A.

PROOF. O
THEOREM 1.3.4. The converse of Proposition 1.3.3 holds.

PRrROOF. (Altenkirch, Coguen)

1.4. DEPENDENT PAIR TYPES (3> -TYPES) 5

1.4. Dependent pair types (> _-types)

DEFINITION 1.4.1. Formy~: Given A : U and a family P : A — U, the
dependent pair type >, . 4 P(z) is in U.

Introy-~:
x: A, u: P(z)
CAORDIIRLC)
Recy: If C: U and G : [[,.4(P(x) — C), there exists

F: (Z P(a;)) - C
T:A

such that

F((xz,u)) := G(x,u),
for every x : A and u : P(x).
Inds~: If Q: (32,4 P(x)) — U, and

G I II el@w).

2 A uiP(z)
there is a dependent function
L | eI
w4 P(z)

such that

F((z,u)) := G(z,u),
for every x : A and u : P(x).

Next the existence of the two projection functions of a) -type is shown.

PROPOSITION 1.4.2. The judgements pry : (>,.4 P(x)) = A and pry :
Huzz L P(@) P(pry(u)) with the following corresponding computation rules
are derivable

pri((z,u)) =z, z:Au:P(x),
pry((z,u)) =u, x:Au:P(z).
Proor. With the use of Recy, if G : [[,.4(P(x) — A) is defined by

G(z,u) ==,

6 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

for every x : A, the first projection function

pry : (Z P(CL‘)) — A
T:A

is defined by

Prl((‘rvu)) = G(.’E, u) =z,
for every x : A and u : P(z). With the use of Indy~, if Q : (3.4 P(z)) = U
is defined by

Q(u) := P(pry(u)),
for every w: 3, 4 P(z), and if G : [[,. 4 [, p(s) P (P (u)) is defined by
G(z,u) :=u,

for every x : A and u : P(x), then the second projection function

pry: [Pleri(w)

U’:ZIE:A P(I)

is defined by

pry((z,u)) = G(z,u) = u,

for every x : A and u : P(x). O
PROPOSITION 1.4.3. The following judgement and computation rule are
derivable
M:] (2=x,, P @ri(2),pra(2)))
ziy, .4 P(x)
M((#,u)) = refly,), =:Au:P(z).
Proor. 0

1.5. The M-rule and the based M-rule

ProrosiTiON 1.5.1. If The J-judgement and the J-computation rule
imply the following M -judgement and M -computation rule, respectively,

M:]]I (e refls) =g, (z,p)
a,r:Ap:a=AT
M(a,a,refl,) = refl(yres1,)
where

E, = Z(a =4).

x: A
PROOF. |

1.5. THE M-RULE AND THE BASED M-RULE 7

Similarly we get that the j-judgement and the j-computation rule imply
the following m-judgement and m-computation rule, respectively,

m: H H (a,refl,) =g, u

a:AuwE,

Mg <(a, refla)) =refly ref1,),
where mg, = m(a).
PROPOSITION 1.5.2. The family of judgements
(ma : H (a,refl,) =g, u>
u:Fq a:A

implies the judgement

M: I I (a.refin) =g, (z.p),

a,r:Ap:a=Ax

and the family of computation rules (mq((a,refl,)) = refl(&reﬂa))a:A im-
plies the computation rule M (a,a,refl,) = refl(, ref1,), for every a: A.

PRrROOF. We define M (a,z,p) = mq((z,p)). O
THEOREM 1.5.3. The converse of Proposition 1.5.2 holds.

PrOOF. If we define the family Q : E, — U by Q(u) = (a,refl,) =g, u,
for every u : F,, then

M) :] J] ((aretle) =g, (z.p) =] I @@.p)).

r:Apa=Ax A pa=pT
By Indy-~ there is I : [],.5. Q(u) such that
F((a,refl,)) = M(a)(a,refl,) = M(a,a,refl,) = refl(gres1,)-

THEOREM 1.5.4. The following two judgements

Mg : H (a,refly) =g, u
w:FEq

transport, : H H H (P(a) = P(x))

P:A—U x:Ap:a=apx

8 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

imply the judgement
Ja H H H H C(.’L‘,p)
CIl,.a Hp:a:A;cZ’{ c:C(a,refl,) T:Ap:a=ax
and the same holds for their corresponding computation rules.

PRrROOF. Let the judgements C' : [],. 41 U and ¢ : C(a,refl,).

pia=Ax

We find F : [[,. 4 [1,..= ,» C(x, p) such that F(a,refl,) =c. Let P: E, —
U defined by P((z,p)) = C(z,p), for every x : A and p : a =4 z. The
existence of P follows from Recs~. Since

ma((z,p)) : (a,refl,) =g, (x,p)
using transport, we have that
[ma((x,p))]f : P((a,refl,)) — P((z,p)) = C(a,refl,) — C(z,p),
and we define
F=Xz:Ap:a=y ac)[ma((x,p))]f(c)
Then we get

F(a,refl,) = [mq((a, refla))]f(c)
[refl(a,refla)]f(c)

idP((a,ref_la) (C)

idC(oL,refla) (C)
C.

O

As a corollary of Theorem 1.5.4 we get an immediate proof of Theo-
rem 1.5.3 as follows. Let a : A. From the J-judgement we get the M-
judgement (Proposition 1.5.1) and from the M-judgement we get the my-
judgement (Theorem 1.5.3). From the J-judgement we get the Transport-
judgement (Proposition 1.2.3) and from it we get easily the transport,-
judgement. Then we get the j,-judgement from Theorem 1.5.4.

COROLLARY 1.5.5 (Coquand, 2014). The following judgements and cor-
responding computation rules are equivalent:
(i) J.
(ii) Transport and M.
(iii) LeastRefl and M.

1.6. THE J-JUDGEMENT AND THE YONEDA LEMMA 9

PROOF. For the equivalence between (i) and (ii) it suffices to show that
Transport and M imply J. Since Transport and M imply transport,
and mg, for every a : A, respectively, by Theorem 1.5.4, we get j,, for every
a : A, hence by Proposition 1.3.3 we get J. The equivalence between (ii)
and (iii) is Proposition 1.2.4. O

Of course, a similar equivalence holds between the judgements and com-
putation rules j,, transport, and m,, leastrefl, and m,.

1.6. The J-judgement and the Yoneda lemma

In [14] Rijke viewed a type family P : A — U over A : U as a presheave
of a locally small category C i.e., as an element of Set®”, and he gave a
type-theoretic version of the Yoneda lemma. Recall that Set®” denotes the
category of contravariant set-valued functors on C, and by the definition of
a locally small category C, if A, B € Cy, where Cy denotes the objects of C
and C; denotes the arrows of C, the collection

Hom¢(A,B)={fe€C | f: A— B}
is a set. Note of course, that the universe of types is closed under exponenti-
ation. According to the Yoneda lemma (see [3], section 8.2), if C is a locally
small category, C € Cy and F € Set®”, then there is an isomorphism
Homgycor (V(C), F) = F(C),
which is natural in both F' and C', where
Y:C — Set®”
is the Yoneda embedding i.e., the functor
Y(C) = Home(—,C) : C°P — Set
Y(f:C — ') =Home(—, f) : Home(—, C) — Home(—, C7)

defined post-compositionally. Through the Yoneda lemma the Yoneda em-

bedding is shown to be an embedding i.e., an injective on objects, faithful,
and full functor.

DEFINITION 1.6.1. If P,Q : A — U are type families on A and a : A, we
define

Hom(P,Q) = [[(P(z) = Q(x))
T:A
YV,:A—=U

Y(@)(z)=x=pa, z:A.

10 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

Hence, we have that

Hom(Y(a),P) = [(¥(a) = P(x))

z:A

= H ((3: =4a)— P(l‘))
xz:A
= H H P(z).

T Ap:T=p0

PROPOSITION 1.6.2.

THEOREM 1.6.3 (Yoneda lemma in ITT + Function extensionality (Ri-
jke, 2012)). Let P: A —U and a : A. There is a pair of quasi-inverses

(4,4) : Hom(Y(a), P) ~ P(a)

o (joi)(u) =w, wu:P(a),
(i0j)(o) =0, U:H H P(x)
T:Ap:T=p0

such that

i(u)(a,refl,) =u, wu: P(a),

jlo) =o(a,refl,), o: H H P(z).

T:Ap:T=a0
PROOF. O

DEFINITION 1.6.4. We call the judgement (j,7) : Hom(Y(a), P) ~ P(a)
the V-judgement and the families of computation rules

(i(u)(a,refly) = u)uzp(a),
(i(0) =ola,xefle)) iy 1 pw)
the left and right YV-computation rule, respectively.

PRrROPOSITION 1.6.5. The Y-judgement implies the introduction rule of
the equality type i.e., the inhabitedness of the type a =4 a, for every a : A.

PROOF. If a : A, and if we consider as P in the type-theoretic Yoneda
lemma the type family), then

Hom(Y(a),Y(a)) = <H H x =4 a> ~ (a =4 a) = Y(a).

T Ap:T=p0

1.6. THE J-JUDGEMENT AND THE YONEDA LEMMA 11

The only element of Hom()(a),Y(a)) we can determine at this point is
R=XNz:Ap:x=4a)p
and j(R) : a =4 a. O

We can view j(R) as the refl,. Note that if we use the right)-
computation rule, which has meaning after Proposition 1.6.5, we get that
J(R) = R(a,refl,) = refl,.

PROPOSITION 1.6.6. The YV-judgement implies the Transport-judgement
and the left Y-computation rule implies the Transport-rule.

PROOF. O

LEMMA 1.6.7. If B : U, the Y-judgement and the Y-computation rules
imply the following judgement and corresponding computation rules:

(G, i) : (H 11 B> ~ B

r:Ap:r=p0

i(b)(a,refly,) =b, b:B,
jlo) =o(a,refl,), o: H B.

T:Ap:T=p0

Moreover, ifb: B, x: A, and p: x =4 a, then
i(b)(x,p) =B b.
PROOF. (]

COROLLARY 1.6.8. The Y-judgement with the Y-computation rules im-
ply the M -judgement.

PRroOOF. From Lemma 1.6.7 we have that

Let o : [[,.41])0m 0 Ed’ be defined as
c=Nx:Ap:z=4a)(x,p).

Since
o=1i(j(0)) =i(o(a,refl,)),

12 1. IDENTITY IN MARTIN-LOF’S INTENSIONAL TYPE THEORY

by Lemma 1.6.7 we get
(x,p) =o(x,p) =g, [i(c(a,refl,))](x,p) =g, o(a,refl,) = (a,refl,).
O

The next theorem is shown without the use of function extensionality.

THEOREM 1.6.9 (Escardd, 2015). The J-judgement follows from the -
judgement and the) -computation rules.

Proor. It follows immediately from Proposition 1.6.6, Corollary 1.6.8,
and Corollary 1.5.5. (]

CHECK the M-computation rule, it depends on the formulation of func-
tion extensionality, check Voevodsky’s, or standard version, and the Yoneda
version of extensionality.

1.7. Notes

CHAPTER 2

The axiom of univalence

2.1. Voevodsky’s axiom of univalence

DEFINITION 2.1.1. If P: A — U and F,G : [],.4, P(z) a homotopy H
between F, G is a term of type

H:F~G=]](Fx)=pu G)).
x:A

In the special case of a constant type family, if f,g: A — B a homotopy H
between f, g is a term of type

H:f~g= H(f(:c) =B g(aj))
T:A

PropoSITION 2.1.2. IfA,B:U,f,g: A— B, H: f~g,andp:x =4y,
then

H(z) x ap,(p) = ap;(p) * H(y).

Hence, if A, B are seen as categories, f,g are functors and a homotopy
H : f ~ g is a natural transformation between f,g.

DEFINITION 2.1.3. If A, B : U and f: A — B, we define “f is a quasi-
tnverse” as the type

qinv(f) = Y [(fog~idp) x (go f ~ida)],
g:B—A

and “f is an equivalence”, or “f is a Voevodsky equivalence”, as the type

isequiv(f) = Z (fog)~idp) | x (Z (hof) NidA)> .

g:B—A h:B—A
The weak equivalence between A, B is the type
A~y B= Z ginv(f),
f:A—B

13

14 2. THE AXIOM OF UNIVALENCE

and the equivalence, or the Voevodsky-equivalence, between A, B is the type
A~y B= Z isequiv(f).

f:A—B
Clearly, if
4= (ida, H), (id 4,))
H=\x A) refl,,
then

e : isequiv(idy),
hence A ~y; A. If e is a canonical element of A ~;; B, we write
e = (e*,e™)
e*: A— B, € :isequiv(e¥).
PROPOSITION 2.1.4. Let A,B:U and f: A — B.
(i) qinv(f) <> isequiv(f).
(i) Hel,egzisequiv(f) (e1 = e2).

Because of Proposition 2.1.4 one can use a simpler writing for the terms
of type A ~; B using only the function terms. It is easy to show that if
f:A~y B, then f7': B~y A andif g: B~y C, then go f: A~y C.

PRrROPOSITION 2.1.5. If A : U, the ja-judgement and the ja-computation
rule imply the following IdtoEqv-judgement and idtoEqv-computation rule:

IdtoEqv(A,refly) = (ida,eq).

Proor. If C(X,p) = X ~y A, then C(A,refly) = A~y A.
U

The univalence axiom asserts that the function IdtoEqv(X) : X =y
A — X ~y A is an equivalence with quasi-inverse the function ua(X) :
X~y A— X =y A, hence

(X ey A) U (X =Uu A)

Voevodsky’s Axiom of Univalence (UA): There are the following ua-
judgement and the right and left ua-computation rules, respectively,

ua:H H X=y A

XUeX~y A

2.1. VOEVODSKY’S AXIOM OF UNIVALENCE 15
ua(X, IdtoEqv(X,p)) =p, p:X =y A,
[IdtoEqv(X,ua(e))]"(z) = e*(z), =:X.

Because of the IdtoEqgv-computation rule we get the following special case
of the right ua-computation rule:

ua(A, (id 4, eA)) =refly,.
In the HoTT-book one finds the simpler writing

ua(idy) = refly,

IdtoEqv(ua(f),) = f(a),
where the equivalence e is “identified” with f = e*. With this simplification
in writing one shows that

ua(g o f) = ua(f) * ua(g),
wa(f) ™! = ua(f) .

Note that in the right ua-computation rule, due to the definition of equiv-
alence for IdtoEqv(X), there is propositional equality, while in the cor-
responding IdtoEqv-computation rule, as in all computation rules of the
judgements considered so far, there is judgemental equality involved. As it
is mentioned in the Notes of Chapter 2 of the HoTT-book,

It is also sometimes inconvenient that the theorems of
§62.6-2.13 are only propositional equalities ..., since then
we must explicitly mention whenever we pass back and
forth across them. One direction of current research in ho-
motopy type theory is to describe a type system in which
these rules are judgemental equalities

Note also that in the model of cubical type theory, where the ua-judgement
is provable, its corresponding computation rule implies

ua(A, (ida,eq)) = refly.

The same phenomenon occurs in the theory of higher inductive types, as this
is presented in the HoTT-book. The computation rules of the judgements
of the elimination axioms involve propositional equality, and again in the
model of cubical type theory the provable HITs satisfy the computation
rules with judgemental equality.

16 2. THE AXIOM OF UNIVALENCE

2.2. A Yoneda-version of the axiom of univalence

Voevodsky’s formulation of the univalence axiom, “IdtoEqv(X) is an
equivalence”, is at first sight different from what we are used to in Martin-
Lof type theory. Of course, the type-theoretic Yoneda lemma, which implies
the J-judgement, uses a given pair of quasi-inverses in its formulation too.
Maybe, the most striking element of Voevodsky’s version is that the ua-
computation rulee involve propositional equality rather than judgemental
equality.

Here we present a Yoneda-version of the axiom of univalence, according
to which the computation rule of the corresponding univalence judgement in-
volves only judgemental equality. Moreover, this approach to univalence re-
veals its “proximity” to the J-judgement, therefore looks “closer” to Martin-
Lof’s intentional type theory, although the inspiration of this formulation
comes from category theory.

The universe U can be seen as a category with Hom(A, B) = A ~ B,
which is locally small, as (A ~ B) : U, and as in the case of the Yoneda
lemma for the type-category A, U can be seen as a category identical to
its opposite. A contravariant functor from U to U is again a type family
P :U — U. Next we define the functor £ from U to U¥.

PROPOSITION 2.2.1. Lete: A~y B, X : U, and & : U — (U — U) be
defined by A E4 and e — E(e), where E4: U — U and

EA(X) =X >~y A,
E(e) : Hom(Ea,ER) = H H X~y B
X:Ue: Xy A
Ele)=AMX :U,e : X ~y A)eoe.
Then for every e : B >~y C, we have that
E(eoe)=E(e) o &(e),
E(ida) = 1g,.
PRrROOF. O

Yoneda-version of the univalence axiom (Y-UA): Let P : U — U
and A : U. There is a pair of quasi-inverses

(j,1) : Hom(E4, P) ~ P(A)

2.2. A YONEDA-VERSION OF THE AXIOM OF UNIVALENCE 17

i.e., there are the following i-judgement and j-judgement:

i:rA)—~1] [P

XUe: X~y A

(I T Pe0) = pe

XUe: X~y A

with the following i-computation rule and j-computation rule:
i(u)(A, (idg,eq)) =u, wu:P(A),
jlo)=0(A,(ida,eq)), o:Hom(Ea,P).

PROPOSITION 2.2.2. The i-judgement of Y-UA implies the ua-judgement

i.e., there is
ua’ : H H X =y A,
XUeX~yA

and moreover
ua’(A, (ida,ea)) = refla.

PROOF. Let P :U — U defined by P(X) = X =, A. Since

i:A:uA—>H H X =y A,
XUeX~y A

we define
ua' = N X U, e: X ~y A)i(refls)(X,e),
hence
ua’(A, (ida,ea)) = i(refla)(A, (ida,es)) = refla.

PROPOSITION 2.2.3. If X : U and p: X =y A, then
ua’(X, IdtoEqv(X,p)) = p.
PROOF. Define C'(X,p) = ua'(X, IdtoEqv(X,p)) = p. Since
C(A,refly) =ua'(A, IdtoEqv(A,refly)) = refly

=ua'(A4, (ida,ea)) = refly
=refly =refly,

we use the ja-judgement. O

18 2. THE AXIOM OF UNIVALENCE

PROPOSITION 2.2.4. The ua-judgement implies the i-judgement of Y-UA

i.e., there is
i:PA) -] T] P,
XUeX~y A
and moreover
i'(u)(A, (ida,ea)) =u, u:P(A).
PROOF. Let u : P(A). Since ua(X,e) : X =, A, we get ua(X,e)" ! :
A =y X, and consequently we have that
[wa(X,e)"']": P(4) = P(X).
We define
L

*

(u) = ANX 1 U,e: X ~y A).[ua(X,e)], (u).

Thus,

i'(u)(A, (ida, ea)) = [ua(A, (ida, ea))] (
= (ref13") ()
(reflA)f(u)
= idp(a)(u)

=U.

u)

O

Note that the non-trivial judgement in Voevodsky’s axiom of univalence
is the ua-judgement, while in the Yoneda-version of univalence is the i-
judgement. The j-judgement of Y-UA, a s a judgement, is immediate, and
the IdtoEqv-judgement follows from the J-judgement of the equality type.

2.3. A STRONG YONEDA-VERSION OF THE AXIOM OF UNIVALENCE 19

2.3. A strong Yoneda-version of the axiom of univalence

We add a computation rule to our first Yoneda-version of the axiom of
univalence in order to unify the J-judgement and the axiom of univalence.
Our aim is to get from the strong Yoneda version of the axiom of univalence
the J-judgement that corresponds to it (this is the J.-judgement in Defi-
nition 2.3.5) equipped with a computation rule that involves judgemental
equality, and not propositional, as is the case in Voevodsky’s form of the
axiom.

First we define an obvious generalization of the notion of homotopy.

DEFINITION 2.3.1. Let A,B: U and Q : A — B — U a type family over
A and B (or a relation on A, B). If

FG:[[T[Q@ v,
z:Ay:B
we say that F, G are homotopic, F' = B, if there is
H:F~B= HHF:Uy Q) G(T,Y).
r:Ay:B

PROPOSITION 2.3.2. Let A: U and P:U — U. If we fix some

o : Hom(&Ey, P H H P(X

XU f: XA
there is a judgement

Happlyg , : H H TRO=

T€Hom(E4,P) p:T7=0

= T I (IT I 706 = oxn)

T7€Hom(E7,P) PiT=0 XU f:X~A
such that

Happlyg ,(0,refly) = AN X U, f: X =~ A).refl, x),

Proor. If C(r,p) =7 = o, then C(o,refl,) = o~ o and A\(X : U, f :
X ~ A)refl,x) : C(o,refl,). What we want follows immediately by
the based J-judgement and computation rule. U

Next we equip the Yoneda-version of UA with an explicit description of
the homotopies i o j ~ idygom(g,,p) and j o i ~ idp(a).

20 2. THE AXIOM OF UNIVALENCE

Strong Yoneda-version of the univalence axiom (sY-UA): Let A : U
and P :U — U. There is a pair of quasi-inverses

(7,7) : Hom(&E4, P) ~ P(A)
in the following explicit way: there are the i-judgement and j-judgement

i:PA) -] I P,

XU [X~A

i (I I reo) - pa

XU f: XA
equipped with the following i-computation rule and j-computation rule:

i(u)(A,idy) =u, wu: P(A),
jlo)=0(A,ids), o :Hom(E4, P).
Moreover, there are the G-judgement and H-judgement:

G :i0j ~idgom(e,,p) = H i(j(o)) = o,
O'EHOIH(EA,P)

H:joinidpay= [] ii(w) =,
u:P(A)

equipped with the following G-computation rule and H-computation rule:
Happly , (i(j(0)), G(0))(A,ida) = refl,(aia,), o : Hom(Ea, P),
H(u) = refl,, wu:P(A).

The last two computation rules, which make the difference between the two
Yoneda-versions of UA, are justified as follows:
Since

G(o) :i(j(0)) = o,

we have that

Happlye , (i(j(0)), G(0)) : [T T[iG(e)(X,) =px) o(X, f),

XU f:X~A

Happlys, (1(7(0)). G(0) (A,ida) : i(i(0))(Aida) =p(a) oA, ida).

By the j,i-computation rules we have that
Z(j(O'))(A, 1dA) = Z(U(Aa ldA))(Av ldA) = U(Aa 1dA)7
therefore
Happlygﬁ(i(j(a)),G(U))(A,idA) :0(A,ida) =p(ay o(A,id4).

2.3. A STRONG YONEDA-VERSION OF THE AXIOM OF UNIVALENCE 21

Similarly, if u: P(A),

H(u) : j(i(u) = u,
and since

Jji(w) =i(u)(A,ida) = u,

we get

H(u) : u =pa) u.
It is natural to demand, as is the case in all axioms of this kind, like the
J-axiom, that the terms associated to these computation rules are the most
expected ones. Note though, that the H-computation rule is not significant,
while the G-computation rule makes the whole difference between the two
formulations of the Yoneda-version of univalence. Next follows the (strong)
analogue to Lemma 1.6.7.

LEMMA 2.3.3. If B : U, the strong Yoneda-judgements and the corre-
sponding computation rules imply the following judgement and computation

" (JB,iB): (H 11 B) ~ B

XU f:X~A

is:B— [I] B

XU f:X~A

jB:<H 11 B)%B,

XU f:X~A
ip(b)(A,idy) =b, b: B,

jelo) =0(A,idy), o: H B,

Happlyg , (iB(jB(U))aGB(U)>(AaidA) =refly(aida,), 0 :Hom(Es, B),
Hp(b) =refly,, b:B.
Moreover, ifb: B, X : U and f: X ~ A, then, if
oy = NX U, f: X ~ A)b] : H H B,

XU f:X~A

22 2. THE AXIOM OF UNIVALENCE

we have that
wapp1ye,, (inin(on). G(en)) (X,) i), 1) = 1],
such that
Happye , i2n(on)), Gion)) (A, i) = ey

PrROOF. We use the strong Yoneda-judgement and computation rules
for the constant type family P : U — U, defined by P(X) = B, for every
X : U. For the propositional equality

ip(b)(X, f) =pb

we work as follows. Since

iB(jB(Ub)) = iB(Ob(A, idA)) = iB(b),

we get
Gp(op) :ip(b) = op.
Moreover,
Happlye <iB(jB(0b),GB(ob > I 11 isUsle)(X.f) =5 ou(X, f),
XU f:X~A
hence

Happlye.., (z'B(ijb», GB<ab>) (X.£) : iB0)(X,) =5 o(X. f)

= ip(D)(X. /) =p b
Consequently,

Happlyg ,, <i3(j3(0b)), GB(O'b)) (A,ida) : ip(b)(A,ida) =p op(A,id4)
=b=p,
and by the G-computation rule of the strong Yoneda-version of UA we get
Happly ,, <iB(jB(Ub))7 GB(Ub)> (A,ida) = refl, (4q,) = refly.
O

The next corollary is the (strong) analogue to Corollary 1.6.8, where the
corresponding M-computation is also proved.

2.3. A STRONG YONEDA-VERSION OF THE AXIOM OF UNIVALENCE 23

COROLLARY 2.3.4. If
Ey = Z X~A,
XU
the judgements and computational rules of the strong Yoneda-version of UA
imply the following M.-judgement and M,-computation rule:

Me: [T [T (X, 5) =g (Aida),

XU f: X~A
M.(A,idy) = refliaidy)-
PrRoOOF. By Lemma 2.3.3 we have that there is a pair of quasi-inverses
(JBariB,) <H H EA) ~ Ey
XU f: X~A

with the associated judgements and computation rules determined in the
formulation of Lemma 2.3.3. Let 7 : [y, [1;.x~n Ea, where

T=AMX U, f: X ~A).(X,f).
We have that
(X, f) =7(X, f)
=5, [ie,(jEA ()] (X,)
= [ipa(T(A,1da))] (X, f)
= [im, ((4,ida))] (X, f)
=g, (4,ida).

Since
Happlye . (iEA (JEA(7)), Gy (7)) (X,)+ [ipa(Gpa ()] (X, f) = 7(X,),

we get that the term

is of type
(X, f) = [ipa (GEa ()] (X,).

Since

Happlygva(A,idA) <ZEA (]EA (U(A,idA))>7 GEA (U(A,idA))> (X7 f)

24 2. THE AXIOM OF UNIVALENCE

is a term of type

124 ((A,1da) (X, f) =5, (4,ida),

hence we have determined the terms witnessing the two equalities in between
the equality (X, f) =g, (A,id4), and we define

M.(X.) = |Wappaye, (i, (i, (7)) G (7)) (X))

Happlye o, 4) (iEA (JEA(0(ad4)))s GEA (U(A,idA))> (X, f).

Consequently,
—1
Mo, ida) =|Wappre, (15, (7). Gy (7)) (i)

Happlye oy, (iEA (JEA(0(Ad4))), GEA (U(A,idA))> (A,ida)

-1
= [reflr(A,idA)] * refl(AJdA)
-1
= [refl(A’idA)] * refl(AJdA)
=refligiq,) *refl(aid,)
= refl(A’idA).

O

Next we describe the based J-rule that corresponds to the strong Yoneda-
version of UA. Note that the Yoneda-version of UA implies the corresponding
judgement, but we need the strong version to get its computation rule.

DEFINITION 2.3.5. We call the following judgment and computation rule
e I I (I een)
Cllxas [pixmatd cC(Aida) XU f:X~A
Je(Cie, Ajidg) = ¢
the Eq-J-judgement and the Eq-J-computation rule, respectively.
The next theorem is the (strong) analogue to Theorem 1.6.9.

THEOREM 2.3.6. The judgements and computational rules of the strong
Yoneda-version of UA imply the Eq-J-judgement and the Eq-J-computation
rule.

2.3. A STRONG YONEDA-VERSION OF THE AXIOM OF UNIVALENCE 25

Proor. We fix C' : [[xy[l;xan and ¢ € C(A,ida). Let Ea =
YoxuX ~A and P: Eq — U, defined by
P((X, f)) = C(X, f),
for every X : U and f: X ~ A. By Corollary 2.3.4
Me(X7 f) : (X> f) =FE4 (A7 idA)7

hence

Me(Xa f)_l : (AaldA) =FE4 (Xa f)
Consequently

[M(X,)77 P((Aida)) = P((X,) = C(A,ida) = C(X, f).

We define P

Je(ca ¢, Xv f) = [Me(Xa f)_l} % (C)
By Corollary 2.3.4 we get

T(Cye, Ayida) = [Mo(A,ida)] ()

1P

[(refliaza,) '], (0)
P

= [refl(AddA)]* (c)

idp((a,ida)) ()

ide(a,idy)(c)
C.

O

One can show that the J.-judgement implies the judgments of the strong
Yoneda version of univalence. We need to check if the same holds for the
corresponding computation rules. The Eq-J-judgement and Eq-J-rule form
the inductive, or “type-theoretic” version of univalence, while the strong
Yoneda version can be seen as the “categorical” version of univalence ax-
iom. In the HoTT-book (Corollary 5.8.5) the same judgement follows from
univalence but with the computation rule involving propositional equality.

Next we show that the univalence function

ua' = ANX U, f: X ~ A).i(refla) (X, f)
defined in the proof of Proposition 2.2.2, and for which we know that
ua'(4,idy) = refly,

26 2. THE AXIOM OF UNIVALENCE

satisfies in the context of the strong Yoneda-version of univalence also the
second computation rule of Voevodsky’s univalence axiom.

COROLLARY 2.3.7. If f: X ~ A, then
IdtoEqv(X,ua’(X, f)) = f.
PRrROOF. We define C'(X, f) = IdtoEqv(X,ua’(X, f)) = f. Since
C(A,id4) = IdtoEqv(A,ua’(4,id4)) = ida
= IdtoEqv(A,refly) =idy
=idy =idyu,
we have that refliq, : C(A,id4), and we use Theorem 2.3.6. O

CHAPTER 3

Equivalence relations on types

3.1. Setoids

Bishop’s notion of set, introduced in [5], is interpreted in Martin-Lof’s
type theory (see [10] and [11]) through the notion of setoid (see e.g., [12]
and [4]). Here, following the HoTT-book, we define setoids through the
notion of a mere proposition and not, as is standard in the older literature
of type theory, through a universe Uy of propositions (see e.g., [7]).

DEFINITION 3.1.1. A type A is a mere proposition, if the following type
is inhabited
isProp(4) = H (x =4 vy).
z,y:B

DEFINITION 3.1.2. A type B is a proposition, if the following type is

inhabited
isProp(B) = H (x =B y).
z,y:B
~pA—A—->U

isProp(z ~4 y)
II II 7@ ~srw.
x,y;A e~ AY
(z,y) ~axp (@,y) = (x =24 2") x (y =5 V)
i= > [[@~ay— 1@ ~5f©)
[:A=>Buzy:A
(f,u) ~pa (g,w) = [[(f(2) = g(x))
z:A
Setoids and setoid functions form a cartesian closed category.
We can realize function extensionality in ITT via the setoid B4.

27

28 3. EQUIVALENCE RELATIONS ON TYPES

3.2. Typoids

DEFINITION 3.2.1. A structure A = (A4, ~4,eqv 4, * 4, A 22) is called
a 2-typoid, or simpler here a typoid, if A : U and ~4: Hm,y: 4 U is an equiva-
lence relation on A such that

equy s | [z ~a),

T:A

o T T TT #=as

z,y,z2: A e x> AY d:iy~ gz

—la H H Y~AT

Ty Aex™ Y

= I1 11

z,y:Ae,d:x~ oy

=A (l‘,y) : H Uu

e, d:x™~ Ay

and
such that

is an equivalence relation on x ~4 y, for every x,y : A, and the following
conditions are satisfied:

(Typy) (eqv, *ae) =4 e and (e*x4eqv,) =4 e.

(Typy) (e*ae '4) =4 equ, and (e x4 €) =4 equy,.
(Typs) (€1 x4 e2) x4 €3 =4 €1 x4 (€2 %4 €3).

(Typy) e1 Zadi — e2 Zady — (€1 %4 €2) =4 (di x4 d2).

A pretypoid is a pair (A,~4), where ~ 4 is an equivalence relation on A.

One could write the notion of typoid as the following type:

Typoid(A) = Z Z Z
AU

:A:Hz,y:Au eqv 4] [,. 4 (xax)

2 2

*A:Ha:,y,z:A He:x:Ay Hd:yz_Az T=AZ _1A:Hx,y:A He:x:Ay YN AT

> <Typ1' x Typy' x Typs' x Typ4'>~

%A:Hz,y:A He,d:z:Ay

3.2. TYPOIDS 29

where e.g., Typ,’ is

H H (equ, *xq€) =4 €.

T,y Aex= Yy

When it is clear from the context we may omit the subscripts.

PROPOSITION 3.2.2. Let A be a typoid, x,y : A, and e,d : x >~ y.

-1 ~

(i)(equ,) ™" = equ,.
(iii) (e71)7! =e.
(iii)e =2 d— et 2d 1.

PROOF. (i) By Typ, we have that eqv, x eqv,~1 = eqv, and by Typ,
we also have eqv,, * eqv, ! 2 eqv, !, and eventually (eqv,)™! & eqv,.

(ii) Since (e71)"lxe™! = eqv,, by Typ, we get ((e71)"Lxe 1) xe = eqv, *e,

and consequently (e~!)~1 x eqv, = e, hence (e te.
(iii) By condition (iv) we get e™'xe = e7'xd, hence e~ xd = eqv,, therefore
(e7lxd)xd = equ, * d~lie., e lxeqv, 2d ! hence e ! =d1. U

ExAMPLE 3.2.3. Using basic properties of equality p =,—,, ¢, of con-
catenation pq and inversion p~! of paths it is easy to see that the structure

-AO = (A7 =4a,refly, *7_1) g.Ao)
is a typoid, where = 4,: Hw,y:A Hm,zx:Ayu is defined by
ng (xay7 €, 6/) = (6 —xr=ay 6/),

for every z,y : A and e, e’ : v =4 y. We call Ay the equality typoid, and its
typoid structure the equality typoid structure on A.

ExaMpPLE 3.2.4. If A, B : U, it is easy to see that the structure
FllIl(A7 B) = (A — B7 ~A-B, eqv s B> *A—)ByilA_)B) gA—)B)

is a typoid, where

f~aspg=]]f@) =pg),
T:A

while if H,H' : f ~4_,p g and G : g ~4_.p h, we define
Hxy,pG=XNzx:A).(H(x)*G(x)),
H™ 1428 = \(z: A).(H(z))™",
equy = Az 2 A).refly(y,

H=4 . H = HH(m) =(f(x)=pg(z)) H/(LU)
T:A

30 3. EQUIVALENCE RELATIONS ON TYPES

We call is the typoid of functions Similarly, we define a typoid structure
on the type of dependent functions [],., P(z), where P : A — U is a type
family over A.

EXAMPLE 3.2.5. Using Voevodsky’s definition isequiv(f) , it is easy to

show that

Uni = (U, >y, eqvy, sy, U =N
is a typoid, where

A~y B = Z isequiv(f),

f:A—B
while if (f,u), (f',u') : A ~yy B and (g,v) : B ~yp; C, we define
(fau) *Uni (ga) = (gof7w)a
(fyu)~tom = (f7 1,u*1),
eqvy = (ida,1)
(f7 U) —Uni f u H f)

where w : isequiv(go f),u"!: 1sequ1v(f 1Y and i : isequiv(id4). Note

that the definition of (f,u) Zuni (f’,u’) is based on the fact that all terms
of type isequiv(f) are equal. We call Uni the universal typoid.

From now on A, B denote typoids, i.e., A = (A, ~4,eqv 4, x4, 4, 2y)
and B = (B,~p, eqvy, 5, 15 ,2p).

DEFINITION 3.2.6. If A, B are typoids, we call a function f : A — B a
typoid function, if there are dependent functions

o [T II f=) =5 f),

x,y;A er™= Ay

@?c: H H H (I>f($,y,€) =B (I)f(SU,y,d),

z,y:Ae,d:iz> gy i:eXqd
which we call an 1-associate of f and a 2-associate of f with respect to ®,
respectively, such that for every z,y,z: Aand every e; : & ~4 y, €2 : y ~4 2
the following types are inhabited:

(i) r(z,2,eqv,) =B equy,,

(“) (I)f(CIT, Z,€1 %4 62) gB q)f(:Ea Y, 61) *B <Df(ya 2 62)‘

If ®¢(x,2,eqv,) = eqV f(z); for every = : A, we call f strict with respect
to ®;. If A,B are pretypoids, we call a function f : A — B a pretypoid
function, if there is an 1-associate of f.

3.2. TYPOIDS 31

The 1-associate @y of f witnesses that f preserves the equivalences
between points, as
Qp(x,y) v ~ay — flx) =8 fy),
while the 2-associate @? of f with respect to ®; witnesses that ®; preserves
the equivalences between equivalences, as

O (z,y,e,d) s e Zqd— Pp(z,y,e) =p Or(x,y,d).

ProposiTioN 3.2.7. If A, B are typoids and f : A — B is a typoid
function, then, for every x,y : A and e : x >~4 y, then

(I)f(yv €, eilA) =5 [(pf(l‘7 Y, 6)]718'

PROOF. Since (e x4 e™14) 224 eqv,, by the existence of <I>?c we get
a term of type ®f(z,z,e x4 e) g ®¢(x,2,eqv,), hence a term of
type ((I)f(l’,:%e) *B (pf(y’xae_lA)) =B €QV ¢ (g)- By condition Typ4 we
get [®f(z,y,e)] '8 x5 (Dp(x,y,¢) x5 Ps(y, z,e 1)) Zp [Dp(z,y,¢)] '8 *5
eqV (), therefore the required type is inhabited. O

ExAMPLE 3.2.8. If Ay, By are equality typoids and f : A — B, then
f is a strict typoid function with respect to its 1-associate, the application
function apy, and with 2-associate with respect to ap; the two-dimensional
application function ap?c of f, where

apy : H H f(x) =B [(y),

T,y AP =AY
apt: []I I[I epr@.0) =¢w=ssw) sy, 0).
T,y A D GT=AY TP= (o= 4 y)d
The properties ap (, z, refl,) = refly(, and ap (z, 2, pxq) = ap;(z, y, p)*
ap f(y, z,q) follow immediately from path induction (see section 2.2 of [16]).

ProrosiTION 3.2.9. If A, B,C are typoids and f : A — B,g: B - C
are typoid functions with associates Qfﬂ)? and @Q,Cﬁg, respectively, then
gof:A— C is a typoid function with associates

Ogor: [[] 9(f@) =c a(f),

T,y A e Ay

Qgos H H H Dyor(T,y,€) Zo Pyog(w,y,d),

z,y:Ae,d:r~ gy :eqd

32 3. EQUIVALENCE RELATIONS ON TYPES

defined for every x,y: Aje,d:x ~4y,i:e=Z d by
@gof(a:,y,e) = (I)g (f(x)vf(y)v (Df(xay7 6))7

®§of(x7 Y, e, d7 Z) = (pz <f($)7 f(y)7 q)f(.%', Y, 6)7 (bf(l', Y, d)7 @}(.’Ij, y,e, d7 Z)) .
If f,g are strict with respect to ®¢, @4, go f is strict with respect to ®gor.
Proor. If j : ®¢(x,x,eqv,) =5 eqV (y), then the term
(I)?;(f(x)v f(x>7 (I)f(x’ L, qux), eqvf(a;))

is of type <I>g(f(gj)a f(l‘)v CDf(za €L, qum)) =c (I)g(f(l'), f(x)a eqvf(:v))' Since
(I)g(f(l‘), f(x), quf(x)) =c qug(f(x)), we define

(I)gOf(% T, eqvx) = (I)g(f(x)y f($)7 q)f($7 €, equ)) gc eqvg(f(x))

Using the existence of <I>§ we get the following = -equivalences

Poof(w,z,exad) = Py(f(x), f(2), Pr(x,2,e x4 d))
= (I)g(f(JI), f(Z), (I)f(.f,y, 6) *B (I)f(:%zvd))
= 0y(f(2), [(y), (2,9, €)) *0 Bg(f(y), [(2), Pf(y, 2,d))

= (I)gof(xvyve) *C q)gof(yaz7d)'
Since @?(m,y,e,d, i) : ®(x,y,e) =g Ps(x,y,d), the term

(), f(y), ®(z,y,¢), Df(x,y,d), D} (x,y, e, d, 7))

is of type ®4(f(x), f(y), ®r(x,y,€)) Zc Py(f(z), f(y), Ps(x,y,d)) ie., of
type @yor(z,y,€) o Pyor(w,y,d), hence ®2 . is well-defined. For the

preservation of strictness we have that ol
Qpor(x, 2, eqv,) = Pg(f(x), f(2), sz, x,eqv,))
= Py (f(2), f(), quf(x))
= €Qy(f(x))-
O

ProposiTION 3.2.10. If A is a typoid, the identity idy : A — A is a
strict typoid function from Ag to A with respect to its 1-associate

idtoEqv 4 : H H T >AY,

T,y ApT=aY

idtoEqu 4(z,y,p) = p,” (eqv,),
where P, : A — U is defined by Py(z) = x ~4 z, for every z : A.

3.2. TYPOIDS 33

PRrROOF. By definition

idtoEqv 4 (v, r,refl,) = (refl,) " (eqv,) = idp, (2)(eqv,) = eqv,.
Using basic properties of transport we have that idtoEqv 4(z,z,p * q) =
(p*q) L= (equ,) = ¢/ (p{*(eqv,)) = /" (1dtoEqu 4(z,y,p)), wherep: z =4 y
and q : y =4 z. Using path induction one shows that

. ~J T P,
C(z,y,p) = q* (1dtoEqV 4(x,y,p)) =4 pi* (eqv,) *4 ¢-”
is inhabited, since C(z,z,refl,) = q¢f*(eqv,) =4 eqv, *4 ¢*(eqv,) is
inhabited by Typ;. If z,y : A, we define D : Hp,qw:Ay Hr:p:x:quZ/{ by
D(p7 q, T) = idtOEqV,A(xu yap) gA idtOEqV,A(Iv Y, C.I)7
for every p,q:x =4y and r : p =,—,, ¢q. Since =4 (x,y) is an equivalence
relation on © =4 y, there is some
i: D(p,p,refly) = idtoEqv 4(z,y,p) =4 idtoEqv 4(x,y, p),
hence by path induction there is a dependent function
Fo: [I I Dwar),
DET=AY TP=3= 444
and we define
idtoEqvy = A(z,y : A).Fyy.
O

If we consider A with the equality typoid structure as a codomain of

id4, then by Lemma 2.11.2 in [16]

2 T=AZ

idtoEqv 4, (z,y,p) = pfm (refl,) = p2

i.e., idtoEqv 4 (z,y,p) is pointwisely equal to id,—,,. In [16], section 2.10,
the function idtoEqv : A =y B — A ~; B is defined by
idy,

idtoEqv(p) = pi¥,
for every p: A =y B. Since

(refl,) =refly*xp=p

idtoEqv(refly) = (refl,)d = idjq, (4) = id 4,

1dtoEqvy, (A, A, refla) = (refla)l(idy) = idp,(a)(ida) =ida
the two functions agree on refl 4, hence by path induction they are point-
wisely equal. The definition of idtoEqv, is a common formulation of
the functions happly, related to the axiom of function extensionality, and
idtoEqv, related to the univalence axiom.

34 3. EQUIVALENCE RELATIONS ON TYPES

PROPOSITION 3.2.11. If (A,~4), (B,~pg) are pretypoids, and
(#,y) =axs (2,Y) = (x 24 2) x (y = Y),
there are dependent functions

T] (<pr1<z> m 4 p1(w)) X (PT(2) 5 PTa(w)) = 2 = axs w),
z,w:AXB

T TT (5w (i (2) = p, 0) % (pryle) =5 pry(w))
z,w:AXB

such that for each i € {1,2}, where C1 = A and Cy = B,
I pr <T(Zaw,T(Z7w761762))> =c; €
z,w:AXB

Proor. If z: A and y : B, we find G(z,y) : [[,.4xp P(w), where

P(w) = (z,y) ~axs w = (z ~4 pri(w)) X (y > pry(w)),

hence by the induction principle of the product type we get T. We define H :
Hx’:A Hy’:B P(([IJ/,y/)) by H(.I'/,y/) = id(x,y)zAxg(x’,y’)v and then H(Q}/,y/) :
(x,y) ~axp (@',y) < (x =24 2') X (y =5 y'). Hence G(x,y) is given again

by the induction principle of the product type. For T and the last two
dependent equivalences we work similarly. O

COROLLARY 3.2.12. If (A, ~4), (B, ~p) are pretypoids, then pry, pr, are
pretypoid functions.

Proor. We define

(I)prl : H H pry (2) =a prl(w)7

2w AX B €122 4 xw
Ppr, (2, w,e) = pry(T(z,w,e)).

We define @, (2, w,e) = pry(T (2, w, e)) similarly. O
Next we use the notations e; = @y (2, w,e) and ey = Opr, (2, w, €).
PRrROPOSITION 3.2.13. If A, B are typoids, the structure

AxB=(Ax B,:AXB,eqvAXg,*Axg,’lAXB 2 AxB)

is a typoid, where for every z,w,u : AXB ande,e' : 2 =axp w,d : W =pxB U

eqv, = T(2, 2, eqvpr (1), 0aVpr, ()

exaxpd =T(z,u,e1 x4 dy, e *p da),

3.2. TYPOIDS 35

e 1AxB = T'(w, 2, el_l““, 62_18)

eXaxp e = (e1 2ge) x (e2 Xped).
PRrROOF. Left to the reader. O
COROLLARY 3.2.14. If A, B are typoids, pr,,pr, are typoid functions.

Proor. We show only that pr; is a typoid function. The equivalence
Qpr, (2,2,6qv,) =4 eqVp: (1) follows from the equivalence
(eqv,)1 = q)prl(z, z,eqv,)

=pr(T(z, 2, eqv,))

= oy (T(2, 2, T2 2, 0QVr. (1) Ve,)

=4 eqVpr (2)-
We rewrite the equivalence

Dpr, (2,u, € % axp d) Za Ppr, (2, w,€) x4 Ppr, (W, u, d)

as (exgxpd)1 =4 (e1 ¥4 dy), which follows by the definition of e * 445 d and
the relation between Y and 7" in Proposition 3.2.11. Since e = ®pr, (2, w, €)
and dy = ®pr, (2,w,d), by the definition of e =45 d we get the following
2-associate of pry with respect to ®pr,

2 Y
Dy, H H H Ppr, (2,w,€) Zy Ppr, (2,w,d)
zZw:AXB e, d: 22 AxBW t:e= g gd
(I)grl (Z, w, e, d? Z) = prl(i)'
O
COROLLARY 3.2.15. If A, B are typoids, z,w : AX B, and e : z ~ x5 w,
T(Z, w, €1, 62) g.AXB €.

PROOF. If 7 = T'(z,w,e1,e3), then 7 Zqxp e = (11 =4 €1) X (T2 =4 €2).
By Proposition 3.2.11 we have that 7 = pr,(Y(z,w,T(z,w, e1,€2))) =4 €1,
and similarly 7 =g es. O

COROLLARY 3.2.16. If A,B are typoids, z,w : A x B, and e1,dy :
pri(z) ~4 pri(w), ez, da : pry(z) ~4 pro(w) such that ey =4 di and
es = 4 dsy, then

T(Z7w7 €1, 62) gAXB T(Z, w, dla d?)

36 3. EQUIVALENCE RELATIONS ON TYPES

ProOOF. If 7 = T(z,w,e1,e3) and 7 = T(z,w,ds,ds), then by Propo-
sition 3.2.11 we have that 7 = pri(Y(z,w,T(z,w,e1,e2)) =4 €1 and 7
pry(Y(z,w, T(z,w,e1,e2)) =p ea. In a similar manner we have that 71’
pry(Y(z,w,T(z,w,dy,d2)) =4 di and ' = pry(Y(z,w, T(z,w,d1,ds)) =
dy. By our hypothesis and the definition of = 4.5 we get 7 = x5 7.

O

If A, B are typoids and f : A — B, the type “f is a typoid function” is

Typfun(f) = > [(H II 1I
(@)~5/(y)

q)f:nz,y:A He:z:Ay ! T,y A eT=AY diy™~ a2

<<I>f(a;, x,eqv,) =p eqvf(x)> X

<q)f(.’IJ,Z,€ *A d) =35 @f(x,y,e) *B @f(@/,?,’,d))) X

><<H 11 Hq>f(x,y,e)ggq>f(x,y,d)>].

zy:Ae,d:r= gy e d
A canonical element of Typfun(f) is a pair (¢, (U, @%)), or for simplicity a
triplet (@, U, @?c), where

U: H H H (q)f(‘r’x’ eqvm) =B eqvf(x)> X
YA ex> Ay diy~ 4z
(<I>f(x, ziexqd) =g Pp(x,y,e) x5 Pr(y, 2, d))
and

CIJ?: H H H O(z,y,e) = Pr(z,y,d).

z,y:Ae,diz~ gy i:e d
DEFINITION 3.2.17. The exp-typoid B* of A, B is defined as
BA = Z Typfun(f).

f:A—>B

If o = (f,®4,U, @?) and 6 = (g,@g,ﬂf,tﬁg) are two canonical elements of
B4, we define

¢ =pa 0= Z (H H (I)f(m,y,e) *B ®fu9(y) =B

Of g:ll,a f(@)2pg(z) \zy:Aer=ay

3.3. UNIVALENT TYPOIDS 37

O g(x) x5 Pg(z,y, e)) .
A canonical element e of ¢ ~pa 6 is a pair (O, @? g)» Where
Ofy [T TI @scewe) 8 0s0() =5 Opg(x) 55 By (. y.e).
T,y A e oY

If ¢ is a canonical element of B4 we define equ, : ¢ ~pa ¢ as the
pair (@f7f,@3c7f), where O p = Az : A).equy(,y @ [[,.4 f(z) =5 f(z) and
@307 f(x, y, e) is the obvious proof that the corresponding diagram of equiva-
lences commutes. If ¢ = (f, @, U, @?),9 = (g9, P4, W, <I>§),n = (h, @, V, 9?)
are canonical elements of B4 and e = (@f’g,@?‘,g) ¢ ~ga 0 and d =
(Og.hs @Z,h) :0 ~pa n, we define

exgad= (@f’h,e?cyh) tp~pan
Orn =Nz : A).Ofg(x) %5 Og p(x).
A term @%h(x, y,e) of type
Pf(ay.e) 8 Opn(y) =5 Opn(x) *5 Pn(w,y,) =

(I)f(:r,y,e) *B (@f,g(y) *B @g,h(y)) =B (@f,h(x) *B @g,h(l‘)) *B (I)h(x7 Y, 6)
is easily found.
If e=(O¢,, @?E,g) : ¢ ~pa 0, we define

e~lpa = (@;;, 07,07 10 ~pa ¢,
where @;; : [1,.49(x) ~p f(x) is defined by
O7(@) = [Org()] 75,
for every x : A, and [@ig]_l(y,:z:,e) is of type ®,(y, z,e) 5 O 4(x)! =5

Os4(y) L #p Pf(y,x,€e) ie., a proof of the commutativity of the obvious
diagram of equivalences.

3.3. Univalent typoids

DEFINITION 3.3.1. A typoid A is called univalent, if there are

Uagy: H H T =AY,

z,y:A e T AY

Uai‘ : H H H UaA(agy,e) = UaA(SUay?d)

z,y:Aedix~ gy e d

38 3. EQUIVALENCE RELATIONS ON TYPES

such that for every x,y : A,p:x =4 y and e : x ~ 4 y we have that

Ua_A(.’II, Y, IdtOEqV,A(x7 yap)> =D,
IdtOEqV_A<mv Y, Ua_,4<1‘, Y, 6)) =4 e,
where IdtoEqv, is an l-associate of id4 (from Ay to A) with respect

to which id4 is strict’. We call a univalent typoid strictly univalent, if
Uau(x,x,eqv,) = refl,.

The equality typoid Ag is strictly univalent, if we consider

IdtOEqVAO (‘7;7 y7p) =p= Ua.AO (‘T7 y7p))

for every xz,y : A and p : © ~4, y. The function extensionality axiom
guarantees that the typoid of functions Fun(A, B) is univalent, and Vo-
evodsky’s univalence axiom that the universal typoid Uni is univalent. We
need only to explain why the functions funext and ua satisfy the condi-
tions: if H,H : f ~4,p g such that H 24,5 H’, then funext(H) =
funext(H’), and if (f,u), (g, w) : A ~ B such that (f,u) =y (g, w), then
ua((f,u)) = ua((g,w)), respectively. By the function extensionality axiom if
H,H': f~4_,p g, then there is p: H = H’, hence the application function
of funext satisfies apg o (p) : funext(H) = funext(H’). By Theorem
2.7.2 of [16] we have that

((f, U) = A~y B (g,w)) ~y Z <p>|]:"—>lseqlllv(f) (u) = w>.
p:f=g

By the function extensionality axiom the hypothesis (f,u) Zuyni (g, w) im-
plies that f = g, while a term of type pIHiseqUiv(f)(u) = w is found
by the equality of all terms of type isequiv(g). Hence the hypothesis
(f,u) Zuni (g,w) implies (f,u) =a~,B (g9, w) and we use the application
function of ua to get a term of type ua((f,u)) = uva((g,w)).

The next proposition is a common reformulation of properties of the
functions funext and ua found in sections 2.9 and 2.10 of [16], respectively.

PropPosITION 3.3.2. If A is a univalent typoid, the identity function
idg : A — A is a typoid function from A to Agy, with Ua?A as a 2-associate
of id 4 with respect to its 1-associate Ua 4.

1n Proposition 3.2.10 we showed the existence of such an associate of id4 but in
general we don’t need to use the specific definition of idtoEqv 4. This is crucial in proving
that the product of univalent typoids is a univalent typoid. For this reason we use a differ-
ent notation for this abstract 1-associate of ida. Of course, by path induction idtoEqv 4
and IdtoEqv , are pointwisely equal, hence by function extensionality they are equal.

3.3. UNIVALENT TYPOIDS 39

ProOOF. We show that ®;q, = Uay and (I)isz = Uail are associates of id 4.
By definition Ua4(x,z, eqv,) = Uag(x,z, IdtoEqQv 4(z, z,refl,)) = refl,.
Since by definition we have that IdtoEqv 4(z,y,Uas(z,y,e1)) =4 er and
IdtOEqV,A(ya ZaUa-.A(ya 2, 62)) =4 €2, by Typ4 we get
e1*4 €2 =4 1dtoEqv 4(z,y,Uas(z,y, e1)) * 4 IdtoEQv 4(y, 2, Ua(y, 2, €2))
=4 IdtoEqv 4(, 2, [Vaa(z, y, e1) x4 Vau(y, 2, e2)]))
If B= UaA(x, z,IdtoEqv 4(x, z, [Uas(z,y, e1) * 4 Uay(y, 2, 62)]))), by the ex-
istence of Uait we get a term of type Uay(z, z,e1 x4 e2) = B, hence a term
of type Uau(w, 2, e1 %4 €2) = Uaa(x,y, e1) ¥4 Uau(y, 2, €2). 4
THEOREM 3.3.3. Let A, B be typoids and f: A — B.
(1) If A is univalent, then f is a typoid function.
(79) If A is strictly univalent, then f is a strict typoid function with respect
to its 1-associate given in the proof of ().
PROOF. (i) Through the correspondences

Uay(x, ap;(z,y)
pogy P8 gy S pa) =p f

we define the dependent function @ : [, . 4 [lezn) f(2)

) IdtoEqvlg(_f§$)7f(y)

f()

(I)f(l',y, 6) = IdtOEqVB (f(.%‘), f(y>7 apf(xa y,UaA(a:, Y,))

By the proof of Proposition 3.3.2 there is r : Ua(x,z,eqv,) = refl,, and
by ap? we get a term 7’ : apf(a:,x,UaA(a:,x,eqvx)) = apf(x,a:,reflx) =

' (@) ~5 £(y)
B by
)

refly(,). Since IdtoEqvy is of type
H H H IdtoEqvyz(z,y',p') &g IdtoEqvz(2, v, ¢'),
o'y :Bp'q x'=py r':p'=q
IdtoEqvy(f(z), f(x), ap(z,z,Uaqs(z,z,eqv,)), refly(,), r’) is of type
IdtoEqvi(f(z), f(x),aps(z, z,Vau(x, z,eqv,))) =5

IdtoEqVB(f(:r),f(x),reflf(x)).
By the definition of ®; and the fact that IdtoEqugz(f(z), f(z), refly) =
equy(y) we get Py(z,7,eqv,) =5 equy,). By the existence of ap} and
IdtoEqvy we get

Qp(x,z,exqd) = IdtoEqu<f(:c),f(z),apf(x,z,UaA(:c,z,e*A d)))

=5 TatoBqvs (f(x), f(2), ap; (v, 2, Vaa(, .)+

40 3. EQUIVALENCE RELATIONS ON TYPES

Uau(y, 2 d)))
5 TdvoEqv f(x), f(2), apy(z,y, Vaa(x,y, €))%
ap (v, 2, Uaa(y, z7d)))
=i IdtoEqvy (f(a?),f(y), ap¢(,y, Vaa(z,y, e)))*B
TatoBqvs (f(y), f(2),ap (v, 2, Vaa(y, 2 d)))
=DOs(x,y,e) %5 Py, 2,d).
We define q’?ﬂ layea e gion gy Hiies a @5 (2,5, €) =5 p(2,y,d) by

(I)%(l',y, e7d7i) = IdtOEqV2B (f(m)a f(y)) apf(xayaUaA(xaya 6))7
an(xa%UaA(x,%d))a
ap}(x7y7 apf(x7y:UaA(x7y7e>)7apf(xayvuaA(xayvd))aua,%l(xvyae7d72‘>>> .

Since the term Uai\(x, y,e,d, i) is of type Uay(x,y,e) = Uaqg(z,y,d) and the
terms an(x7yaUaA($7ya 6)) and apf<m7 yuuaA<m7 Y, d)) are of type f(l') =B
f(y), the term

ap?‘ (l‘, Y, apf(xa yaUaA(xa Y, 6)), apf(xa Y, UaA(JZ, Y, d)),Uai\(ac, y,e.d, Z))

is of type ap(z,y,Uaa(z,y,e)) = aps(z,y,Vas(x,y,d)). Hence by the type
of IdtoEqvg and the definition of ®; we get that @?(x, y,e,d, 1) is of type

Dy(z,y,e) =p ©p(2,y,d).
(ii) By the proof of Proposition 3.2.10 we have that

®f(x,x,eqv,) = IdtoEqvy <f(a:),f(x), apf(x,x,UaA(x,m,eqvx)D

= IdtoEqvy (f(a:), f(x), apf(x,az,reflx)))
= IdtoEqviz(f(x), f(;v),reflf(x)))
= quf(x)
]

THEOREM 3.3.4. If A, B are univalent typoids, then A X B is a univalent
typoid.

3.4. “HIGHER” TYPOIDS 41

ProposiTioN 3.3.5. If A, B are typoids and A x B is univalent, then
A, B are univalent.

3.4. “Higher” typoids

If A is a type, a (mere) propositional truncation of A is a type B such
that isProp(B), if A is inhabited, then B is inhabited, and if f : A — C,
where isProp(C), there is fp : B — C. It is easy to see that if there is a
type B’ satisfying the above properties, then B, B’ are logically equivalent,
hence equivalent in U, and by univalence equal in ¢/{. In [16], section 3.7, the
notion of the propositional truncation of a type A is implemented through
the definition of the higher inductive type ||A|].

In the setting of typoids we interpret the notion of the propositional
truncation as the truncated typoid A?. Starting from a typoid structure on
a type A we define a new typoid stucture on A, which behaves accordingly.
Hence, we keep the same type and we change the typoid structure, while in
the approach within types the type is changed.

DEFINITION 3.4.1. If A : U, we call the typoid
Al = (A, e, 0qV e, *ar, T4 22 40)
truncated, if for every x,y,z: A, e,e’ : x ~ ¢ y, and d : y ~ 4+ 2z we define
T~y =1,
eq 4 (z) = 01,
*4t(x,y, 2,e,d) = 0q,
“Lat(z,y,e) = 04,
=~ (1,y,e,e) = (e=€).

The proof that A’ is a typoid is immediate. One needs only to take into
account that isProp(1), hence isSet(1) (see Lemma 3.3.4 of [16]).

PropoSITION 3.4.2. If A: U, B is a typoid and f: B — A, then f is a
typoid function from B to A!.

PROOF. Let z,y,2 : B, e,¢/ : x ~gyi:e =g e, andd:y ~p5 2
We define ®¢(z,y,e) = 01, hence ®¢(z,y,e) : f(x) ~4 f(y), and we also
define q)?c(:r,y,e,e/,i) = refly,, hence @?(m,y,e,e’,i) : 01 =1 07. Clearly,
Qp(z,2,0qv,) = 01 = ey, and Pyp(x,z,e1 ¥ €2) = 01 = (01 x4 01) =
O(x,y,e1) x4t Pr(y, 2, €2).

U

42 3. EQUIVALENCE RELATIONS ON TYPES

COROLLARY 3.4.3. If A, B : U and f : B — A, then f is a typoid
function from Bt to A

If f: B — A, we also use the notation f! for f to indicate that we view
f as a typoid function from B! to A’.

PROPOSITION 3.4.4. If A : U such that isProp(A), then A is univalent.
ProoF. If 2 : isProp(4) =[], . 4(z =4 y), die:landi:d =y e =
(d =€), we define
Uay:(x,y,d) = Qx,y),
Uai‘t (z,y,d,e,i) = reflor,),

hence Uay(z,y,d) : @ =4 y and Ua%,(z,y,d,e,i) : Qz,y) = Qz,y) =
Ua gt (x,y,d) = Uaye(x,y,e). Let IdtoEqv 4 be an 1-associate of id4 seen as
function from Ay to A'. Since IdtoEqv 4 (z,y,Uay(x,y,d)) : 1, and d : 1,
we get

IdtOEqv_At (l’, yaUaAt (33’, Y, d)) = d7

i.e., IdtoEqV 4 (x, y,Ua st (x,y,d)) =4 d. Since
Ua e (w,y, IdtoEqV 4¢ (7, y,p)) 1 © =4 ¥,
p:x =4y and isProp(A) — isSet(A), we get

Ua ¢ (x,y, IdtoEqv 4 (z,y,p)) = p.

Using Theorem 3.3.3(i) we get the following corollary.

COROLLARY 3.4.5. If A : U such that isProp(A), B is a typoid and
f:A— B, then f is a typoid function from A' to B.

PROPOSITION 3.4.6. If A : U, B is a typoid such that isProp(B), and
f:A— B, then f is a typoid function from At to B.

ProoF. By Corollary 3.4.3 f is a typoid function from A’ to B!, while by
Corollary 3.4.5 idp is a typoid function from B! to B. By Proposition 3.2.9
f=idpo f is a typoid function from A’ to B. O

Hence, in this setting not only the type remains unchanged, but also the
function fp. Note that a truncation setoid can be defined within the theory
of setoids. In the following definition though, it is essential that x ~4 y is
an arbitrary type.

3.4. “HIGHER” TYPOIDS 43

DEFINITION 3.4.7. If (A4, ap) is a pointed type, the suspension typoid
YA = (2,254, 6q54, ¥4, 4, Z50)
of A is defined as follows:
O~sal= Z f(0) =4 agp

f2—A
l~pa0=) g(1) =4 a0

gi2—A

O0xy40=1=12>x4y1

merid: A - 0~x4 1

merid(x) = (fz,refly,)

fz(0) =ag, fo(1)==x

One can prove the following version of the recursion theorem for the

higher inductive type XA of the suspension of A such that propositional
equality is replaced by judgemental equality.

PROPOSITION 3.4.8. Let B be a typoid, by,b1 : B, m : A — by ~5 by,
and let f : 2 — B such that f(0) = by and f(1) = by. Then f is a typoid
function from XA to B with an 1-associate ® satisfying

®4(0,1,merid(x)) = m(x),

for every x : A.

Bibliography

[1] P. Aczel, M. Rathjen: Constructive Set Theory, manuscript, 2010.

[2] M. Artin, A. Grothendieck, J,-L. Verdier. Univers. Séminaire de Gleométrie Algébrique
du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA
4) - vol. 1, LNM 269, 185-217, Berlin; New York: Springer-Verlag.

[3] S. Awodey: Category Theory, Oxford University Press, 2010.

[4] G. Barthe, V. Capretta: Setoids in type theory, JFP 13 (2): 261-293, 2003.

[5] E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.

[6] T. Coquand: A remark on singleton types, manuscript, 2014.

[7] T. Coquand, A. Spiwack: Towards Constructive Homological Algebra in Type Theory,
in M. Kauers et.al (Eds.) Towards Mechanized Mathematical Assistants, Lecture Notes
in Computer Science, vol 4573. Springer, Berlin, Heidelberg, 2007, 40-54.

[8] T. Coquand, N. A. Danielsson, M. H. Escardé, U. Norell, C. Xu: Negative consistent
axioms can be postulated without loss of continuity, unpublished note, 2013.

[9] M. Escardé: Using Yoneda rather than J to present the identity type, Agda file, in
http://www.cs.bham.ac.uk/~mhe/yoneda/yoneda.html

[10] P. Martin-Lof: An intuitionistic theory of types: predicative part, in H. E. Rose and
J. C. Shepherdson (Eds.) Logic Colloquium’73, pp.73-118, North-Holland, 1975.

[11] P. Martin-Lof: Intuitionistic type theory: Notes by Giovanni Sambin on a series of
lectures given in Padua, June 1980, Napoli: Bibliopolis, 1984.

[12] E. Palmgren: Bishop’s set theory, TYPES summer school Goéteborg, August 2005.
[13] C. Paulin-Mohring: Inductive Definitions in the System Coq - Rules and Properties,
in M. Bezem, J. F. Groote (Eds.) Proceedings of TLCA, LNM 664, Springer, 1993.

[14] E. Rijke: Homotopy Type Theory, Master Thesis, Utrecht University 2012.

[15] D. Scott: Constructive validity, in M. Laudet et.al. (Eds.) Symposium on Automatic
demonstration, Lecture Notes in Mathematics 125, Springer, 1970, 237-235.

[16] The Univalent Foundations Program: Homotopy Type Theory: Univalent Founda-
tions of Mathematics, Institute for Advanced Study, Princeton, 2013.

45

