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CHAPTER 1

Introduction: Notions of space and categories

There is a big variety of notions of space in mathematics. For example, there
are Hilbert spaces, which are a special case of inner product spaces, Banach spaces,
which are a special case of normed spaces, metric spaces, topological spaces, mea-
sure spaces, manifolds and many more. Roughly speaking, an S-space, is a pair
S := (X;S), where X is a set, which is called the carrier set of S, and S is a
space-structure associated to X. Usually, S is a family of functions associated to
X and some fundamental sets in mathematics, like the set of real numbers R. If
a set X can be equipped with many different space-structures, then X is a very
“interesting” set. E.g., if n ≥ 1, the set

Rn := {(x1, . . . , xn) | x1 ∈ R & . . . & xn ∈ R}

of n-tuples of real numbers is the carrier set of a Hilbert space, and hence of a
Banach space, of a metric space, and of a topological space, but also of an n-
manifold, and of a measure space. All these space-structures, which often are
interconnected, shed a different light in the mathematical “nature” of Rn. A central
tool in the study of S-spaces is the notion of an S-map. Roughly speaking, if
S := (X;S) and T := (Y ;T ) are S-spaces, an S-map is a function f : X → Y
that “preserves” the corresponding space-structures. Let C(S, T ) be the set of all
S-maps from S to T . It is expected that the identity map idX on X, where

idX : X → X, x 7→ x,

is an S-map. Moreover, if U := (Z;U) is an S-space, and if f : X → Y is in C(S, T )
and g : Y → Z is in C(T ,U), their composition

g ◦ f : X → Z, x 7→ g(f(x)),

is in C(S,U)

X Y Z.
f g

g ◦ f

If F(X,Y ) is the set of all functions from X to Y , and f, g ∈ F(X,Y ), then

f = g ⇔ ∀x∈X
(
f(x) = g(x)

)
.

1



2 1. INTRODUCTION: NOTIONS OF SPACE AND CATEGORIES

By the definition of composition of functions we have that f ◦ idX = f , or that the
following diagram commutes

X X Y ,
idX f

f

and that idY ◦ f = f , or that the following diagram commutes

X Y Y .
f idY

f

Note that the composition of functions is associative i.e., if

X Y Z W ,
f g h

then h ◦ (g ◦ f) = (h ◦ g) ◦ f , or the following outer diagram commutes

X Y Z W .
f g h

g ◦ f

h ◦ (g ◦ f)

h ◦ g

(h ◦ g) ◦ f

If f ∈ C(S, T ) and g ∈ C(T ,S) such that the following diagrams commute

X Y X Y
f g

f

idX

idY

i.e., g ◦ f = idX and f ◦ g = idY , the corresponding S-spaces are considered to be
the “same” S-spaces. We call then f , or g, an S-isomorphism between S and T ,
while the S-spaces S and T are called S-isomorphic. In this case we write S ' T ,
and we also write (f, g) : S ' T to express that f and g “prove” S ' T . It is easy
to see that if (f, g) : S ' T and (f, g′) : S ' T , then g = g′.

Remark 1.0.1. Let S := (X;S), T := (Y ;T ), and U := (Z;U) be S-spaces.

(i) S ' S.

(ii) If S ' T , then T ' S.

(iii) If S ' T and T ' U , then S ' U .

Proof. Exercise. �
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An important theme in the study of S-spaces is the construction of new S-
spaces from given ones. A notion of an S-space is mathematically fruitful, if many
such constructions are possible. It is desirable to have a notion of S-subspace,
namely, if Y ⊆ X and S := (X;S) is an S-space, an S-space S|Y := (Y ;S|Y ) is
defined. Moreover, if S and T are S-spaces, their S-product S ×T is also expected
to be defined. It is also useful to be able to “glue” together S-spaces, or to add
an S-structure on the set C(S, T ) of S-maps from S to T . Usually, some specific
S-spaces have a special role among other S-spaces, and they can be used to classify
many other S-spaces. A “classification theorem” for S-spaces determines a large
class of S-spaces that are S-isomorphic to some distinguished S-space. E.g., in the
theory of linear spaces and linear maps, the linear space Rn has a very special role
among the so-called finite-dimensional linear spaces. Usually, the set of S-maps
from an S-space S to such a distinguished S-space provides information on the
original space S. The linear space of linear maps from a linear space V to R is such
an example.

The collection of all S-spaces and S-maps between them forms the category of
S-spaces. The study of categories of mathematical objects and abstract “maps”
between them is the subject matter of Category Theory (see e.g. [3]). The theory
of sets (see e.g., [10]), and the category theory are the most popular “dialects” in
the language of modern mathematics.

Noe that, although the actual constructions of new S-spaces from given ones
depend on the specific S-structure under study, their abstract properties are com-
mon to all categories of S-spaces. E.g., the product of two Hilbert spaces H1×H2 is
a different mathematical object from the product of two topological spaces X1×X2,
but the basic behaviour of the product H1×H2 in the category of Hilbert spaces is
the same to the basic behaviour of the product X1×X2 in the category of topologi-
cal spaces. As we say in category theory, both objects satisfy the universal property
of the products. According to it, if S × T :=

(
X ⊗ Y ;S × T

)
is the product of the

S-spaces S and T , there are S-maps prX : X⊗Y → X and prY : X⊗Y → Y such
that for every S-space U := (Z,U) and every S-maps f : Z → X and g : Z → Y ,
there is a unique S-map h : Z → X ⊗ Y such that the following inner diagrams
commute

X X ⊗ Y Y

Z

prX prY

f gh

i.e., f = prX ◦ h and g = prY ◦ h. Quite often, but not always, the set X ⊗ Y is
the set-theoretic product X × Y of the sets X and Y i.e., the set

X × Y := {(x, y) | x ∈ X & y ∈ Y }.
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Definition 1.0.2 (Eilenberg, Mac Lane (1945)). A category C is a structure
(C0, C1, dom, cod, ◦,1), where

(i) C0 is the collection of the objects of C,

(ii) C1 is the collection of the arrows of C,

(iii) For every f in C1, dom(f), the domain of f , and cod(f), the codomain of f ,
are objects in C0, and we write f : A→ B, where A = dom(f) and B = cod(f),

(iv) If f : A→ B and g : B → C are arrows of C i.e., dom(g) = cod(f), there is an
arrow g ◦ f : A→ C, which is called the composite of f and g,

(v) For every A in C0, there is an arrow 1A : A→ A, the identity arrow of A,

such that the following conditions are satisfied:

(a) If f : A→ B, then f ◦ 1A = f = 1B ◦ f .

(b) If f : A→ B, g : B → C and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

If A,B are in C0, we denote by HomC(A,B), or simply by Hom(A,B), if C is clear
from the context, the collection of arrows f in C1 with dom(f) = A and cod(f) = B.

The objects of a category are not necessarily sets. E.g., in the next chapter we
will study certain properties of the category of (real) linear spaces LinR, or simpler
Lin, that has as objects the (real) linear spaces, which are sets equipped with a
linear structure. The arrows of Lin are certain functions between the carrier sets
of the corresponding linear spaces, which are called linear maps.

Example 1.0.3. If X is not equipped with some S-structure, or, equivalently,
if it is equipped with the empty structure, the corresponding category of S-spaces is
the category of sets Set. Its objects are sets, and its arrows are functions between
sets. If A is a set, then 1A := idA, and the composition of arrows is the composition
of functions.

Next we give an example of a category the arrows of which are not functions.

Example 1.0.4. The category Rel has objects sets, and an arrow f : A → B
is any subset of A×B i.e., any binary relation on A,B. If A is a set, let

1A :=
{

(a, a′) ∈ A×A | a = a′
}
,

while, if R ⊆ A×B and S ⊆ B × C, let

S ◦R :=
{

(a, c) ∈ A× C | ∃b∈B
(
(a, b) ∈ R & (b, c) ∈ S

)}
.

Definition 1.0.5. A partially ordered set, or a poset, is a pair (I,�), where I
is a set, and � ⊆ I × I satisfying the following conditions:

(i) ∀i∈I
(
i � i

)
.

(ii) ∀i,j∈I
(
i � j & j � i⇒ i = j

)
.

(iii) ∀i,j,k∈I
(
i � j & j � k ⇒ i � k

)
.
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If (J,≤) is any poset, a function m : I → J is called monotone, if

∀i,i′∈I
(
i � i′ ⇒ m(i) ≤ m(i′)

)
.

Clearly, (R,≤) is a poset, which is linearly ordered i.e., ∀a,b∈R
(
a ≤ b ∨ b ≤ a

)
.

Example 1.0.6. The category Pos has objects posets and an arrow m : I → J
is any monotone function. If (I,�) is a poset, we have 1A := idA, and ◦ in Pos is
the composition of functions.

Categories can be used to describe various physical phenomena (see [8], [9]). If
we consider a physical system of some type A (e.g., an electron), and if an operation
(e.g., a measurement) is performed on it, which results in a system of some type
B, this situation can be described by an arrow f : A→ B. An operation g on the
system that follows f can be described by the arrow g : B → C, and g ◦ f denotes
the consecutive application of f and g. The trivial operation of “no operation” on
a system of type A is denoted by 1A. For many non-trivial applications of category
theory to mathematical physics see [21].

Next we define the right notion of “map” between categories.

Definition 1.0.7. Let C and D be categories. A covariant functor, or simply
a functor from C to D is a pair F = (F0, F1), where:

(i) F0 maps an object A of C to an object F0(A) of D,

(ii) F1 maps an arrow f : A→ B of C to an arrow F1(f) : F0(A)→ F0(B) of D,

such that the following conditions are satisfied:

(a) For every A in C0 we have that F1(1A) = 1F0(A)

F0(A)

F0(A).

1F0(A) F1(1A)

(b) If f : A→ B and g : B → C, then F1(g ◦ f) = F1(g) ◦ F1(f) i.e., the following
diagram commutes

F0(A) F0(B) F0(C),
F1(f) F1(g)

F1(g ◦ f)

where for simplicity we use the same symbol for the operation of composition in
the categories C and D. In this case we write1 F : C →D.

A contravariant functor from C to D is a pair F := (F0, F1), where:

1In the literature it is often written F (C) and F (f), instead of F0(C) and F1(f).
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(i) F0 maps an object A of C to an object F0(A) of D,

(ii′) F1 maps an arrow f : A→ B of C to an arrow F1(f) : F0(B)→ F0(A) of D,

such that the following conditions are satisfied:

(a) F1(1A) = 1F0(A), for every A in C0.

(b′) If f : A→ B and g : B → C, then F1(g ◦ f) = F1(f) ◦ F1(g) i.e., the following
diagram commutes

F0(C) F0(B) F0(A),
F1(g) F1(f)

F1(g ◦ f)

In this case we write F : Cop →D.

Example 1.0.8. If C is a category, the identity functor on C is the pair
IdC := (IdC

0 , Id
C
1 ) : C → C, where IdC

0 (X) := X, for every X in C0, and if

f : X → Y , then IdC
1 (f) := f .

Example 1.0.9. The pair F := (F0, F1) : Set→ Rel, where F0(X) := X, and
if f : X → Y , then F1(f) := {(a, b) ∈ A × B | b = f(a)} := Gr(f), is a covariant
functor from Set to Rel.

Example 1.0.10. The pair (G0, G1) : Set → Set, where G0(X) := F(X) :=
{φ : X → R}, and if f : X → Y , then G1(f) : F(Y )→ F(X) is defined by

[G1(f)])(θ) := θ ◦ f

X Y

R,

f

θθ ◦ f

for every θ ∈ F(Y ), is a contravariant functor from Set to Set. If X is a set, then

[G1(idX)])(φ) := φ ◦ idX = φ

and since φ ∈ F(X) is arbitrary, we conclude that G1(idX) = idF(X) := idG0(X). If
f : X → Y and g : Y → Z, then G1(f) : F(Y )→ F(X), G1(g) : F(Z)→ F(Y ) and
G1(g ◦ f) : F(Z)→ F(X). Moreover, if η ∈ F(Z), we have that

[G1(g ◦ f)](η) := η ◦ (g ◦ f)

= (η ◦ g) ◦ f
:= [G1(f)](η ◦ g)

:= G1(f)
(
[G1(g)](η)

)
:= [G1(f) ◦G1(g)](η).
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The next most important concept is that of a natural transformation.

Definition 1.0.11. Let C,D be categories and F := (F0, F1), G := (G0, G1)
functors from C to D. A natural transformation from F to G is a family of arrows
in D of the form

τC : F0(C)→ G0(C)

for every C in C0, and every f : C → C ′ in C, the following diagram commutes

F0(C) F0(C ′)

G0(C ′).G0(C)

F1(f)

τC′

G1(f)

τC

We denote a natural transformation τ from F to G by τ : F ⇒ G.

Example 1.0.12. Let IdSet := (IdSet
0 , IdSet

1 ) be the identity functor on Set
(Example 1.0.8), and let the functor H := (H0, H1) : Set→ Set, defined by

H0(X) := F(F(X)) := {Φ : F(X)→ R},
and if f : X → Y , then H1(f) : F(F(X))→ F(F(Y )) is defined by[

H1(f)
]
(Φ) := Φ ◦G1(f)

F(Y ) F(X)

R,

G1(f)

ΦΦ ◦G1(f)

where G1 is defined in the Example 1.0.10. Then the family of arrows in Set

τX : X → F(F(X))

τX(x) := x̂,

x̂(φ) := φ(x),

for every x ∈ X, φ ∈ F(X), and X in Set, is a natural transformation from IdSet

to H i.e., the following diagram commutes

X Y

F(F(Y )).F(F(X))

f

τY

H1(f)

τX
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Example 1.0.13. If C,D are categories the functor category Fun(C,D) has
objects the functors from C to D, and if F,G : C → D, an arrow from F to G
is a natural transformation from F to G. The identity arrow 1F : F ⇒ F is the
family of arrows (1F )C : F0(C)→ F0(C), where (1F )C := 1F0(C), and the following
diagram trivially commutes

F0(C) F0(C ′)

F0(C ′).F0(C)

F1(f)

1F0(C′)

F1(f)

1F0(C)

If F,G,H : C → D, τ : F ⇒ G and σ : G ⇒ H, the composite arrow σ ◦ τ is
defined by

(σ ◦ τ)C := σC ◦ τC : F0(C)→ H0(C),

for every C in C0, and, if f : C → C ′, the required commutativity of the following
outer diagram

F0(C) F0(C ′)

G0(C ′)G0(C)

H0(C) H0(C ′)

F1(f)

τC′

G1(f)

τC

σC σC′

H1(f)

(σ ◦ τ)C (σ ◦ τ)C′

is shown by the commutativity of the inner diagrams as follows:

(σ ◦ τ)C′ ◦ F1(f) :=
(
σC′ ◦ τC′

)
◦ F1(f)

= σC′ ◦
(
τC′ ◦ F1(f)

)
= σC′ ◦

(
G1(f) ◦ τC

)
=
(
σC′ ◦G1(f)

)
◦ τC

=
(
H1(f) ◦ σC

)
◦ τC

= H1(f) ◦
(
σC ◦ τC

)
:= H1(f) ◦ (σ ◦ τ)C .

It is straightforward to show now that Fun(C,D) is indeed a category.



CHAPTER 2

Linear spaces and linear maps

In this chapter we study the basic properties of the linear spaces–also called
vector spaces–and of the linear maps between them. A linear space is a set en-
dowed with a linear structure, and a linear map between linear spaces is a function
between their carrier sets that preserves their linear structure. Both, the inner
product spaces and the normed spaces, are linear spaces with some extra topo-
logical structure. Hence, the linear spaces are instrumental in the mathematical
description of physical reality. The linear structure of R3 is a fundamental com-
ponent of the geometric representation of the classical physical world. Throughout
these lecture notes, when we write Rn, we mean that n ≥ 1.

2.1. Linear spaces and linear subspaces

Definition 2.1.1. A linear space, or a vector space, over R is a structure
V := (X; +,0, ·), where X is a set, 0 ∈ X, and +, · are functions

+ : X ×X → X, · : R×X → X

(x, y) 7→ x+ y, (a, x) 7→ a · x,
such that the following conditions are satisfied:

(LS1) ∀x,y,z∈X
(
(x+ y) + z = x+ (y + z)

)
.

(LS2) ∀x∈X
(
x+ 0 = 0 + x = x

)
.

(LS3) ∀x∈X∃y∈X
(
x+ y = 0

)
.

(LS4) ∀x,y∈X
(
x+ y = y + x

)
.

(LS5) ∀x,y∈X∀a∈R
(
a · (x+ y) = a · x+ a · y

)
.

(LS6) ∀x∈X∀a,b∈R
(
(a+ b) · x = a · x+ b · x

)
.

(LS7) ∀x∈X∀a,b∈R
(
(ab) · x = a · (b · x)

)
.

(LS8) ∀x∈X
(
1 · x = x

)
.

For simplicity, we may write ax instead of a · x. The triple (+,0, ·) is called the
signature of the linear space V. If, instead of R, we consider any field1 F, the

1A field is a structure (F;+,0, ·,1), where F is a set, 0,1 ∈ F, + : F×F→ F, and · : F×F→ F
such that together with (LS1)− (LS4) the following conditions are satisfied:

9
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corresponding structure is called a linear space over F. A linear space over R is
also called a real linear space, and a linear space over the field of complex numbers
C is called a complex linear space. If V is a linear space, the elements of X are
traditionally called vectors. A linear space is called non-trivial, if it contains a
vector x such that x 6= 0. Unless stated otherwise, the linear spaces considered here
are going to be real. When the linear structure on X is clear from the context, we
use for simplicity X to denote the vector space V.

Example 2.1.2. Let the structure Rn := (Rn; +,0, ·), where

Rn := {(x1, . . . , xn) | x1 ∈ R & . . . & xn ∈ R},
(x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 & . . . & xn = yn,

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

0 := (0, . . . , 0),

a · (x1, . . . , xn) := (ax1, . . . , axn).

Clearly, Rn a linear space over R, and, similarly, Qn := (Qn; +,0, ·) is linear space
over Q, and Cn := (Cn; +,0, ·) is a linear space over C.

Example 2.1.3. If X is a set, F(X) is the set of all functions f : X → R, and

if we define the functions f + g, 0
X

and a · f , where a ∈ R, by

(f + g)(x) := f(x) + g(x),

0
X

(x) := 0,

(a · f)(x) := af(x),

for every x ∈ X, then F(X) := (F(X); +, 0
X
, ·) is a linear space over R.

The Example 2.1.3 shows that a mathematical object can be viewed as a vector,
although no immediate geometric intuition is associated with it. If

n := {0, 1, . . . , n− 1}
though, an element of Rn can be identified with a function f : n → R, and then
the Example 2.1.2 is a special case of the Example 2.1.3. If f, g ∈ F(X) and a ∈ R,

f ≤ g ⇔ ∀x∈X
(
f(x) ≤ g(x)

)
,

∀x,y,z∈F
(
x · (y · z) = (x · y) · z

)
.

∀x,y,z∈F
(
x · (y+ z) = x · y+ x · z

)
.

∀x,y∈F
(
x · y = y · x

)
.

∀x∈F
(
1 · x = x

)
.

∀x∈F
(
x 6= 0⇒ ∃y∈F(x · y = 1)

)
.

It is immediate to see that the rational numbers Q, the real numbers R and the complex numbers C
have a field structure. Actually, Q is a subfield of R and R is a subfield of C i.e., the field-signature

(+,0, ·,1) of Q is inherited from the field-signature of R, which, in turn, can be inherited from
the field-signature of C.
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f ≤ a :⇔ f ≤ aX ⇔ ∀x∈X
(
f(x) ≤ a)

)
,

where aX(x) := a, for every x ∈ X.

Remark 2.1.4. Let V := (X; +,0, ·) be a linear space, a, b ∈ R, and x, y, z, w ∈
X. The following hold:

(i) If z = w and x = y, then z + x = w + y.

(ii) If x = y and a = b, then a · x = b · y.

(iii) If x+ y = x+ z = 0, then y = z.

(iv) 0 · x = 0.

(v) (−1) · x = −x, where, because of case (iii), −x is the unique element y of X
in condition (LS3) such that x+ y = 0.

(vi) If x 6= 0 and a · x = 0, then a = 0.

Proof. Exercise. �

Definition 2.1.5. Let V := (X; +,0, ·) be a linear space, and Y ⊆ X such
that the following conditions are satisfied:

(i) ∀y,y′∈Y
(
y + y′ ∈ Y

)
,

(ii) 0 ∈ Y ,

(iii) ∀y∈Y ∀a∈R
(
a · y ∈ Y

)
.

Then the structure

V|Y := (Y,+|Y×Y ,0, ·|R×Y ),

where +|Y×Y is the restriction of + to Y × Y and ·|R×Y is the restrictions of ·
to R × Y , is called a linear subspace of V, or, simpler, a subspace of V. We write
V|Y � V to denote that V|Y is a linear subspace of V, although, for simplicity, we
refer to a linear subspace V|Y mentioning only the set Y , and we write Y � X. We
denote by Sub(V) the set of all subspaces of V.

Clearly, {0} and X are linear subspaces of X.

Example 2.1.6. If F∗(X) is the set of all bounded functions in F(X) i.e.,

F∗(X) =
{
f ∈ F(X) | ∃M>0∀x∈X

(
|f(x)| ≤M

)}
,

then F∗(X) is a linear subspace of F(X) (see Example 2.1.3). To see this let
f, g ∈ F(X) and Mf > 0,Mg > 0, such that |f | ≤ Mf and |g| ≤ Mg. Then
|f+g| ≤Mf +Mg and |af | ≤ (1+ |a|)Mf , where Mf +Mg > 0 and (1+ |a|)Mf > 0.
Recall that |f | ∈ F(X) is defined by |f |(x) := |f(x)|, for every x ∈ X.

Example 2.1.7. If V := (X; +,0, ·) is a linear space, n ≥ 1, and x1, . . . , xn ∈
X, the set

〈{x1, . . . , xn}〉 :=
{
a1 · x1 + . . .+ an · xn | a1 ∈ R & . . . & an ∈ R

}
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is a linear subspace of V. We call an element
n∑
i=1

aixi := a1 · x1 + . . .+ anxn

of 〈{x1, . . . , xn}〉 a linear combination of x1, . . . , xn, and the space 〈{x1, . . . , xn}〉
the linear span of x1, . . . , xn. We may write 〈x1, . . . , xn〉 instead of 〈{x1, . . . , xn}〉.

If e1 := (1, 0), e2 := (0, 1), and (x, y) ∈ R2, we get R2 = 〈e1, e2〉, since

(x, y) := x(1, 0) + y(0, 1) := xe1 + ye2.

Proposition 2.1.8. Let V := (X; +,0, ·) be a linear space, Y ⊆ X, and let
U, V � X.

(i) If U + V := {u+ v | u ∈ U & v ∈ V }, then U + V � X.

(ii) If U ∩ V := {x ∈ X | x ∈ U & x ∈ V }, then U ∩ V � X.

(iii) If we define

〈Y 〉 :=
⋂{

U � X | Y ⊆ U
}

:=
{
x ∈ X | ∀U�X(Y ⊆ U ⇒ x ∈ U)

}
,

then 〈Y 〉 is well-defined (i.e., the set {U � X | Y ⊆ Y } is non-empty) and it is the
least linear subspace of X that includes Y .

(iv) If Y 6= ∅, then

〈Y 〉 =

{ n∑
i=1

aiyi | n ≥ 1 & ∀i∈{1,...,n}
(
ai ∈ R & yi ∈ Y

)}
.

Proof. Exercise. �

Since ∅ ⊆ {0}, we have that 〈∅〉 = {0}. The subspace U + V of X is called the
sum of U and V . By Proposition 2.1.8 the linear span 〈x1, . . . , xn〉 of x1, . . . , xn ∈ X
is the least linear space containing x1, . . . , xn. If X = 〈Y 〉, we say that Y generates
the linear space V (or X), and the elements of Y are called generators of V.

2.2. Finite-dimensional linear spaces

Definition 2.2.1. Let V := (X; +,0, ·) be a linear space, n ≥ 1, and let
x1, . . . , xn ∈ X. We say that the vectors x1, . . . , xn are linearly dependent, or that
their set {y1, . . . , yn} is a linearly dependent subset of X, if

∃a1,...,an∈R
(
∃i∈{1,...,n}

(
ai 6= 0

)
&

n∑
i=1

aixi = 0

)
.

We say that x1, . . . , xn are linearly independent, if they are not linearly dependent.
A subset Y of X is called linearly dependent, if

∃n≥1∃y1,...,yn∈Y
(
{y1, . . . , yn} is linearly dependent

)
,
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while it is called linearly independent, if it is not a linearly dependent subset of X.

If x1, . . . , xn are linearly dependent, a1x1 + . . .+ anxn = 0, and ai 6= 0, then

xi =

(
−a1

ai

)
x1 + . . .+

(
−ai−1

ai

)
xi−1 +

(
−ai+1

ai

)
xi+1 + . . .+

(
−an
ai

)
xn

i.e., xi is a linear combination of a1, . . . , ai−1, ai+1, . . . , an.

Remark 2.2.2. Let X be a linear space and Y,Z ⊆ X.

(i) If x1, . . . , xn ∈ X, then x1, . . . , xn are linearly independent if and only if

∀a1,...,an∈R
( n∑
i=1

aixi = 0⇒ ∀i∈{1,...,n}(ai = 0)

)
.

(ii) Y is linearly independent if and only if

∀n≥1∀y1,...,yn∈Y
(
{y1, . . . , yn} is linearly independent

)
.

(iii) {0} and X are linearly dependent subsets of X.

(iv) If x 6= 0, then {x} is a linearly independent subset of X.

(v) The empty set ∅ is a linearly independent subset of X.

(vi) If Y is linearly dependent and Y ⊆ Z, then Z is linearly dependent.

(vii) If Y is linearly independent and Z ⊆ Y , then Z is linearly independent.

Proof. (i) and (ii) By negating the corresponding defining formulas. E.g., for
(i) we use the Corollary 6.1.3 and the Lemma 6.1.1 in the Appendix.
(iii) 1 · 0 = 0, and {0} is a linearly dependent subset of X.
(iv) It follows immediately by Remark 2.1.4(vi).
(v) If we suppose that ∅ is a linearly dependent subset of X i.e.,

∃n≥1∃y1,...,yn
(
y1 ∈ ∅ & . . . & yn ∈ ∅ & {y1, . . . , yn} is linearly dependent

)
,

it is immediate that we get a contradiction from it.
(vi) and (vii) are immediate to show. �

Example 2.2.3. The following n-vectors in Rn

e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1)

are linearly independent, since for every a1, . . . , an ∈ R we have that
n∑
i=1

aiei = 0⇔ (a1, . . . , an) = 0⇔ a1 = . . . = an = 0.

Example 2.2.4. For every n ≥ 1, the following n-vectors in F(R)

f1(t) := et, . . . , fn(t) := ent

are linearly independent (Exercise).
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Remark 2.2.5. Let V := (X; +,0, ·) be a linear space, n ≥ 1, and x1, . . . , xn ∈
X linearly independent. If a1, . . . , an, b1, . . . , bn ∈ R, then

n∑
i=1

aixi =

n∑
i=1

bixi ⇒
(
a1 = b1 & . . . & an = bn

)
.

Moreover, xi 6= 0, for every i ∈ {1, . . . , n}.

Proof. It follows from the Definition 2.2.1 and the equivalence

n∑
i=1

aixi =

n∑
i=1

bixi ⇔
n∑
i=1

(ai − bi)xi = 0.

If i ∈ {1, . . . , n} such that xi = 0, then 0x1 + 0xi−1 + 1xi+ 0xi+1 + . . .+ 0xn = 0,
which by the hypothesis of linear independence is impossible2. �

Definition 2.2.6. If V := (X; +,0, ·) is linear space, a subset B of X is called
a basis of V (or, for simplicity a basis of X), if B is linearly independent, and
〈B〉 = X. If V has a finite basis B, it is called a finite-dimensional linear space,
while if it has an infinite basis, it is called infinite-dimensional.

Clearly, the subspace {0} has as a basis the empty set.

Example 2.2.7. The set En := {e1, . . . , en} of the linearly independent ele-
ments in Rn that were defined in the Example 2.2.3 is the standard basis of Rn.
Hence, Rn is finite-dimensional. It is easy to see that Rn has more than one bases.
E.g., B := {(1, 1), (−1, 2)} is another basis of R2.

Example 2.2.8. Since the set E := {ent | n ≥ 1} is a linearly independent
subset of F(R), the set E is a basis of the linear subspace 〈E〉 of F(R), and 〈E〉 is
infinite-dimensional.

Corollary 2.2.9. Let V := (X; +,0, ·) be a linear space, and x ∈ X. If
B := {v1, . . . , vn} is a basis of V, there are unique a1, . . . , an ∈ R such that

x =

n∑
i=1

aivi.

Proof. It follows by the definition of a basis and the Remark 2.2.5. �

These unique a1, . . . , an ∈ R are called the coordinates of x with respect to B.

Definition 2.2.10. Let V := (X; +,0, ·) be a linear space, {v1, . . . , vn} ⊆
X and m ≤ n. The set {v1, . . . vm} is a maximal subset of linearly independent
elements of X, if it is a linearly independent subset of X, and for every k ∈ N,
such that m < k ≤ n, the set {v1, . . . , vm, vk} is a linearly dependent subset of X.

2This also follows from the Remark 2.2.2(vii)
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Theorem 2.2.11 (Finite basis-criterion I). Let V := (X; +,0, ·) be a linear
space, n ≥ 1, and {v1, . . . , vn} ⊆ X such that X = 〈{v1, . . . , vn}〉. If {v1, . . . , vr}
is a maximal subset of linearly independent elements of X, where 1 ≤ r ≤ n, then
{v1, . . . , vr} is a basis of V.

Proof. If r = n, then {v1, . . . , vr} is a linearly independent subset generating
X i.e., it is a basis of V. If r < n, by the maximality of {v1, . . . , vr} the sets

{v1, . . . , vr, vr+1}, {v1, . . . , vr, vr+2}, . . . , {v1, . . . , vr, vn}
are linearly dependent subsets of X. We show that

vr+1 ∈ 〈{v1, . . . , vr}〉 & vr+2 ∈ 〈{v1, . . . , vr}〉 & . . . & vn ∈ 〈{v1, . . . , vr}〉.
We show this only for vr+1, and for vr+2, . . . , vn we proceed similarly. Since
{v1, . . . , vn, vr+1} is linearly dependent, there are a1, . . . , ar, ar+1 ∈ R such that

a1v1 + . . .+ arvr + ar+1vr+1 = 0,

and not all of them are equal to 0. If ar+1 = 0, then a1v1 + . . . + arvr = 0,
hence a1 = . . . = ar = ar+1 = 0, which is a contradiction. Hence ar+1 6= 0, and
hence vr+1 can be written as a linear combination of v1, . . . , vr. Since an element
x of X is a linear combination of v1, . . . , vr, vr+1, . . . , vn and vr+1, . . . , vn are linear
combinations of v1, . . . , vr, then x is a linear combination of v1, . . . , vr. �

Next we show that we can replace any number of elements of a finite basis by
an equal number of any linearly independent vectors.

Lemma 2.2.12 (Exchange lemma (Steinitz)). Let n,m ≥ 1, let {v1, . . . vn} be
a basis of the linear space V := (X; +,0, ·), and let w1, . . . , wm ∈ X be linearly
independent.

(i) If m < n, there are um+1, . . . , un ∈ {v1, . . . vn} such that

〈{w1, . . . , wm, um+1, . . . , un}〉 = X.

(ii) If m = n, then 〈{w1, . . . , wn}〉 = X.

Proof. (i) By the definition of a basis there are a1, . . . an ∈ R such that

w1 = a1v1 + . . .+ anvn.

Since by Remark 2.2.5 w1 6= 0, there is some ai 6= 0, where i ∈ {1, . . . , n}. Without
loss of generality we can take i = 1 (if a1 = 0, we can re-enumerate the elements
of the set {v1, . . . vn} so that the first coefficient in the writing of w1 as a linear
combination of the elements of the set {v1, . . . vn} is non-zero). Hence

a1v1 = w1 −
n∑
i=2

aivi ⇔ v1 =
1

a1
w1 −

n∑
i=2

ai
a1
vi,

and consequently

v1 ∈
〈{
w1, v2, . . . , vn

}〉
,
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and 〈{
w1, v2, . . . , vn

}〉
= X.

By the inductive hypothesis, if 1 ≤ r < m we get (possibly after a re-enumeration
of the set {v1, . . . vn}) 〈

{w1, . . . , wr, vr+1, . . . , vn}
〉

= X.

Hence,
wr+1 = b1w1 + . . .+ brwr + cr+1vr+1 + . . .+ cnvn.

Not all the terms cr+1, . . . , cn are equal to 0, since then wr+1 would be a linear
combination of w1, . . . , wr, something that contradicts the hypothesis of linear in-
dependence of the vectors w1, . . . , wm. Without loss of generality, let cr+1 6= 0,
hence

cr+1vr+1 = wr+1 −
[ r∑
i=1

biwi +

n∑
j=r+2

cjvj
]
⇔

vr+1 =
1

cr+1
wr+1 −

r∑
i=1

bi
cr+1

wi −
n∑

j=r+2

cj
cr+1

vj ,

and consequently

vr+1 ∈
〈{
w1, . . . , wr, wr+1, vr+2, . . . , vn

}〉
,

and 〈
{w1, . . . , wr, wr+1, vr+2, . . . , vn}

〉
= X.

After m-number of steps, we get 〈{w1, . . . , wm, um+1, . . . , un}〉 = X.
(ii) It follows immediately by (i). �

Theorem 2.2.13. Let 0 < n < m, and let {v1, . . . vn} be a basis of the linear
space V := (X; +,0, ·). If w1, . . . , wm ∈ X, then w1, . . . , wm are linearly dependent.

Proof. Suppose that the vectors w1, . . . , wm are linearly independent. Since
then the vectors w1, . . . , wn are also linearly independent, by the Lemma 2.2.12(ii)
we have that w1, . . . , wn is a basis of X. By the hypothesis of linear indepen-
dence we have that wn+1 6= 0, hence it is also a non-trivial linear combination
of w1, . . . , wn. By this contradiction we conclude that the vectors w1, . . . , wm are
linearly dependent. �

Corollary 2.2.14. If B1, B2 are finite bases of a linear space V := (X; +,0, ·),
then B1 and B2 have the same number of elements.

Proof. If V is a trivial linear space, then the two bases are equal to the
empty set, and |B1| = |B2| = 0, where |I| denotes the number of elements, or the
cardinality, of a set I. Let V be non-trivial, and let n,m ≥ 1 such that |B1| = n
and |B2| = m. If n < m, then by the Theorem 2.2.13 we have that B2 is linearly
dependent, which is a contradiction. Hence n ≥ m. Similarly we get m ≥ n. �

Because of the Corollary 2.2.14 the following concept is well-defined.
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Definition 2.2.15. If n ≥ 1 and {v1, . . . , vn} is a basis of a linear space V :=
(X; +,0, ·), we call V an n-dimensional space, and we write dim(X) := n. A trivial
linear space has dimension 0.

Clearly, dim(Rn) := n.

Corollary 2.2.16. Let n ≥ 1, and let v1, . . . , vn be linearly independent ele-
ments of a linear space X.

(i) (Finite basis-criterion II) If their set M := {v1, . . . , vn} is a maximal set of
linearly independent elements of X i.e., for every x ∈ X we have that

x, v1, . . . , vn

are linearly dependent elements of X, then M is a basis of X.

(ii) If dim(X) = n, and w1, . . . , wn are linearly independent elements of X, then
B := {w1, . . . , wn} is a basis of X.

(iii) If Y is a subspace of X with dim(Y ) = dim(X) = n, then Y = X.

(iv) If dim(X) = n, 1 ≤ r < n, and w1, . . . , wr are linearly independent elements
of X, then there are elements vr+1, . . . , vn of X such that the set

{w1, . . . , wr, vr+1, . . . , vn}
is a basis of X.

Proof. Exercise. �

Next we show that the existence of a basis of a linear space X implies the
existence of a basis of any subspace of X.

Corollary 2.2.17. Let V := (X; +,0, ·) be a linear space with dim(X) = n.
If Y � X, then Y has a basis and dim(Y ) ≤ dim(X).

Proof. If Y := {0}, then ∅ is a basis of Y and dim(Y ) = 0 ≤ dim(X). If Y
is non-trivial, then either Y = X, or Y is a proper subspace of X. In the first case
what we want to show follows trivially. If Y is a proper, non-trivial subspace of X,
then there is some y1 ∈ Y such that y1 6= 0, and by the Remark 2.1.4(vi)M1 := {y1}
is linearly independent. By the principle of the excluded middle3 (PEM), we have
that M1 is either a maximal set of linearly independent elements of Y , hence by
the Corollary 2.2.16(i) it is also a basis of Y , and hence dim(Y ) = 1, or there is
y2 ∈ Y such that M2 := {y1, y2} is linearly independent. Proceeding similarly, we
can repeat the same argument at most (n− 1) number of times, in order to reach
the required conclusion. �

Proposition 2.2.18. If X is a linear space, and Y,Z � X, such that4

∀x∈X∃!y∈Y ∃!z∈Z
(
x = y + z

)
,

3See section 6.1 of the Appendix.
4The unfolding of a “unique existence”-formula ∃!x∈Xφ(x) is found in the section 6.1 of the

Appendix.
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we write X := Y ⊕ Z. The following are equivalent:

(i) X = Y ⊕ Z.

(ii) X = Y + Z and Y ∩ Z = {0}.

Proof. Exercise. �

Proposition 2.2.19. Let X be a linear space, n ∈ N, and dim(X) = n.

(i) If Y � X, there is some Z � X such that X = Y ⊕ Z.

(ii) If Y, Z � X such that X = Y ⊕ Z, then dim(X) = dim(Y ) + dim(Z).

Proof. Exercise. �

Next we give a condition under which, a linearly independent subset of a linear
space X can be extended to a larger linearly independent subset of X.

Lemma 2.2.20. Let Y be a linearly independent subset of a linear space X, and
x0 ∈ X. If x0 /∈ 〈Y 〉, then Y ∪ {x0} is a linearly independent subset of X.

Proof. Exercise. �

2.3. Existence of a basis

A trivial linear space has the empty set as a basis. In this section we show that
a non-trivial linear space has always a basis. The proof of this fact requires the use
of Zorn’s lemma (see section 6.2 of the Appendix).

Definition 2.3.1. A subset C of a poset (I,�) (see Definition 1.0.5) is called
a chain in I, or a totally ordered subset of I, if

∀c,c′∈C
(
c � c′ ∨ c′ � c

)
.

A subset J of I is bounded in I, if there is i0 ∈ I such that ∀j∈J
(
j � i0

)
. In this

case i0 is called a bound of J . An element i0 of I is called maximal in I, if

∀i∈I
(
i0 � i⇒ i = i0

)
.

A bound i0 of I itself is called the maximum element5 of I. If the poset (I,�) is
clear from the context, we just say C is a chain, J is bounded, and i0 is a maximal
element. As usual, for simplicity we say that I is a poset, and we do not write the
whole structure (I,�), when � is clear from the context.

5A maximum element i0 is uniquely determined i.e., if j0 is also bound of I, then j0 = i0.

The maximum element is also a maximal element, while the converse is not generally the case.
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The powerset P(I) of a set I is the set of all subsets of I, and it is partially
ordered by the relation A ⊆ B, “the subset A is included in the subset B”,

A ⊆ B :⇔ ∀i∈I
(
i ∈ A⇒ i ∈ B

)
.

An infinite, countable chain C in P(X) can take the form

A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . ,

and
∞⋃
n=1

An :=
{
i ∈ I | ∃n≥1

(
i ∈ An)

}
is a bound of C. Clearly, X is the maximum element of P(X), and ∅ is the min-
imum element of P(X), where the notions of minimal and minimum are dual to
those of maximal and maximum.

Zorn’s lemma (ZL): If I is a non-empty6 poset, such that every chain in I is
bounded, then I has a maximal element.

Theorem 2.3.2 (ZL). A non-trivial linear space X has a basis.

Proof. If we define the set

I(X) := {Y ⊆ X | Y is linearly independent},

then ∅ ∈ I(X), hence I(X) is non-empty. If Y,Z ∈ I(X), we define Y � Z :⇔ Y ⊆
Z, which is a partial order on I(X). If C ⊆ I(X) is a chain in I(X), then⋃

C := {x ∈ X | ∃A∈C(x ∈ A)}

is a bound of C in P(X), and it is also a bound in I(X) i.e.,
⋃
C ∈ I(X). To show

this, we use the Remark 2.2.2(ii). Let x1, . . . , xn ∈
⋃
C, for some n ≥ 1. By the

definition of
⋃
C there are Y1, . . . , Yn ∈ C such that x1 ∈ Y1 & . . . & xn ∈ Yn.

Since C is a chain there is some i ∈ {1, . . . , n} such that Y1 ⊆ Yi & . . . & Yn ⊆ Yi.
Hence, {x1, . . . , xn} ⊆ Yi, and since Yi is linearly independent, {x1, . . . , xn} is also
linearly independent. Since the set {x1, . . . , xn} is an arbitrary finite subset of⋃
C, we conclude that

⋃
C is in I(X). Since C is an arbitrary chain in I(X), the

hypothesis of ZL is satisfied. Hence, by ZL the poset I(X) has a maximal element
B. We show that B is a basis of X. Since B ∈ I(X), it is a linearly independent
subset of X. It remains to show that B generates X. Let x ∈ X, and suppose that
x /∈ 〈B〉. By the Lemma 2.2.20 we have that B∪{x} is linearly independent, which
contradicts the hypothesis of maximality of B. Hence, x ∈ 〈B〉. �

6If I = ∅, then it is easy to show that the rule Efq (see section 6.1 of the Appendix) implies

that if every chain of ∅ is bounded, then ∅ has a maximal element.
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Notice that the previous proof of existence of a basis is very “indirect”, as it
provides no method, or algorithm, to find, or construct a basis. One can show7 that
the Theorem 2.3.2 implies ZL, hence “the existence of a base of a linear space” and
ZL are equivalent (over ZF).

One can show similarly the following stronger version of Theorem 2.3.2. Note
that this version generalises the Corollary 2.2.16(iv), without using the hypothesis
of the existence of a (finite) basis, while if Y = ∅, it implies the Theorem 2.3.2.

Theorem 2.3.3 (ZL). If Y is a linearly independent subset of a non-trivial
linear space X, there is a basis B of X, such that Y ⊆ B.

Proof. Exercise. �

2.4. Linear maps

Definition 2.4.1. If X and Y are linear spaces, a function f : X → Y is called
linear, or a linear map, if it satisfies the following conditions:

(i) ∀x,x′∈X
(
f(x+ x′) = f(x) + f(x′)

)
.

(ii) ∀x∈X∀a∈R
(
f(a · x) = a · f(x)

)
.

Moreover, we define the following sets:

L(X,Y ) := {f : X → Y | f is linear},

L(X) := L(X,X) := {f : X → X | f is linear},

X∗ := L(X,R) := {f : X → R | f is linear}.
The elements of L(X) are called operators on X, or linear transformations on X,
while X∗ is called the dual space of X.

Example 2.4.2. If X is a linear space with dim(X) = n, for some n ≥ 1, and
B := {v1, . . . , vn} is a fixed basis of X, then the function fB : X → Rn, defined by

fB(x) := (a1, . . . , an), x =

n∑
i=1

aivi,

is a linear map. Moreover, if i ∈ {1, . . . , n}, the function prBi : X → R, defined by

prBi (x) := ai, x =

n∑
i=1

aivi,

7For that see [6]. In [19] many statements from classical mathematics are shown to be

equivalent to the axiom of choice.
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X Rn

R

fB

prBi
pri

is a linear map. If n > m ≥ 1, the function g : Rn → Rm is linear, where

g(a1, . . . , am, am+1, . . . , an) := (a1, . . . , am).

Remark 2.4.3. The set L(X,Y ) is equipped with the following linear structure

(f + g)(x) := f(x) + g(x), x ∈ X,

(a · f)(x) := a · f(x), a ∈ R, x ∈ X,
0(x) := 0, x ∈ X.

Proof. If f, g ∈ L(X,Y ), then f + g ∈ L(X,Y ), since if x, x′ ∈ X, then(
f + g

)
(x+ x′) := f(x+ x′) + g(x+ x′)

=
(
f(x) + f(x′)

)
+
(
g(x) + g(x′)

)
=
(
f(x) + g(x)

)
+
(
f(x′) + g(x′)

)
:=
(
f + g

)
(x) +

(
f + g

)
(x′),

and if b ∈ R, then

(f+g)(b·x) := f(b·x)+g(b·x) = b·f(x)+b·g(x) = b·
(
f(x)+g(x)

)
:= b·

[(
f+g

)
(x)
]
.

If a ∈ R, and f ∈ L(X,Y ), then a · f ∈ L(X,Y ), since

(a · f)(x+ x′) := a · f(x+ x′) = a ·
[
f(x) + f(x′)

]
= a · f(x) + a · f(x′)

:= (a · f)(x) + (a · f)(x′),

and

(a · f)(bx) := a · f(b ·x) = a ·
[
b · f(x)

]
= (ab) · f(x) = b ·

[
a · f(x)

]
:= b ·

[
(a · f)(x)

]
.

That the function 0 : X → Y , x 7→ 0, is in L(X,Y ) is immediate to show. It is
trivial to show that L(X,Y ) satisfies the conditions of a linear space. �

Clearly, X∗ is a subspace of F(X). The dimension of L(X,Y ) for finite-
dimensional linear spaces X and Y is determined in the Theorem 2.4.17.

Remark 2.4.4. Let X,Y, Z be linear spaces, f ∈ L(X,Y ) and g ∈ L(Y,Z).

(i) The composite function g ◦ f is in L(X,Z).

(ii) idX ∈ L(X).

(iii) f(0) = 0.

(iv) if x ∈ X, then f(−x) = −f(x).
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(v) If n ≥ 1, a1, . . . an ∈ R, and x1, . . . xn ∈ X, then

f

( n∑
i=1

aixi

)
=

n∑
i=1

aif(xi).

Proof. Exercise. For the inductive proof of the case (vi), use the following
recursive definition of

∑n
i=1 xi, where x1, . . . , xn ∈ X and n ≥ 1:

n∑
i=1

xi :=

 x1 , n = 1(∑n−1
i=1 xi

)
+ xn , n > 1

�

By the previous remark the structure with objects the linear spaces and arrows
the linear maps is a category, which we call the category of (real) linear spaces Lin.

Proposition 2.4.5. Let n ≥ 1, X,Z be linear spaces, Y ⊆ X, and f0 : Y → Z.

(i) If X = 〈Y 〉, there is at most one linear map f : X → Z that extends f0 i.e.,
f(y) = f0(y), for every y ∈ Y , or, in other words, the following diagram commutes

Y Z

X.

f0

idY f

(ii) If Y = {v1, . . . , vn} is a basis of X, there is a unique linear map f : X → Z
that extends f0, and hence, if g, h : X → Z are linear maps, we have that8

g|Y = h|Y ⇒ g = h.

(iii) If 1 ≤ m ≤ n, dim(X) = n, and if Y = {v1, . . . , vm} is a linearly independent
subset of X, there is a linear map f : X → Z that extends f0.

Proof. (i) If X is a trivial linear space, then Y = ∅ or Y = X. In the first
case, f0 is the empty set (as a set of pairs), and the only linear map that extends f0

is the constant zero linear map. If Y = X, the only extension of f0 is f0 itself. If X
is non-trivial, let f, g : X → Z be linear maps such that their restrictions f|Y , g|Y
to Y are equal to f0, i.e.,

∀y∈Y
(
f(y) = f0(y) = g(y)

)
.

If x ∈ X, let a1, . . . , an ∈ R and y1, . . . yn ∈ Y such that x =
∑n
i=1 aiyi. By the

Remark 2.4.4(v) we have that

f(x) = f

( n∑
i=1

aiyi

)
=

n∑
i=1

aif(yi) =

n∑
i=1

aig(yi) = g

( n∑
i=1

aiyi

)
= g(x).

8The restriction g|Y of g is the function g|Y : Y → Z, where g|Y (y) := g(y), for every y ∈ Y .

Clearly, if Y is a subspace of a linear space X and f ∈ L(X,Z), then fY ∈ L(Y, Z).
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(ii) If x ∈ X, then x has a unique writing as x =
∑n

=1 aivi, for some a1, . . . , an ∈ R.
We define f : X → Z by

f

( n∑
i=1

aivi

)
=

n∑
i=1

aif0(vi).

It is easy to check that f is a linear map that extends f0. Since Y generates X, by
the case (i) we get that f is the unique extension of f0. Moreover, if g and h are
equal on the basis Y , then they are equal as functions from X to Z, since there is
a unique extension of the restriction g|Y of g to Y .
(iii) By the Corollary 2.2.16(iv) Y is extended to a finite basis B of X. We can
extend f0 to a function f1 : B → Z (e.g., f1 maps every element of B \ Y := {x ∈
X | x ∈ B & x /∈ Y } to the zero element of Z). By the case (ii) we get a linear
extension f : X → Z of f1. Clearly, f is a linear extension of f0 too. �

Next we show that a linear map preserves linear dependence, but not necessarily
linear independence. The latter holds if a linear map is injective. If it is a bijection
i.e., an injection and a surjection, it sends a basis of its domain to a basis of its
codomain.

Lemma 2.4.6. Let X,Z be linear spaces, Y ⊆ X, f ∈ L(X,Z), and x1, . . . , xn ∈
X.

(i) If x1, . . . xn are linearly dependent in X, then f(x1), . . . , f(xn) are linearly de-
pendent in Z.

(ii) If Y is a linearly dependent subset of X, then f(Y ) := {f(y) | y ∈ Y } is a
linearly dependent subset of Z.

(iii) If x1, . . . xn are linearly independent in X, then there is a linear map g : X → Z
such that g(x1), . . . , g(xn) are linearly dependent in Z.

(iv) If x1, . . . xn are linearly independent in X, and if f is an injection, then
f(x1), . . . , f(xn) are linearly independent in Z.

(v) If Y is a linearly independent subset of X, and if f is an injection, then f(Y )
is a linearly independent subset of Z.

(vi) If X = 〈Y 〉, and if f is a surjection, then Z = 〈f(Y )〉.
(vii) If Y is a basis of X, and if f is a bijection, then f(Y ) is a basis of Z.

Proof. (i) Let a1, . . . an ∈ R, where ai 6= 0, for some i ∈ {1, . . . , n} such that∑n
i=1 aixi = 0. Then what we want follows from the equalities

0 = f(0) = f

( n∑
i=1

aixi

)
=

n∑
i=1

aif(xi).

(ii) It follows immediately from the case (i).

(iii) For example, we can take g to be the zero map.
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(iv) By the injectivity of f , if a1, . . . , an ∈ R, we have that

n∑
i=1

aif(xi) = 0⇔ f

( n∑
i=1

aixi

)
= f(0)

⇔
n∑
i=1

aixi = 0

⇔ a1 = . . . = an = 0.

(v) It follows immediately from the case (iv).

(vi) If X is trivial, then Y = ∅ or Y = X. In both cases what we want follows
immediately. Let X be non-trivial, and let z ∈ Z. Then there is x ∈ X such that
f(x) = z. If a1, . . . , an ∈ R and y1, . . . , yn ∈ Y such that x =

∑n
i=1 aiyi, then

z = f(x) = f

( n∑
i=1

aiyi

)
=

n∑
i=1

aif(yi) ∈ 〈f(Y )〉.

(vii) By the case (v) we have that f(Y ) is a linearly independent subset of Z, and
by the case (vi) we have that Z = 〈f(Y )〉. �

Proposition 2.4.7. If X,Y are linear spaces, and f ∈ L(X,Y ), let

Ker(f) :=
{
x ∈ X | f(x) = 0

}
,

Im(f) :=
{
y ∈ Y | ∃x∈X

(
f(x) = y

)
}.

(i) Ker(f) � X and Im(f) � Y .

(ii) Ker(f) = {0} if and only if f is an injection.

Proof. Exercise. �

Theorem 2.4.8. If X,Y are linear spaces, dim(X) = n, for some n ≥ 1, and
f ∈ L(X,Y ), then

dim(X) = dim
(
Ker(f)

)
+ dim

(
Im(f)

)
.

Proof. By the Corollary 2.2.17 the subspace Ker(f) of X has a basis B =
{v1, . . . , vk}, for some k ≥ 0, such that k ≤ n. By the Corollary 2.2.16(iii) there
are ek+1, . . . , en ∈ X such that the set

B := {v1, . . . , vk, ek+1, . . . , en}

is a basis of X. If y ∈ Im(f), there is x ∈ X and a1, . . . , ak, bk+1, . . . , bn ∈ R with

y = f(x)

= f

( k∑
i=1

aivi +

n∑
j=k+1

bjej

)
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=

k∑
i=1

aif(vi) +

n∑
j=k+1

bjf(ej)

= 0 +

n∑
j=k+1

bjf(ej)

=

n∑
j=k+1

bjf(ej).

Hence, the set {f(ek+1, . . . , f(en)} generates Im(f), and it is also linearly indepen-
dent in Y , since the restriction f|〈{ek+1,...,en}〉 of f to the subspace 〈{ek+1, . . . , en}〉 of
X is an injection, and then we use the Lemma 2.4.6(iv). To show that f|〈{ek+1,...,en}
is an injection, we suppose that there is x ∈ 〈{ek+1, . . . , en}〉, such that f(x) = 0.
In this case there are a1, . . . , ak, bk+1, . . . , bn ∈ R such that

x =

k∑
i=1

aivi =

n∑
j=k+1

bjej .

If x 6= 0, there is some i ∈ {1, . . . , k} such that ai 6= 0, and some j ∈ {k+ 1, . . . , n},
such that bj 6= 0. Hence ej is written as a linear combination of the elements
v1, . . . , vk, ek+1, . . . , ei−1, ei+1, . . . , en of B, which is a contradiction. Hence, x = 0.
The required equality dim(X) = dim

(
Ker(f)

)
+ dim

(
Im(f)

)
follows immediately

from the fact that B is a basis of X. �

Notice that in the previous result the cases k = 0, and k = n i.e., f is an
injection, and f is the constant map 0, respectively, follow as special cases. A nice
consequence of the previous result is that there is no linear map from R3 to R2,
which is an injection!

Proposition 2.4.9. Let X,Y be linear spaces with dim(X) = n and dim(Y ) =
m, for some n,m ≥ 1. Let the following linear operations defined on X × Y :

(x, y) + (x′, y′) := (x+ x′, y + y′),

a · (x, y) := (a · x, a · y),

0 := (0,0).

(i) X × Y is a linear space, which we call the product linear space of X and Y .

(ii) If {v1, . . . , vn} is a basis of X and {w1, . . . , wm} is a basis of Y , then{
(v1,0), . . . , (vn,0), (0, w1), . . . , (0, wm)

}
is a basis of X × Y , and dim(X × Y ) = n+m.

(iii) The projections prX : X × Y → X and prY : X × Y → Y , defined by

prX(x, y) := x & prY (x, y) := y,

are linear maps.
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(iv) X × Y satisfies the universal property of products i.e., for every linear space
Z, and every linear map f : Z → X, and every linear map g : Z → Y there is a
unique linear map h : Z → X × Y such that the following inner diagrams commute

X X × Y Y

Z

prX prY

f gh

i.e., f = prX ◦ h and g = prY ◦ h.

Proof. Exercise. �

The “up to isomorphism”-uniqueness of X × Y is shown in the Appendix (sec-
tion 6.3). Next we show that the direct sum Y ⊕ Z of the linear subspaces Y, Z of
a linear space X behaves in a way dual to the product. Notice that the arrows in
the next diagram are opposite to the arrows of the previous one.

Proposition 2.4.10. Let X be a linear space, and Y,Z � X.

(i) The injections inY : Y → Y ⊕ Z and inZ : Z → Y ⊕ Z, defined by

inY (y) := y + 0 = y & inZ(z) := 0 + z = z,

are linear maps.

(ii) Y ⊕ Z satisfies the universal property of coproducts i.e., for every linear space
W , and every linear map f : Y → W , and every linear map g : Z → W there is a
unique linear map h : Y ⊕Z →W such that the following inner diagrams commute

Y Y ⊕ Z Z

W

inY inZ

f gh

i.e., f = h ◦ inY and g = h ◦ inZ .

Proof. Exercise. �

Corollary 2.4.11. If X is a linear space, and n ∈ N, such that dim(X) = n,
then if Y � X and Z � X, we have that

dim(Y ) + dim(Z) = dim(Y + Z) + dim(Y ∩ Z).

Proof. Exercise [Hint: use the Proposition 2.4.9 and the Theorem 2.4.8]. �

Notice that the Proposition 2.2.19(ii) is a special case of the Corollary 2.4.11.
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Corollary 2.4.12. If X,Y are linear spaces, n ∈ N, dim(X) = n = dim(Y ),
and f ∈ L(X,Y ), the following are equivalent:

(i) Ker(f) = {0}.
(ii) Im(f) = Y .

(iii) f is a bijection i.e., f is an injection and a surjection.

Proof. Exercise. �

Definition 2.4.13. If X,Y are linear spaces, an f ∈ L(X,Y ) is a linear iso-
morphism between X,Y , if there is g : Y → X with f ◦ g = idY and g ◦ f = idX

X Y X Y .
f g

f

idX

idY

In this case, we write (f, g) : X ' Y , or, simpler, f : X ' Y , and we say that the
linear spaces X and Y are (linearly) isomorphic.

If (f, g) : X ' Y , and (f, h) : X ' Y , then g = h. Since f is also a bijection
(Exercise sheet 1, Exercise 1(i)), we write g := f−1. The following converse to the
Corollary 2.4.12 expresses the “invariance” of the finite dimension of a linear space
under an isomorphism.

Remark 2.4.14. Let X,Y be linear spaces, and f ∈ L(X,Y ) a linear isomor-
phism.

(i) If (f, g) : X ' Y , then g ∈ L(Y,X).

(ii) If n ∈ N, and dim(X) = n, then dim(Y ) = n.

Proof. Exercise. �

If n ≥ 1, then an n-dimensional linear space is isomorphic to Rn.

Corollary 2.4.15. If X is a linear space, and n ≥ 1, then dim(X) = n if and
only if X is isomorphic to Rn.

Proof. Exercise. �

Now we can determine the dimension of the dual of a finite-dimensional space.

Corollary 2.4.16. If X is a linear space, n ∈ N, and dim(X) = n, then
dim(X∗) = n.

Proof. If X is trivial i.e., X := {0}, then X∗ := {f : {0} → R | f is linear}.
Hence, X∗ contains only the zero map, and dim(X) = dim(X∗) = 0. If X is
non-trivial and B := {v1, . . . , vn} is a basis of X, let eB : X∗ → Rn defined by

eB(f) :=
(
f(v1), . . . , f(vn)

)
,
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for every f ∈ X∗. It is easy to see that eB is a linear map. Moreover, since

eB(f) = 0⇔
(
f(v1), . . . , f(vn)

)
=
(
0, . . . , 0

)
⇔ f(v1) = 0 & . . . & f(vn) = 0,

we have that f(x) = f

(∑n
i=1 aivi

)
=
∑n
i=1 aif(vi) = 0, for every x ∈ X, hence

f = 0
X

i.e., Ker(eB) = {0}, or eB is an injection. Next we show that eB is a
surjection. If (a1, . . . , an) ∈ Rn, we define a function f0 : {v1, . . . , vn} → Rn by
f0(v1) := a1 & . . . & f0(vn) := an. By the Proposition 2.4.5(ii) there is a unique
linear extension f : X → Rn of f0. Moreover, eB(f) :=

(
f(v1), . . . , f(vn)

)
=(

f0(v1), . . . , f0(vn)
)

=
(
a1, . . . , an

)
. �

The previous corollary is a special case of the following theorem.

Theorem 2.4.17. Let X,Y be linear spaces, m,n ≥ 1, {v1, . . . , vm} a basis
of X, and {w1, . . . , wn} a basis of Y . If for every i ∈ {1, . . . ,m} and every j ∈
{1, . . . , n} the function fij : X → Y is the unique linear extension of the function9

f0
ij : {v1, . . . , vm} → Y

f0
ij(vk) := δkiwj ,

δki :=

{
1 , k = i
0 , k 6= i,

then the set

B :=
{
fij | i ∈ {1, . . . ,m} & j ∈ {1, . . . , n}

}
is a basis of L(X,Y ), and dim

(
L(X,Y )

)
= mn.

Proof. By the definition of fij we have that

fij(vk) =

{
wj , k = i
0 , k 6= i,

for every k ∈ {1, . . . ,m}. First we show that 〈B〉 = L(X,Y ). Let h ∈ L(X,Y ). If
k ∈ {1, . . . ,m}, there are ak1, . . . , akn ∈ R such that

h(vk) =

n∑
j=1

akjwj .

We show that

h =

m∑
i=1

n∑
j=1

aijfij =

m n∑
i=1,j=1

aijfij ∈ 〈B〉.

9The symbol δki is known as Kronecker’s delta.
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By the Proposition 2.4.5(ii) it suffices to show that the two functions, h and∑m
i=1

∑n
j=1 aijfij ∈ L(X,Y ), are equal on the given basis of X. If k ∈ {1, . . . ,m},

by the definition of the linear operations on L(X,Y ) we have that( m n∑
i=1,j=1

aijfij

)
(vk) :=

m n∑
i=1,j=1

aijfij(vk)

:=

m n∑
i=1,j=1

aijδkiwj

=

n∑
j=1

akjwj

= h(vk).

Next we show that the elements of B are linearly independent. If aij ∈ R, where
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, then

m n∑
i=1,j=1

aijfij = 0⇒ ∀k∈{1,...,m}
(( m n∑

i=1,j=1

aijfij

)
(vk) = 0

)

⇔ ∀k∈{1,...,m}
( m n∑
i=1,j=1

aijfij(vk) = 0

)

⇔ ∀k∈{1,...,m}
( m n∑
i=1,j=1

aijδkiwj = 0

)

⇔ ∀k∈{1,...,m}
( n∑
j=1

akjwj = 0

)
⇔ ∀k∈{1,...,m}

(
ak1 = . . . = akn = 0

)
⇔ ∀i∈{1,...,m}∀j∈{1,...,n}

(
aij = 0

)
.

Since the cardinality of B is mn, we conclude that dim
(
L(X,Y )

)
= mn. �

The basis of X∗ determined from the proof of the Theorem 2.4.17, if Y = R,
is equal to the basis of X∗ determined from the proof of the Corollary 2.4.16 i.e.,
the set {e−1

B (e1), . . . , e−1
B (em)}, where {e1, . . . , em} is the standard basis of Rm.

According to the proof of the Theorem 2.4.17, X∗ has as bases the m-functions
f11, . . . , fm1, where fi1 is the unique linear extension of f0

i1 : {v1, . . . .vm} → R, and

fi1(vk) =

{
1 , k = i
0 , k 6= i,

=: δki,

for every k ∈ {1, . . . ,m}. On the other hand, if f1 := e−1
B (e1), . . . , fm := e−1

B (em),
is the basis of X∗ determined by the proof of the Corollary 2.4.16, then

eB(fi) = ei ⇔
(
f(v1), . . . , f(vi−1), f(vi), f(vi+1), . . . , f(vn)

)
= (0, . . . , 0, 1, 0, . . . , 0)



30 2. LINEAR SPACES AND LINEAR MAPS

i.e., fi(vk) = δki = fi1(vk), and hence fi = fi1, for every i ∈ {1, . . . ,m}.
The set of operators L(X) of a linear space X is algebraically more interesting

than L(X,Y ), since a “multiplication”, the composition of functions, is defined
between its elements.

Definition 2.4.18. If X is a linear space, and T ∈ L(X), we define

Tn :=

{
idX , n = 0
T ◦ Tn−1 , n > 0.

E.g., T 3 = T ◦ T ◦ T

X X X X.
T T T

T 3

Remark 2.4.19. If X is a linear space, and P ∈ L(X), such that P 2 = P , then

X = Ker(P )⊕ Im(P ).

Proof. Exercise. �

Remark 2.4.20. Let X be a linear space, T ∈ L(X), with T 2 = idX , and let

P :=
1

2
(idX + T ) & Q :=

1

2
(idX − T ).

(i) P +Q = idX .

(ii) P 2 = P , and Q2 = Q.

(iii) PQ = QP = 0.

Proof. Exercise. �

2.5. Quotient spaces

A subspace Y of a linear space X generates a new linear space by “identifying”
the elements of Y . This identification is done by “quotienting” over Y with respect
to some appropriate equivalence relation.

Remark 2.5.1. Let X be a linear space and Y � X. If x, x′ ∈ X, we define

x ∼ x′(modY ) :⇔ x′ − x ∈ Y.
Then the relation x ∼ x′(modY ) is an equivalence relation on X i.e., for every
x, x′, x′′ ∈ X the following conditions are satisfied:

(i) x ∼ x(modY ).

(ii) If x ∼ x′(modY ), then x′ ∼ x(modY ).
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(iii) If x ∼ x′(modY ) and x′ ∼ x′′(modY ), then x ∼ x′′(modY ).

Moreover, the relation x ∼ x′(modY ) is compatible with the operations of X i.e.,

(a) If x ∼ x′(modY ) and y ∼ y′(modY ), then x+ y ∼ x′ + y′(modY ).

(b) If x ∼ x′(modY ) and a ∈ R, then a · x ∼ a · x′(modY ).

Proof. Exercise. �

Definition 2.5.2. If x ∈ X, the equivalence class [x]∼ of x with respect to the
equivalence relation x ∼ x′(modY ) is the set

[x]∼(modY ) :=
{
x′ ∈ X | x′ ∼ x(modY )

}
:=
{
x′ ∈ X | x′ − x ∈ Y )

}
=
{
x′ ∈ X | ∃y∈Y

(
x′ − x = y

)}
=
{
x′ ∈ X | ∃y∈Y

(
x′ = x+ y

)}
=
{
x+ y | y ∈ Y

}
=: x+ Y.

The set of all these equivalence classes is denoted by X/Y i.e.,

X/Y := {x+ Y | x ∈ X},
and it is called the quotient space, or the factor space of X with respect to Y . If
x, x′ ∈ X and a ∈ R, and using for simplicity the same symbols to the symbols of
the signature of X, let

(x+ Y ) + (x′ + Y ) := (x+ x′) + Y,

a · (x+ Y ) := (a · x) + Y,

0 := 0 + Y = Y.

The canonical projection of X onto Y is the surjection

πY : X → X/Y, x 7→ x+ Y, x ∈ X.

By the above definitions we get x+Y = x′+Y ⇔ x ∼ x′(modY )⇔ x−x′ ∈ Y.

Remark 2.5.3. Let X be a linear space and Y � X. If x ∼ x′(modY ) is
defined as above, then the quotient space V/Y := (X/Y ; +,0, ·) is a linear space,
the canonical projection πY of X onto Y is a linear map, and this linear structure
on X/Y is the unique linear structure on X/Y that makes πY a linear map.

Proof. It is immediate to show that X/Y is a linear space. Next we show
that πY is a linear map. If x, x′ ∈ Y and a ∈ R, we have that

πY (x+ x′) := (x+ x′) + Y := (x+ Y ) + (x′ + Y ) := πY (x) + πY (x′),

πY (ax) := (ax) + Y := a(x+ Y ) := aπY (x).

If (⊕,0,�) is a linear structure on X/Y that makes πY a linear map, then

πY (x+ x′) = πY (x)⊕ πY (x′) :⇔ (x+ x′) + Y = (x+ Y )⊕ (x′ + Y ),
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πY (a · x) = a� πY (x) :⇔ ax+ Y = a� (x+ Y )

i.e., the linear structure (⊕,0,�) on X/Y is the one given in the Definition 2.5.2.
�

The quotient space X/X is a trivial linear space, since

x ∼ x′(modX) :⇔ x′ − x ∈ X,

and hence any two elements of X are equivalent, or, the only equivalence class is
X itself i.e., X/X = {X}. The quotient space X/{0} is isomorphic to X, since

x ∼ x′(mod{0}) :⇔ x′ − x ∈ {0} ⇔ x′ − x = 0⇔ x′ = x,

and hence x + {0} = {x} ∈ X/{0}. Consequently, the mapping e : X → X/{0},
defined by x 7→ {x}, for every x ∈ X, is a linear isomorphism. Next follows a more
interesting example of a quotient space.

Example 2.5.4. If L is a line in R2 that passes through the origin (0, 0), then
it is easy to see that if (x, y) ∈ R2, the equivalence class

(x, y) + L

is the line that passes through (x, y) and it is parallel to L

L

(x, y) + L(x, y)

or, in other words, (x′, y′) ∼ (x, y)(modL) if and only if (x′, y′) is in the line
that passes through (x, y) and it is parallel to L. We can now give a geometrical
interpretation of the condition

(x, y) ∼ (x′, y′)(modL) & (u,w) ∼ (u′, w′)(modL)

⇒ (x, y) + (u,w) ∼ (x′, y′) + (u′, w′)(modL).

If M := (x, y),M ′ := (x′, y′), N := (u,w), and N ′ := (u′, w′), then
−−−→
OM ′ +

−−→
ON ′ is

in the line that passes from
−−→
OM +

−−→
ON and it is parallel to L. To see this, if L is
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represented by the equation y = ax, for some a ∈ R, then

(y′ + w′)− (y + w)

(x′ + u′)− (x+ u)
=

(y′ − y) + (w′ − w)

(x′ − x) + (u′ − u)

=
a(x′ − x) + a(u′ − u)

(x′ − x) + (u′ − u)

= a
(x′ − x) + u′ − u)

(x′ − x) + (u′ − u)

= a.

The following condition is interpreted similarly

(x, y) ∼ (x′, y′)(modL) & λ ∈ R ⇒ λ(x, y) ∼ λ(x′, y′)(modL),

since
λy′ − λy
λx′ − λx

=
y′ − y
x′ − x

= a.

The quotient space X/L is the set of all equivalence classes (x, y) + L, hence,
according to the above geometrical interpretation of (x, y) + L, it is the set of all
lines parallel to L. Each such line is determined from the point of its intersection
with the axis y′y, which is a real number a(x,y)+L, where

y − a(x,y)+L

x− 0
= a⇔ a(x,y)+L = y − ax.

It is easy to see that the addition [(x, y) +L] + [(u,w) +L] on X/L corresponds to
the addition a(x,y)+L+a(u,w)+L and the scalar multiplication b · [(x, y)+L] on X/L
corresponds to the multiplication ba(x,y)+L of reals. In other words, the mapping

e : X/L→ R,

(x, y) + L 7→ a(x,y)+L,

is linear, and it is also a bijection. Hence, even without carrying out the exact
calculations, it is “geometrically” expected that X/L is linearly isomorphic to R.
Hence, in this case we have that

dim(R2) = dim(L) + dim(R2/L).

Definition 2.5.5. Let X be a linear space, Y � X and x1, . . . , xn ∈ X.
We say that x1, . . . , xn are linearly dependent (modY ), if x1 + Y, . . . , xn + Y are
linearly dependent in X/Y , and x1, . . . , xn are linearly independent (modY ), if
x1 + Y, . . . , xn + Y are linearly independent in X/Y .

One can show that x1, . . . , xn are linearly dependent (modY ) if and only if
there are n ≥ 1 and a1, . . . , an ∈ R such that ai 6= 0, for some i ∈ {1, . . . , n}, and

∃y∈Y
( n∑
i=1

aixi = y

)
,
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and hence, x1, . . . , xn are linearly independent (modY ) if and only if for every n ≥ 1
and every a1, . . . , an ∈ R

∃y∈Y
( n∑
i=1

aixi = y

)
⇒ a1 = . . . = an = 0.

Theorem 2.5.6. Let X be a linear space and Y � X. If BY is a basis of Y ,
and B := BY ∪ C is a basis of X, where BY ∩ C = ∅, then

C + Y := {c+ Y | c ∈ C}
is a basis of X/Y , and dim(X) = dim(Y ) + dim(X/Y ).

Proof. If Z := 〈C〉, then X = Y + Z. To see this let x ∈ X, and let
b1, . . . , bm ∈ BY , c1, . . . , cn ∈ C, and λ1, . . . , λm, µ1, . . . , µn ∈ R such that

x =

m∑
i=1

λibi +

n∑
j=1

µjcj = y + z,

where

y :=

m∑
i=1

λibi ∈ Y & z :=

n∑
j=1

µjcj ∈ Z.

Clearly, we have that x ∈ Y +Z. Moreover, Y ∩Z = {0}, since, if there was x ∈ X
such that x 6= 0 and x ∈ Y ∩ Z i.e.,

x =

m∑
i=1

λibi =

n∑
j=1

µjcj ,

for some λ1, . . . , λm, µ1, . . . , µn ∈ R, then there would be some µj 6= 0, and conse-
quently the vector cj could be written as a linear combination of the rest. Since
BY ∩ C = ∅, this is impossible. Hence, by the Proposition 2.2.19 we have that
X = Y ⊕ Z. Let the function

φ : Z → X/Y, z 7→ z + Y, z ∈ Z,
Since φ is the restriction of the canonical projection πY to the subspace Z of X, it
is also a linear map. First we show that φ is an injection. If z1, z2 ∈ Z, then

z1 + Y = z2 + Y ⇔ (z1 − z2) ∈ Y ⇔ (z1 − z2) ∈ Y ∩ Z ⇔ (z1 − z2) = 0⇔ z1 = z2.

Next we show that φ is a surjection. Let x+ Y ∈ X/Y . Since there are y ∈ Y and
z ∈ Z such that x = y + z, as we described above, we have that

φ(z) := z + Y = (0 + Y ) + (z + Y ) = (y + Y ) + (z + Y ) := (y + z) + Y = x+ Z.

Since C is a basis of Z, by the Lemma 2.4.6(vii) we have that φ(C) = C + Y is a
basis of X/Y . Now the equality dim(X) = dim(Y ) + dim(X/Y ) follows10. �

10Since dim(X) = |B| = |BY ∪ C|, we use here the fact that |BY ∪ C| = |BY | + |C|, when
BY ∩C = ∅. This fact about cardinalities of sets is trivial when the related sets are finite, and it

can also be shown in the general case.
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For the quotient space of the Example 2.5.4 we have that L := {(x, y) ∈ R2 |
y = ax}, for some a ∈ R, BL := {(1, a)} is a basis of L and if C := {(0, 1)}, then
BL ∪ C is a basis of R2, BL ∩ C = ∅, and {(0, 1) + L} is a basis of R2/L.

If X is a finite dimensional space, and f : X → Y is linear, by the Theorem 2.4.8
we have that

dim(X) = dim(Ker(f)) + dim(Im(f)),

and by the previous theorem we also have that

dim(X) = dim(Ker(f)) + dim(X/Ker(f)).

Hence, if m = dim(Im(f)) = dim(X/Ker(f)), and since both these spaces are by
the Corollary 2.4.15 isomorphic to Rm, we also have that X/Ker(f) ' Im(f). Next
we show this fact for any linear space X.

Theorem 2.5.7. If X,Y are linear spaces and f ∈ L(X,Y ), then

X/Ker(f) ' Im(f).

Proof. Let the function φ : X/Ker(f)→ Im(f), defined by

φ(x+ Ker(f) := f(x),

for every x+ ker(f) ∈ X/Ker(f). First we show that φ is indeed a function and an
injection. If x+ ker(f) and x′ + ker(f) are in X/Ker(f), then

x+ ker(f) = x′ + ker(f)⇔ (x− x′) ∈ ker(f)⇔ f(x− x′) = 0⇔ f(x) = f(x′).

Next we show that φ is linear:

φ
(
(x+ ker(f)) + (x′ + ker(f))

)
:= φ

(
(x+ x′) + ker(f)

)
:= f(x+ x′)

= f(x) + f(x′)

:= φ
(
x+ Ker(f)

)
+ φ

(
x′ + Ker(f)

)
,

φ
(
a(x+ ker(f))

)
:= φ

(
ax+ ker(f)

)
:= f(ax)

= af(x)

:= aφ
(
x+ Ker(f)

)
.

Since φ is, trivially, a surjection, we have that φ is a linear isomorphism. �

From the previous theorem a linear map f : X → Y is written as the composi-
tion of an injection (φ) with a surjection (πKer(f))



36 2. LINEAR SPACES AND LINEAR MAPS

X Y

X/Ker(f).

f

πKer(f) φ

Proposition 2.5.8. Let X be a linear space and Y, Z � X.

(i) Y/(Y ∩ Z) ' (Y + Z)/Z.

(ii) If X = Y ⊕ Z, then Y ' X/Z.

(iii) If Z � Y , then (X/Z)/(Y/Z) ' X/Y .

Proof. (i) Let f : Y → (Y +Z)/Z defined by f(y) := y+Z, for every y ∈ Y .
Since f is the composition of linear maps

Y Y + Z (Y + Z)/Z,
iY πZ

where iY (y) := y = y+ 0 is the linear injection of Y into Y + Z (see also Proposi-
tion 2.4.10(i)), or since f is the restriction of the linear map πY to the subspace Y
of Y + Z, we have that f is linear. If (y + z) + Z ∈ (Y + Z)/Z, then

f(y) := y + Z = (y + Z) + Z = (y + Z) + (z + Z) := (y + z) + Z

i.e., f is a surjection. Since

y ∈ Ker(f)⇔ f(y) = 0⇔ y + Z = Z ⇔ y ∈ Z ⇔ y ∈ Y ∩ Z,

we have that ker(f) = Y ∩ Z. By the Theorem 2.5.7 we get

Y/Ker(f) ' Im(f)⇔ Y/(Y ∩ Z) ' (Y + Z)/Z.

(ii) If X = Y ⊕ Z, then by the Proposition 2.2.19 we have that Y ∩ Z = {0}, and
by the case (i) we get

Y ' Y/{0} ' (Y + Z)/Z = (Y ⊕ Z)/Z = X/Z.

(iii) Exercise. �

Definition 2.5.9. If X,Y are finite-dimensional linear spaces, and f : X → Y
is linear, the rank of f is defined by

rank(f) := dim(Im(f)).

By the Theorems 2.5.7 and 2.5.6 we have that

rank(f) = dim(X/Ker(f)) = dim(X)− dim(Ker(f)),

hence f is an injection if and only if rank(f) = dim(X).
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2.6. The free linear space

In this section we study the construction of a free object in the category Lin.
The methods that we use and the results we prove here are found, in some disguise,
in many different contexts in mathematics.

Definition 2.6.1. If X is a set, and f : X → R, the zero set [f = 0] of f is the
inverse image of {0} under f , and the cozero set [f 6= 0] of f is the complement11

of f = 0 i.e.,
[f = 0] := {x ∈ X | f(x) = 0} = f−1({0}),

[f 6= 0] := {x ∈ X | f(x) 6= 0} = X \ [f = 0].

We denote by εX the set of all real-valued functions on X that are non-zero for
only finitely many elements of X i.e.,

εX :=
{
f ∈ F(X) | [f 6= 0] is finite

}
.

If f ∈ εX, we also say that f is almost everywhere 0.

If f ∈ εX, there are n ∈ N and x1, . . . , xn ∈ X such that{
f(x) 6= 0 , if x ∈ {x1, . . . , xn}
f(x) = 0 , otherwise.

The constant zero function 0
X

on X is in εX, since
[
0
X 6= 0

]
= ∅, and ∅ is trivially

a finite subset of X. If x ∈ X, the function fx : X → R, defined by

fx(y) :=

{
1 , if y = x
0 , y 6= x

for every y ∈ X, is also in εX.

Remark 2.6.2. Let f, g ∈ F(X) and a ∈ R.

(i) [(f + g) 6= 0] ⊆ [f 6= 0] ∪ [g 6= 0].

(ii) [(af) 6= 0] ⊆ [f 6= 0].

Proof. (i) Let x ∈ X such that f(x) + g(x) 6= 0, and suppose that f(x) =
g(x) = 0 i.e., x ∈ [f = 0]∩ [g = 0]. Then f(x) + g(x) = 0, which is a contradiction,
hence x ∈ X \

(
[f = 0] ∩ [g = 0]

)
, and consequently12 we get x ∈ [f 6= 0] ∪ [g 6= 0].

(ii) If a = 0, then [(af) 6= 0] = ∅ ⊆ [f 6= 0]. If a 6= 0, and x ∈ X such that
af(x) 6= 0, then f(x) 6= 0. �

It is easy to find f, g ∈ F(X) such that [(f + g) 6= 0] ( [f 6= 0] ∪ [g 6= 0].
Moreover, if a = 0, and [f 6= 0] 6= ∅, we have that [(af) 6= 0] = ∅ ( [f 6= 0], and if
a 6= 0, then [(af) 6= 0] = [f 6= 0].

11If Y ⊆ X, its complement X \ Y is defined by X \ Y := {x ∈ X | x /∈ Y }.
12If Y and Z are subsets of a set X, then X \ (Y ∩Z) = (X \ Y )∪ (X \Z). Interchanging ∩

and ∪, we get X \ (Y ∪ Z) = (X \ Y ) ∩ (X \ Z).
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Corollary 2.6.3. If X is a given set, then εX, equipped with the linear struc-
ture of F(X), is a linear subspace of F(X), which has as basis the set

BX := {fx | x ∈ X},

and the map iX : X → εX, defined by x 7→ fx, for every x ∈ X, is an injection.

Proof. If X = ∅, then ε∅ is the trivial linear space, since

ε∅ := {f : ∅ → R | [f 6= 0] is finite} = {∅},

and B∅ = ∅. The injectivity of i∅ also follows trivially.
Let X be a non-empty set. If f, g ∈ εX, then by the Remark 2.6.2(i) we have

that [(f + g) 6= 0] is a subset of the union of two finite sets. Since the union of
two finite sets is also finite, and since any subset of a finite set is again finite, we
conclude that [(f + g) 6= 0] is a finite subset of X, and hence f + g ∈ εX. Similarly,
by the Remark 2.6.2(ii) we have that if f ∈ εX and a ∈ R, then af ∈ εX. Since

0
X ∈ εX, we conclude that εX is a linear subspace of F(X).

Next we show that 〈BX〉 = εX. Let f ∈ εX. If f = 0
X

, then

f = 0fx0 = f(x0)fx0 ,

where x0 ∈ X. If [f 6= 0] = {x1, . . . , xn}, for some x1, . . . , xn ∈ X, then

f =

n∑
i=1

f(xi)fxi
∈ 〈BX〉.

To show that BX is linearly independent subset of εX, let fx1
, . . . , fxn

∈ BX and

a1, . . . , an ∈ R such that a1fx1
+ . . .+ anfxn

= 0
X

. Since for every k ∈ {1, . . . , n}
we have that ( n∑

i=1

aifxi

)
(xk) = 0

X
(xk)⇔ ak = 0,

we get what we want. Finally, we suppose that x, x′ ∈ X such that fx = fx′ . Since
1 = fx(x) = fx′(x), we conclude that x′ = x. �

“Identifying” X with BX , we can view εX as a linear space with X as a basis.
If X := 1 := {0}, then

ε1 :=
{
f ∈ F(1) | [f 6= 0] is finite

}
:= F(1),

and F(1) has as many elements as the set R of real numbers (why?). We see that
εX can be much larger than X. It turns out that if X is already a linear space,
then the linear space εX is very different from X.

Definition 2.6.4. If X is a set, the linear space εX is called the free linear
space generated by X, or the free linear space over X.
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The fundamental property of εX is that any function h from X to a linear
space Y generates a linear map from εX to Y that “extends” h. In the proof of
the following theorem we need to be careful, since εX is not necessarily a finite-
dimensional linear space, and we have proved the Proposition 2.4.5(ii) only for
finite-dimensional linear spaces.

Theorem 2.6.5 (The universal property of the free linear space). If X is a
set, then for every linear space Y and every function h : X → Y there is a unique
linear map εh : εX → Y such that “h factors through εX” i.e., the following
diagram commutes13

X εX

Y .

iX

εhh

Proof. Let f ∈ εX, such that [f 6= 0] = {x1, . . . , xn}, for some n ≥ 1. As we
have seen in the proof of the Corollary 2.6.3, f is written as follows:

f =

n∑
i=1

f(xi)fxi .

This writing of f is unique. To show this, let {y1, . . . , ym} ⊆ X such that

m∑
j=1

bjfyj = f =

n∑
i=1

f(xi)fxi
.

Since, for every l ∈ {1, . . . ,m}, we have that

f(yl) =

( m∑
j=1

bjfyj

)
(yl) =

m∑
j=1

bjfyj (yl) = bl,

the previous equalities are written as follows:

m∑
j=1

f(yj)fyj = f =

n∑
i=1

f(xi)fxi
.

If k ∈ {1, . . . , n}, then( m∑
j=1

f(yj)fyj

)
(xk) = f(xk)⇔

m∑
j=1

f(yj)fyj (xk) = f(xk),

13An injection f : A→ B is also denoted by f : A ↪→ B. We use such a “hook right arrow”

in a diagram to indicate that iX is an injection. A dashed arrow, like the arrow corresponding to

εh, in a diagram is used to denote the uniqueness of that arrow.
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which implies that xk = yl for some l ∈ {1, . . . ,m}. Similarly we show that every
yj is equal to some xi, hence m = n and xi = yi, for every i ∈ {1, . . . , n}. Let the
function h∗ : BX → Y defined by

h∗(fx) := h(x).

By the uniqueness of the writing of some f as above as a linear combination of the
elements of BX , the function h∗ has the following unique linear extension εh on
εX, where

(εh)(f) := (εh)

( n∑
i=1

f(xi)fxi

)
:=

n∑
i=1

f(xi)h(xi).

Notice that if f = 0
X

, the writing of f as f(x0)fx0 is not unique, since, for example,

f(x0)fx0
= 0

X
= f(x1)fx1

, for every x0, x1 ∈ X. Since14

(εh)
(
0
X)

:= (εh)
(
f(x0)fx0

)
= f(x0)h(x0) = 0h(x0) =

= 0 = 0h(x1) = f(x1)h(x1) = (εh)
(
f(x1)fx1

)
,

we have though, that the formula of εh applies also on 0
X

and gives the expected
value 0. Since (εh)

(
iX(x)

)
:= (εh)

(
fx)
)

:= h(x), we get the required commutativity
of the above diagram. �

Notice that the importance of εX lies exactly in its universal property. Al-
though F(X) is a linear space that can also be considered as “a space generated
by X”, there is no interesting connection between X and F(X). In the case of εX
instead, X “is” the basis of εX, a fact crucial to the previous proof of the universal
property of εX. Next we show that εX is unique, up to isomorphism, in Lin i.e.,
if W is a linear space that satisfies the universal property of the free linear space
generated by X, then W is linearly isomorphic to εX.

Theorem 2.6.6 (Uniqueness of the free linear space). Let W be a linear space
and jX : X → W an injection, such that for every linear space Y and every
function h : X → Y there is a unique linear map hW : W → Y such that the
following diagram commutes

X W

Y .

jX

hWh

Then W is linearly isomorphic to εX.

Proof. If in the universal property for W we take Y := W and h := jX

14If we write 0
X

=
∑n

i=1 0
X

(xi)fxi , the formula of εh gives similarly that (εh)
(
0
X)

= 0.
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X W

W ,

jX

(jX)WjX

then explain why (jX)W = idW . Next we proceed as in the proof of the up to
isomorphism-uniqueness of the product (see the section 6.3 of the Appendix). �

Proposition 2.6.7. Let X,Y, Z be sets, and h : X → Y , g : Y → Z functions.

(i) There is a unique linear map εh : εX → εY such that the following diagram
commutes

X Y

εX εY .

h

εh

iX iY

(ii) The following lower outer diagram commutes

X Y

εX εY

Z

εZ

h g

εgεh

iX iY iZ

ε(g ◦ h)

g ◦ h

i.e., ε(g ◦ h) = εg ◦ εh.

(iii) If X is a set, let E0(X) := εX, and, if h : X → Y is a function from the set
X to the set Y , let E1(h) := εh : εX → εY is the linear map determined in the
case (i). Then the pair E := (E0, E1) is a covariant functor from the category Set
to the category Lin.

Proof. Exercise. �

Proposition 2.6.8. Let X,Y be linear spaces and h : X → Y a function.

(i) There is a unique linear map πX : εX → X such that πX ◦ iX = idX



42 2. LINEAR SPACES AND LINEAR MAPS

X εX

X.

iX

πXidX

(ii) Let the following subset of εX

N(X) :=
{
fλx+µy − λfx − µfy | x, y ∈ X & λ, µ ∈ R

}
.

Then 〈N(X)〉 ⊆ Ker(πX).

(iii) Ker(πX) ⊆ 〈N(X)〉.
(iv) The function h is a linear map if and only if πY ◦ εh = h ◦ πX

X Y

εX εY .

h

εh

iX iYπX πY

Proof. We describe only the steps to find the algorithm for the proof of the

case (iii). Since 0
X ∈ Ker(πX), we only want to show that for every n ≥ 1, and for

every x1, . . . xn ∈ X,

f =

n∑
i=1

f(xi)fxi
∈ Ker(πX)⇒ f ∈ 〈N(X)〉.

(a) Show that f0 ∈ N(X), and show the case n = 1 i.e., if f = f(x1)fx1
∈ Ker(πX),

then f ∈ 〈N(X)〉.
(b) Show the case n = 2 i.e., if f = f(x1)fx1

+ f(x2)fx2
∈ Ker(πX), then f ∈

〈N(X)〉.
(c) Show the case n = 3 i.e., if f = f(x1)fx1

+f(x2)fx2
+f(x3)fx3

∈ Ker(πX), then
f ∈ 〈N(X)〉.
(d) Show the case n = 4 i.e., if f = f(x1)fx1

+ f(x2)fx2
+ f(x3)fx3

+ f(x4)fx4
∈

Ker(πX), then f ∈ 〈N(X)〉.
The algorithm for the general case is either evident in the proof of this case, or, if
not, it should be clear in the proof of the case n = 5. �

2.7. Convex sets

In this section we study the notion of a convex set in a linear space, proving
some very first results in the theory of convex sets. The area of “Convex Analysis”
is very broad, and we refer to [14] for further reading.
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If M,N ∈ Rn, the linear segment [M,M +N ] between M and M +N

N

M +N

M

is the following set

[M,M +N ] :=
{
M + tN | t ∈ [0, 1]

}
.

If t := 0, then M +0N = M , and if t := 1, then M +1N = M +N . If, for example,
S is the middle point of the segment, then

S =
M + (M +N)

2
= M +

N

2
= M +

1

2
N.

Since N = M + (N −M), we have that the linear segment [M,N ] between M and
N is the following set:

[M,N ] = [M,M + (N −M)]

=
{
M + t(N −M) | t ∈ [0, 1]

}
=
{
tN + (1− t)M | t ∈ [0, 1]

}
=
{
sM + (1− s)N | s ∈ [0, 1]

}
=
{
t1M + t2N | t1, t2 ∈ [0, 1] & t1 + t2 = 1

}
=
{
t1M + t2N | t1, t2 ≥ 0 & t1 + t2 = 1

}
.

The next definition is the generalisation of the description of [M,N ] in Rn.

Definition 2.7.1. If X is a linear space and x, y ∈ X, the linear segment [x, y]
between x and y is defined by

[x, y] :=
{
tx+ (1− t)y | t ∈ [0, 1]

}
.

Clearly, for every x, y ∈ X we have that

[x, y] = [y, x] & [x, x] = {x}.
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Moreover, if f : X → Y is a linear map, then f preserves linear segments i.e.,

f([x1, x2]) := f

({
tx1 + (1− t)x2 | t ∈ [0, 1]

})
:=
{
f
(
tx1 + (1− t)x2

)
| t ∈ [0, 1]

}
=
{
tf(x1) + (1− t)f(x2) | t ∈ [0, 1]

}
:= [f(x1), f(x2)].

If y1, y2 ∈ Y , the inverse image f−1([y1, y2]) of the segment [y1, y2] in Y under
a linear map f need not be a linear segment (e.g., consider the constant 0 linear
map and the segment [0,0] = {0} in Y ). What we have in this case though, is that

x1, x2 ∈ f−1([y1, y2])⇒ [x1, x2] ⊆ f−1([y1, y2])

i.e., f−1([y1, y2]) is “closed under initial segments”, since f(x1), f(x2) ∈ [y1, y2],
and then f([x1, x2]) = [f(x1), f(x2)] ⊆ [y1, y2].

Definition 2.7.2. If X is a linear space, n ≥ 1, and x1, . . . , xn ∈ X, the convex
hull, or the convex span of x1, . . . , xn, is defined by

Conv(x1, . . . , xn) :=

{ n∑
i=1

tixi | t1, . . . , tn ≥ 0 &

n∑
i=1

ti = 1

}
( 〈x1, . . . , xn〉.

A linear combination
n∑
i=1

tixi, where t1, . . . , tn ≥ 0 &

n∑
i=1

ti = 1

is called a convex combination of x1, . . . , xn, and t1, . . . , tn are called the barycentric
coordinates of x =

∑n
i=1 tixi. A subset C of X is called convex in X, or, simply,

convex, if the linear segment between any two elements of C is included in C, or, if
C is closed under linear segment i.e.,

∀c,d∈C
(
[c, d] ⊆ C

)
.

Next we draw a convex set C, a non-convex set U in R2,

C U

and we also draw the convex hulls Conv(A,B,C,D) and Conv(E,F,G,H) in R2,
which are the following figures ABCD and EFGH with their interior.
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A B

D C

Conv(A,B,C,D)

E

F

G

H

Conv(E,F,G,H)

Example 2.7.3. Any subspace Y of a linear space X is convex. Hence, X itself
is convex. There are many convex subsets of X that are not subspaces of X. E.g.,
if X is a non-trivial linear space, and x 6= 0, then {x} is convex in X. If x, y ∈ X,
then [x, y] is convex in X. If C,D are convex sets in X, their intersection C ∩D is
convex in X (why?).

C D

Similarly, the intersection of any family (Ci)i∈I if convex sets in X is convex. The
empty set ∅ is trivially convex in X, since the defining property of a convex set is
trivially satisfied15

∀c,d∈∅
(
[c, d] ⊆ ∅

)
:⇔ ∀c,d

(
c ∈ ∅ & d ∈ ∅ ⇒ [c, d] ⊆ ∅

)
.

The union of two convex sets, like A and B in R2, is not always a convex set.

A B

15Here we use the logical fact (P ⇒ ⊥) ⇒ (P ⇒ Q), where P,Q are formulas. For the

derivation of this formula we use the logical rules Efq and Modus Ponens.
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Remark 2.7.4. Let X,Y be linear spaces, C,C ′ ⊆ X, and D ⊆ Y .

(i) If C is convex in X, and D is convex in Y , then C ×D is convex in X × Y .

(ii) If C,C ′ are convex, then C + C ′ := {c+ c′ | c ∈ C & c′ ∈ C ′} is convex.

(iii) If C is convex, and a ∈ R, then aC := {a · c | c ∈ C} is convex.

Proof. Exercise. �

Notice that Conv(x1) = {x1}, and Conv(x1, x2) = [x1, x2], while Conv(x1, x2, x3)
is the triangle, with its interior, of x1, x2, x3 in X. Generally, more than one convex
combinations correspond to the same vector e.g.,

1

2
=

1

2

(
3

8

)
+

1

2

(
5

8

)
=

3

4

(
7

16

)
+

1

4

(
11

16

)
.

Proposition 2.7.5. If X is a linear space, n ≥ 1, and x1, . . . , xn ∈ X, their
convex hull Conv(x1, . . . , xn) is the least convex set in X that contains x1, . . . , xn.

Proof. First we show that Conv(x1, . . . , xn) is convex in X. Let

x =

n∑
i=1

tixi, t1, . . . , tn ≥ 0 &

n∑
i=1

ti = 1,

y =

n∑
i=1

sixi, s1, . . . , sn ≥ 0 &

n∑
i=1

si = 1.

If t ∈ [0, 1], then

tx+ (1− t)y = t

n∑
i=1

tixi + (1− t)
n∑
i=1

sixi

=

n∑
i=1

ttixi +

n∑
i=1

(1− t)sixi

=

n∑
i=1

[tti + (1− t)si]xi.

If ai := tti + (1− t)si, for every i ∈ {1, . . . , n}, and if a, b ∈ R, let

a ∧ b := min{a, b},

then, since a ≥ a ∧ b and b ≥ a ∧ b, we have that

ai ≥ t(ti ∧ si) + (1− t)(ti ∧ si) = [t+ (1− t)](ti ∧ si) = ti ∧ si ≥ 0,

and
n∑
i=1

ai =

n∑
i=1

tti +

n∑
i=1

(1− t)si = t

n∑
i=1

ti + (1− t)
n∑
i=1

si = t+ (1− t) = 1.
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Next, we show that if C is a convex set in X that contains x1, . . . , xn, then
Conv(x1, . . . , xn) ⊆ C. For that we prove inductively the following formula:

∀n≥1

(
∀x1,...,xn∈X

(
x1 ∈ C & . . . & xn ∈ C ⇒ Conv(x1, . . . , xn) ⊆ C

))
.

If n = 1, we show that ∀x1∈X
(
x1 ∈ C ⇒ Conv(x1) ⊆ C

)
, which we get immediately

from the equality Conv(x1) = {x1}. Next we suppose that

∀x1,...,xn∈X
(
x1 ∈ C & . . . & xn ∈ C ⇒ Conv(x1, . . . , xn) ⊆ C

)
,

and we show that

∀x1,...,xn+1∈X
(
x1 ∈ C & . . . & xn+1 ∈ C ⇒ Conv(x1, . . . , xn+1) ⊆ C

)
.

Let x1, . . . , xn, xn+1 ∈ X, such that x1 ∈ C & . . . & xn ∈ C & xn+1 ∈ C, and let

x =

n+1∑
i=1

tixi, t1, . . . , tn+1 ≥ 0 &

n+1∑
i=1

ti = 1.

If there is some i ∈ {1, . . . , n+1}, such that ti = 0, then by the inductive hypothesis
on the n-elements x1, . . . , xi−1, xi+1, . . . , xn+1 of X we get

x =

n+1∑
j=1,j 6=i

tjxj ∈ C.

If ti 6= 0, for every i ∈ {1, . . . , n+ 1}, then tn+1 6= 1, and hence

x = (1− tn+1)c+ tn+1xn+1,

c :=
t1

1− tn+1
x1 + . . .+

tn
1− tn+1

xn.

Since
ti

1− tn+1
≥ 0, i ∈ {1, . . . , n},

and
t1

1− tn+1
+ . . .+

tn
1− tn+1

=
1

1− tn+1

(
t1 + . . .+ tn

)
=

1− tn+1

1− tn+1
= 1

we get c ∈ Conv(x1, . . . , xn). By the inductive hypothesis on x1, . . . , xn we have
that c ∈ C, and hence, since C is convex, we get x ∈ C. �

As in the case of the linear span, the notion of the convex hull is generalised to an
arbitrary subset Y of a linear space X.

Definition 2.7.6. IfX is a linear space, and Y ⊆ X, the convex hull ConvX(Y ),
or simpler Conv(Y ), of Y in X is defined by

Conv(Y ) :=
⋂
{C ⊆ X | Y ⊆ C & C is convex}.

Clearly, Conv(Y ) is the least convex set including Y . Moreover, since ∅ is
convex, Conv(∅) = ∅ ( {0} = 〈∅〉.
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Proposition 2.7.7. Let X be a linear space, and Y,Z ⊆ X.

(i) Y ⊆ Conv(Y ).

(ii) If Y ⊆ Z, then Conv(Y ) ⊆ Conv(Z).

(iii) Conv(Conv(Y )) = Conv(Y ).

(iv) Conv(Y ∩ Z) ⊆ Conv(Y ) ∩ Conv(Z).

(v) Conv(Y ) ∪ Conv(Z) ⊆ Conv(Y ∪ Z).

(vi) Y is convex if and only if Conv(Y ) = Y .

Proof. Exercise. �

As in the case of linear span, the “top-down” definition of the convex hull of
any subset Y has an equivalent “bottom-up” description.

Proposition 2.7.8. If X is a linear space, and Y ⊆ X, then the convex hull
Conv(Y ) of Y is equal to all convex combinations of the elements of Y .

Proof. What we need to show amounts to the equality Conv(Y ) = Ŷ , where

Ŷ :=

{ n∑
i=1

tiyi | n ≥ 1 & ∀i∈{1,...,n}
(
ti ≥ 0 & yi ∈ Y

)
&

n∑
i=1

ti = 1

}
.

By the Proposition 2.7.5, and since trivially Y ⊆ Ŷ , to show that Conv(Y ) ⊆ Ŷ , it

suffices to show that Ŷ is convex. Let

x =

n∑
i=1

tiyi, y1, . . . , yn ∈ Y & t1, . . . , tn ≥ 0 &

n∑
i=1

ti = 1,

x′ =

m∑
j=1

sjyj
′, y1

′, . . . , ym
′ ∈ Y & s1, . . . , sm ≥ 0 &

m∑
j=1

sj = 1.

If t ∈ [0, 1], then

tx+ (1− t)x′ =

n∑
i=1

(tti)yi +

m∑
j=1

(1− t)sjyj ′ ∈ Ŷ ,

since tti ≥ 0, and (1− t)sj ≥ 0, and

n∑
i=1

(tti) +

m∑
j=1

(1− t)sj = t

( n∑
i=1

ti

)
+ (1− t)

( m∑
j=1

sj

)
= t1 + (1− t)1 = 1.

By the definition of Conv(Y ), to show the inclusion Ŷ ⊆ Conv(Y ), it suffices to show

that if C is convex in X, such that Y ⊆ C, then Ŷ ⊆ C. Let x =
∑n
i=1 tiyi ∈ Ŷ ,

for some n ≥ 1, t1, . . . , tn ≥ 0, such that
∑n
i=1 ti = 1, and y1, . . . , yn ∈ Y . Hence,

x ∈ Conv(y1, . . . , yn). Since {y1, . . . , yn} ⊆ Y ⊆ C, by Proposition 2.7.5 we get
x ∈ Conv(y1, . . . , yn) ⊆ C. �
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Remark 2.7.9. Let X,Y be linear spaces, f ∈ L(X,Y ), C ⊆ X, D ⊆ Y , and
Z � X.

(i) If D is convex in Y , then f−1(D) := {x ∈ X | f(x) ∈ D} is convex in X.

(ii) If C is convex in X, then f(C) := {f(x) | x ∈ C} is convex in Y .

(iii) If C is convex in X, then C + Z := {c+ Z | c ∈ C} is convex in X/Z.

(iv) If n ≥ 1, and x1, . . . , xn ∈ X, then

f
(
Conv(x1, . . . , xn)

)
= Conv(f(x1), . . . , f(xn)).

Proof. Exercise. �

Corollary 2.7.10. If X is a linear space, f, g ∈ X∗ := L(X,R), and a ∈ R,
then the following sets

[f > a] := {x ∈ X | f(x) > a},
[f ≥ a] := {x ∈ X | f(x) ≥ a},
[f = a] := {x ∈ X | f(x) = a},
[f < a] := {x ∈ X | f(x) > a},
[f ≤ a] := {x ∈ X | f(x) ≥ a},
[f > g] := {x ∈ X | f(x) > g(x)},
[f ≥ g] := {x ∈ X | f(x) ≥ g(x)},
[f = g] := {x ∈ X | f(x) = g(x)},

are convex in X.

Proof. Exercise. �

2.8. Carathéodory’s theorem

If y1, y2, y3 ∈ R and x ∈ Conv(y1, y2, y3), it is easy to see that x is in the convex
hull of at most two elements of {y1, y2, y3}. If x ∈ {y1, y2, y3}, then it is in the
convex hull of one of them, while if x /∈ {y1, y2, y3}, and supposing, without loss of
generality, that y1 < y2 < y3, then the hypothesis x ∈ Conv(y1, y2, y3) implies that
x ∈ [y1, y3], and hence x ∈ [y1, y2] = Conv(y1, y2), or x ∈ [y2, y3] = Conv(y2, y3).

y1 y2 y3

Similarly, if y1, y2, y3, y4 ∈ R2 and x ∈ Conv(y1, y2, y3, y4), it is easy to see
that x is in the convex hull of at most three elements of {y1, y2, y3, y4}. If x ∈
{y1, y2, y3, y4}, then it is in the convex hull of one of them, while if x is in the line
segment between two of them, it is in the convex hull of two of them. In any other
case, we can find a triangle with vertices in {y1, y2, y3, y4} in the interior of which
x belongs to.
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y1

y2

y3

y4

x

Carathéodory’s theorem is a generalisation of these intuitive remarks. Accord-
ing to it, if Y ⊆ Rn, and x ∈ Conv(Y ), we can find at most (n + 1)-elements in Y
such that x is in their convex hull.

Theorem 2.8.1 (Carathéodory). If Y ⊆ Rn, then for every x ∈ Conv(Y ) there
is m ∈ N such that 1 ≤ m ≤ n + 1, and there are y1, . . . , ym ∈ Y , such that
x ∈ Conv(y1, . . . , ym).

Proof. If x ∈ Conv(Y ), then by the Proposition 2.7.8 there is k ≥ 1, and there
are y1, . . . , yk ∈ Y , such that

x =

k∑
i=1

tiyi, t1, . . . , tk ≥ 0 &

k∑
i=1

ti = 1.

If k ≤ n+1, we have nothing to prove. Suppose next that k > n+1⇔ k−1 > n, and
suppose also that t1 > 0 & . . . & tk > 0, since if ti = 0, for some i ∈ {1, . . . , k}, we
can write immediately x as a convex combination of k− 1 elements of Y . Actually,
our strategy is to prove that there are k − 1 elements of Y , such that x can be
written as a convex combination of them. By repeating the same argument at most
k − (n+ 1) number of times, we reach the required conclusion. To find these k − 1
elements of Y , we work as follows. Since by the Theorem 2.2.13 the k − 1 > n
number of vectors in Rn

(y1 − yk), . . . , (yk−1 − yk)

are linearly dependent, there are a1, . . . , ak−1 ∈ R, such that

k−1∑
j=1

aj(yj − yk) = 0,

and aj 6= 0, for some j ∈ {1, . . . , k − 1}. If we define

ak := −
k−1∑
j=1

aj ,

then
k∑
i=1

ai = 0 &

k∑
i=1

aiyi = 0,
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since
k∑
i=1

aiyi =

k−1∑
j=1

ajyj + akyk

=

k−1∑
j=1

ajyj +

(
−
k−1∑
j=1

aj

)
yk

=

k−1∑
j=1

ajyj −
k−1∑
j=1

ajyk

=

k−1∑
j=1

aj(yj − yk)

= 0.

We claim that there is some i ∈ {1, . . . , k} such that ai > 0. If there is some j ∈
{1, . . . , k−1}, such that aj > 0, we are done. If aj ≤ 0, for every j ∈ {1, . . . , k−1},
and since in this case there is some j ∈ {1, . . . , k − 1} with aj < 0, then ak > 0.
Hence, by our justified claim, and our hypothesis that each ti > 0, there is some
l ∈ {1, . . . , k} such that

max

{
a1

t1
, . . . ,

ak
tk

}
=
al
tl

:=
1

M
> 0,

where M := tl
al

. We show that x ∈ Conv(y1, . . . , yl−1, yl+1, . . . , yk). If

sj := tj −Maj , j ∈ {1, . . . , l − 1, l + 1, . . . , k},
then, for every j ∈ {1, . . . , l − 1, l + 1, . . . , k}, we have that

aj
tj
≤ 1

M
⇒Maj ≤ tj ⇒ sj := tj −Maj ≥ 0,

and since
∑k
i=1 aiyi = 0, we have that

∑k
j=1,j 6=l ajyj = −(alyl), and hence

k∑
j=1,j 6=l

sjyj :=

k∑
j=1,j 6=l

(tj −Maj)yj

=

k∑
j=1,j 6=l

tjyj −M
k∑

j=1,j 6=l

ajyj

=

k∑
j=1,j 6=l

tjyj −
tl
al

[
− (alyl)

]
=

k∑
i=1

tiyi
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= x.

Since
∑k
i=1 ai = 0, we have that

∑k
j=1,j 6=l aj = −al, and hence

k∑
j=1,j 6=l

sj :=

k∑
j=1,j 6=l

(tj −Maj)

=

k∑
j=1,j 6=l

tj −M
k∑

j=1,j 6=l

aj

=

k∑
j=1,j 6=l

tj −
tl
al

[−al]

=

k∑
i=1

ti

= 1

i.e., x was written as a convex combination of k − 1 elements of Y . �

By Carathéodory’s theorem, an element x of Conv(Y ), where Y ⊆ Rn can be
written as

x =

n+1∑
i=1

tiyi, t1, . . . tn+1 ≥ 0, y1, . . . , yn+1 ∈ Y,

since, even if the number m in the formulation of Carathéodory’s theorem is smaller
than n + 1, one can consider in the above convex combination any elements of Y
multiplied by 0’s.

If Y is the union of a number of convex sets in Rn, which is smaller than the
dimension n of Rn, then, according to the next corollary of Carathéodory’s theorem,
we can find a convex combination for the elements of Conv(Y ) even smaller from
the one determined by Carathéodory’s theorem.

Corollary 2.8.2. If 1 ≤ k ≤ n, and C1, . . . , Ck are convex subsets of Rn,
then for every

x ∈ Conv

( k⋃
i=1

Ci

)
there is m ≤ k, and there are y1, . . . , ym ∈

⋃k
i=1 Ci, such that

x ∈ Conv(y1, . . . , ym).

Hint: The case k = 1 is trivial, since by the convexity of C1 we have that

x ∈ Conv

( 1⋃
i=1

Ci

)
= Conv(C1) = C1 ⇒ x ∈ Conv(x) = {x}.
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It is helpful to work next with two convex sets C1, C2 in R2, and to show that
for every x ∈ Conv(C1 ∪ C2) there are at most two elements y, y′ ∈ C1 ∪ C2 such
that x ∈ Conv(y, y′). The proof of the general case uses the trick of the case of
R2 and the method of proof of Carathéodory’s theorem. Namely, we suppose that
the determined by Carathéodory’s theorem convex combination of x with at most

m ≤ n+ 1 number of elements from
⋃k
i=1 Ci is larger than k, and we find a convex

combination of x from m − 1 number of vectors from
⋃k
i=1 Ci. The rest is an

exercise. �





CHAPTER 3

Matrices

3.1. The linear space of matrices

Definition 3.1.1. If m,n ≥ 1, an array of real numbers

A :=



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

am1 . . . amn

 =: [aij ].

is called a matrix of m-rows and n-columns. If 1 ≤ i ≤ m, the i-th row of A is the
array

Ai :=
[
ai1 . . . ain

]
:= [aij ]i (∈ Rn),

and we also write A as a column of its rows

A =

A1

...
Am

 .
The row-rank of A is defined by

rRank(A) := dim
(
〈A1, . . . , Am〉

)
and it is the maximum number of linearly independent rows of A. If 1 ≤ j ≤ n,
the j-th column of A is the array

Aj :=

a1j

...
amj

 := [aij ]
j (∈ Rm),

and we also write A as a row of its columns

A = [A1 . . . An].

The column-rank of A is defined by

cRank(A) := dim
(
〈A1, . . . , An〉

)
,

55
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and it is the maximum number of linearly independent columns of A. The set of
m × n-matrices is denoted by Mm,n(R), while the set of square matrices Mn,n(R)
is also denoted by Mn(R). If [aij ], [bij ] ∈Mm,n(R), and λ ∈ R, we define

[aij ] = [bij ] :⇔ ∀i∈{1,...,m}∀j∈{1,...,n}
(
aij = bij

)
.

[aij ] + [bij ] := [aij + bij ],

λ · [aij ] := [λaij ],

0mn := [0],

and if m = n, we denote 0nn by 0n, or, if n is clear from the context, by 0.

If m = n = 2, the above definitions take the form[
a b
c d

]
=

[
a′ b′

c′ d′

]
⇔ a = a′ & b = b′ & c = c′ & d = d′,[

a b
c d

]
+

[
a′ b′

c′ d′

]
=

[
a+ a′ b+ b′

c+ c′ d+ d′

]
,

λ

[
a b
c d

]
=

[
λa λb
λc λd

]
, λ ∈ R,

02 :=

[
0 0
0 0

]
.

Remark 3.1.2. Mm,n(R) is a linear space of dimension mn.

Proof. The fact that Mm,n(R) is a linear space is immediate from the Defini-
tion 3.1.1. To determine the dimension of Mm,n(R), we associate to an m×n-matrix

A :=



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

am1 . . . amn


the following element of Rmn(

a11, . . . , a1n, . . . , ai1, . . . , ain, . . . , am1, . . . , amn
)
.

E.g., to the 2× 2-matrix [
a b
c d

]
we associate the 4-tuple

(a, b, c, d).

It is easy to see that this mapping e : Mm,n(R) → Rmn is a linear isomorphism,
hence by the Remark 2.4.14(ii) we get dim

(
Mm,n(R)

)
= dim(Rmn) = mn. �
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Definition 3.1.3. Let the mapping t : Mm,n(R)→Mn,m(R), defined by

[aij ] 7→ [aij ]
t,

where

[aij ]
t := [bji], bji := aij .

The matrix [aij ]
t is called the transpose of [aij ], and it has columns the rows of

[aij ] and rows the columns of [aij ]. If A ∈ Mn(R) with At = A, we say that A is
symmetric, and we denote their set by Symn(R). A diagonal matrix in Mn(R) has
the form

λ1

λ2

. . .

λn

 :=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 =: Diag(λ1, . . . , λn).

We denote by In the unit matrix in Mn(R), defined by

In :=


1

1
. . .

1

 =: [δij ],

where1

δij :=

{
1 , if i = j
0 , if i 6= j.

E.g., if we consider the 2× 3-matrix

A :=

[
2 1 0
1 3 5

]
,

then its transpose At is the following 3× 2-matrix

At :=

2 1
1 3
0 5

 .
An example of a symmetric matrix is the following:

A =

 3 1 −2
1 5 4
−2 4 −8

 = At.

Remark 3.1.4. Let A,B ∈Mm,n(R) , C ∈Mn(R), and a ∈ R.

(i) (A+B)t = At +Bt.

(ii) (a ·B)t = a ·Bt.

1The symbol δki is known as Kronecker’s delta.
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(iii)
(
At
)t

= A.

(iii) C + Ct is symmetric.

Proof. Exercise. �

Next we define the multiplication between matrices, an operation which, as
we shall see later, is related to the composition of linear maps. To define the
multiplication AB the number of columns of A has to be the number of rows of B!

Definition 3.1.5. If A := [aij ] ∈ Mm,n(R) and B := [bjk] ∈ Mn,l(R), their
product AB ∈Mm,l(R) is defined by

AB := [aij ][bjk] := [cik],

cik :=

n∑
j=1

aijbjk,

for every 1 ≤ i ≤ m and 1 ≤ k ≤ l. If A ∈Mn(R), let

An :=

{
In , n = 0
AAn−1 , n > 0

A matrix A ∈Mn(R) is invertible, if there is B ∈Mn(R) such that AB = BA = In.
We denote by Invn(R) the set of invertible matrices in Mn(R).

E.g., if

A :=

[
2 1 5
1 3 2

]
& B :=

 3 4
−1 2

2 1

 ,
then

AB :=

[
2 1 5
1 3 2

] 3 4
−1 2

2 1

 =

[
15 15
4 12

]
.

It is not always true that AB = BA. E.g.,[
3 2
0 1

] [
2 −1
0 5

]
=

[
6 7
0 5

]
,

and [
2 −1
0 5

] [
3 2
0 1

]
=

[
6 −3
0 5

]
.

If a, b ∈ R, and

A :=

[
1 a
0 1

]
& B :=

[
1 b
0 1

]
,

then

AB :=

[
1 a+ b
0 1

]
.
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Hence [
1 −a
0 1

] [
1 a
0 1

]
= I2.

Notice that, in contrast to what happens in R, there are non-zero square ma-
trices that are not invertible, like the matrix[

1 1
1 1

]
.

Proposition 3.1.6. Let A ∈Mm,n(R), B,C ∈Mn,l(R), and D ∈Ml,s(R).

(i) AIn = A and ImA = A.

(ii) A(B + C) = AB +AC.

(iii) If a ∈ R, then A(a ·B) = a · (AB).

(iv) A(BD) = (AB)D.

(v) The multiplication BtAt is well-defined, and (AB)t = BtAt.

Proof. Exercise. �

Corollary 3.1.7. Let A,B,C ∈Mn(R).

(i) If AB = BA = In = AC = CA, then B = C. We denote the unique matrix B
such that AB = BA = In by A−1, and we call it the inverse of A.

(ii) Itn = In.

(iii) If A is invertible, then (A−1)t = (At)−1.

Proof. (i) C = InC = (AB)C = (BA)C = B(AC) = BIn = B.
(ii) [δij ]

t := [dij ], where dij := δij , and what we want follows from the obvious
equality δij = δji.
(iii) By the Proposition 3.1.6(v) and the case (ii) we have that In = Itn = (AA−1)t =
(A−1)tAt, and In = Itn = (A−1A)t = At(A−1)t. Since In = (At)−1At = At(At)−1,
by the case (i) we get (A−1)t = (At)−1. �

One can show that if A,B ∈Mn(R), then

AB = In ⇒ BA = In,

hence we do not need to check both equalities in order to show that a matrix A is
invertible. Note that this is the case only when the product AB is equal to In. If
A,B ∈ Mn(R) are invertible, then AB is also invertible and (AB)−1 = B−1A−1,
since

(AB)(B−1A−1) = A[B(B−1A−1)] = A[(BB−1)A−1] = A[InA
−1] = AA−1 = In.

Definition 3.1.8. If A := [aij ] ∈Mn(R), the trace Tr(A) is defined by

Tr(A) :=

n∑
i=1

aii.
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It is immediate to see that Tr(At) = Tr(A), and Tr(In) = n.

Remark 3.1.9. Let A,B,C ∈Mn(R) and λ ∈ R.

(i) Tr(A+B) = Tr(A) + Tr(B).

(ii) Tr(λA) = λTr(A).

(iii) Tr(AB) = Tr(BA).

(iv) If B is invertible, then Tr(B−1AB) = Tr(A).

(v) Tr(A(B + C)) = Tr(AB) + Tr(AC).

(vi) Tr((λA)B) = λTr(AB).

(vii) There are no matrices A,B ∈Mn(R) such that

AB −BA = In.

(viii) If A ∈ Mn(R) such that for every B ∈ Mn(R), we have that Tr(AB) = 0,
then A = 0n.

Proof. Exercise. �

Proposition 3.1.10. (i) The set of symmetric matrices Symn(R) is a linear
subspace of Mn(R).

(ii) If A ∈ Symn(R), then Tr(AA) ≥ 0.

(iii) If A ∈ Symn(R) and A 6= 0n, then Tr(AA) > 0.

Proof. Exercise. �

As we shall explain later, because of the above properties, the function (A,B) 7→
Tr(AB) is an inner product on Symn(R).

3.2. The linear map of a matrix

Matrices can be used to represent linear maps. Let’s see the following charac-
teristic example. If θ ∈ R, let the matrix

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

Let the map Rθ : R2 → R2 defined by

Rθ(x, y) := R(θ)

[
x
y

]
:=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r cosφ
r sinφ

]
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= r

[
cos θ cosφ− sin θ sinφ
sin θ cosφ+ cos θ cosφ

]
= r

[
cos(θ + φ)
sin(θ + φ)

]
,

(r cosφ, r sinφ)

(cosφ, sinφ)

(cos(θ + φ), sin(θ + φ))

φθ

where r :=
√
x2 + y2. Hence, Rθ is the anti-clockwise θ-rotation of the vector

(x, y). From the geometric interpretation of Rθ we can infer that Rθ is a linear
map. If θ1, θ2 ∈ R, it is easy to see that

R(θ1)R(θ2) = R(θ1 + θ2).

From that we can infer that the matrix R(θ) has an inverse, a fact which is also
expected from the geometric interpretation of Rθ. The 0-rotation R0 is the identity
map and R(0) = I2, and if we consider the (−θ)-rotation, then Rθ(R−θ(x)) =
R0(x) = x. From the geometric interpretation of Rθ we expect that Rθ preserves
the length of vectors in R2 i.e.,

|Rθ
(
(x, y)

)
| = |(x, y)|.

Definition 3.2.1. If A := [aij ] ∈Mm,n(R), the linear map of A is the mapping

TA : Rn → Rm

TA(x) := Ax,

where we view an arbitrary element x := (x1, . . . , xn) ∈ Rn as an n×1-matrix, and
the output TA(x) is an m× 1-matrix that represents a vector in Rm.
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If we unfold the above definition, we have that

TA(x) =

TA(x)1

...
TA(x)m


:=

a11 . . . a1n

...
...

...
am1 . . . amn


x1

...
xn


:=

( n∑
j=1

a1jxj , . . . ,

n∑
j=1

aijxj , . . . ,

n∑
j=1

amjxj

)
=
(
x1a11, . . . , x1am1

)
+ . . .+

(
xna1n, . . . , xnamn

)
= x1

a11

...
am1

+ . . . xj

a1j

...
amj

+ . . .+ xn

a1n

...
amn


= x1A

1 + . . . xjA
j + . . .+ xnA

n.

If {e1, . . . , en} is the standard basis of Rn, and j ∈ {1, . . . , n}, then

TA(ej) = 0A1 + . . .+ 0Aj−1 + 1Aj + 0Aj+1 + . . .+ 0An = Aj ,

and hence, for every i ∈ {1, . . . ,m}, we have that

TA(ej)i = aij .

From the linear structure of Mn(R) we get TA ∈ L(Rn,Rm), since

TA(X + Y ) := A(X + Y ) = AX +AY := TAX + TAY,

TA(λX) = A(λX) = λ(AX) := λTAX.

Using the Proposition 3.1.6 we can show the following.

Proposition 3.2.2. If A,B ∈Mm,n(R), and a ∈ R, the following hold:

(i) If TA = 0, then A = 0mn.

(ii) TA+B = TA + TB.

(iii) Ta·A = aTA.

(iv) If TA = TB, then A = B.

(v) TIn = idRn
and T0mn

= 0.

(vi) If C ∈Mn,l(R), then TAC = TA ◦ TC

Rl Rn Rm
TC TA

TAC
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(vii) If m = n and A is invertible, then TA is invertible and T−1
A = TA−1 .

(viii) The map T : Mm,n(R)→ L(Rn,Rm), defined by A 7→ TA, is linear.

Proof. Exercise. �

Proposition 3.2.3. If A ∈Mn(R) and A1, . . . , An are the columns of A, then
A is invertible if and only if the vectors A1, . . . , An are linearly independent in Rn.

Proof. Exercise. [Hint: use the fact that if x := (x1, . . . , xn) ∈ Rn, then
TA(x) = x1A

1 + . . .+ xnA
n.] �

It is not a surprise now that the matrix[
1 1
1 1

]
is not invertible. Matrices can be related to the theory of linear equations.

Proposition 3.2.4. If A := [aij ] ∈ Mm,n(R) and (x1, . . . , xn) ∈ Rn, the fol-
lowing are equivalent.

(i) (x1, . . . , xn) is a solution of the following system of linear equations

a11x1 + . . .+ a1nxn = 0

...
...

...

am1x1 + . . .+ amnxn = 0.

(ii) (x1, . . . , xn) is a solution of the following equation in Rm

x1A
1 + . . .+ xnA

n = 0m.

(iii) (x1, . . . , xn) is in Ker(TA).

Proof. The proof is immediate from the above unfolding of TA. �

The system of inhomogeneous equations

a11x1 + . . .+ a1nxn = b1

...
...

...

am1x1 + . . .+ amnxn = bm

does not always have a solution. Take e.g., the system

3x+ 5y − z = 1,

3x+ 5y − z = 2.

If there is one solution though, then all solutions are obtained from that solution
and the solutions of the corresponding homogeneous system.
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Proposition 3.2.5. Let A := [aij ] ∈Mm,n(R), b = (b1, . . . , bm) ∈ Rm, Sol the
set of solutions of the system of linear equations

Ax = b,

and Sol0 the set of solutions of the homogeneous system of linear equations

Ax = 0m,

where in both systems x = (x1, . . . , xn) ∈ Rn. If x0 ∈ Sol, then

Sol = x0 + Sol0.

Proof. Exercise. �

Corollary 3.2.6. If A ∈Mm,n(R), then

Rank(TA) = cRank(A) & dim(Ker(TA)) = n− cRank(A).

Proof. Exercise. �

3.3. The matrix of a linear map

So far we defined a linear map TA : Rn → Rm, given a matrix A ∈ Mm,n(R).
Next we define a matrix AT ∈ Mm,n(R), given a linear map T : Rn → Rm. The
two constructions are inverse to each other.

Theorem 3.3.1. Let n,m ≥ 1. If T : Rn → Rm is a linear map, there is a
unique matrix AT ∈Mm,n(R) such that T = TAT

i.e., for every x ∈ Rn

T (x) = TAT
(x) := ATx.

The matrix AT is called the matrix of the linear map T .

Proof. If B := {e1, . . . , en} is the standard basis of Rn, then for every j ∈
{1, . . . , n} we write T (ej) as a linear combination of the standard basis of Rm i.e.,

T (ej) :=
(
T (ej)1, . . . , T (ej)m

)
.

The matrix AT is formed by taking these m-tuples as its columns i.e., we define

AT :=



T (e1)1 . . . T (en)1

...
...

...
T (e1)i . . . T (en)i

...
...

...
T (e1)m . . . T (en)m

 =: [aij ] =
[
T (ej)i

]
.

By the Proposition 2.4.5, to show that the linear maps T and TAT
are equal, it

suffices to show that they are equal on the elements of B. As we have shown
after the Definition 3.2.1, TA(ej) is the j-column Aj of A. Hence, TAT

(ej) is the
j-column of AT , which is exactly T (ej) by the definition of AT . The uniqueness
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of AT follows from the Proposition 3.2.2(iv); if B ∈Mm,n(R) such that TAT
(x) :=

ATx = T (x) = Bx := TB(x), we get AT = B. �

If T : R2 → R2 is a linear map with T (0, 1) := (a, c) and T (1, 0) := (b, d) then

AT =

[
a b
c d

]
.

Proposition 3.3.2. Let A : L(Rn,Rm)→Mm,n(R), defined by T 7→ AT .

(i) If T is the function defined in the Proposition 3.2.2(vii), then we have that
A ◦ T = idMm,n(R) and T ◦ A = idL(Rn,Rm)

Mm,n(R) L(Rn,Rm) Mm,n(R) L(Rn,Rm).
T A T

idMm,n(R)

idL(Rn,Rm

(ii) If T ∈ L(Rn,Rm) and S ∈ L(Rm,Rl), then AS◦T = ASAT .
(iii) AidRn = In and A0n

= 0n.
(iv) If T1, T2 ∈ L(Rn,Rm), then AT1+T2 = AT1 +AT2 .
(v) If λ ∈ R, then AλT = λAT .
(vi) If U ∈ L(Rn) is invertible, then AU is invertible and A−1

U = AU−1 .

Proof. Exercise. �

If X,Y are finite-dimensional linear spaces and f ∈ L(X,Y ), we can associate
to f a matrix in a canonical way. This matrix is going to be the matrix of the
linear map f . If X := Rn and Y := Rm, the matrix of f is reduced to the matrix
determined by the Theorem 3.3.1. The Proposition 3.3.2 is also generalised.

Definition 3.3.3. If BX := {v1, . . . , vn} a basis of X, we denote by eBX
the

isomorphism X ' Rn with respect to BX i.e.,

eBX
: X → Rn eBX

(x) := (x1, . . . , xn), x =

n∑
j=1

xjvj ,

e−1
BX

: Rn → X e−1
BX

(
(x1, . . . , xn)

)
:=

n∑
j=1

xjvj , (x1, . . . , xn) ∈ Rn.

If x ∈ X, we use the following notation for the column of the coefficients of x with
respect to the basis BX of X:

xBX
:=

x1

...
xn

 , x =

n∑
j=1

xjvj ,



66 3. MATRICES

and hence we have that
eBX

(x) = xBX
.

We also denote by Bn := {e1, . . . , en} the standard basis of Rn.

Theorem 3.3.4. Let X,Y be linear spaces, n,m ≥ 1, BX := {v1, . . . , vn} a
basis of X, BY := {w1, . . . , wm} a basis of Y , and let f : X → Y be linear.

(i) There is a unique linear map fBXBY
: Rn → Rm such that the following diagram

commutes

X Y

Rn Rm.

f

fBXBY

e−1
BX

eBY

(ii) If f is an injection (surjection), then fBXBY
is an injection (surjection).

(iii) The matrix AfBXBY
∈ Mm,n(R) of fBXBY

has as columns the coefficients of

f(vj) with respect to BY i.e.,

AfBXBY
=
[
f(v1)BY

. . . f(vn)BY

]
,

and for every x ∈ X we have that

f(x)BY
= AfBXBY

xBX
.

(iv) The matrix AfBXBY
is the unique matrix in Mm,n(R) that satisfies the second

equation of the case (iii) i.e., if A ∈Mm,n(R) such that f(x)BY
= AxBX

, for every
x ∈ X, then A = AfBXBY

.

(v) If X := Rn, Y := Rm, BX := Bn, and BY := Bm, then fBnBm = f and
AfBnBn

= Af

Proof. (i) We define the function

fBXBY
:= eBY

◦ f ◦ e−1
BX
,

which is linear, as a composition of linear maps, and makes the above diagram
commutative. The uniqueness of fBXBY

is immediate.
(ii) If f is an injection, then fBXBY

is an injection, as a composition of injections.
If z ∈ Rm, there is y ∈ Y such that eBY

(y) = z, and if f is a surjection, there is
x ∈ X such that f(x) = y, hence fBXBY

(eBX
(x)) = eBY

(f(x)) = z.
(iii) If (x1, . . . , xn) ∈ Rn, by definition we have that

fBXBY

(
(x1, . . . , xn)

)
:= eBY

(
f

( n∑
j=1

xjvj

))
= eBY

( n∑
j=1

xjf(vj)

)
.

If ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ Bn, then we get

fBXBY
(ej) = eBY

(f(vj)) := f(vj)BY
,
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hence by the proof of the Theorem 3.3.1 we get

AfBXBY
:=
[
fBXBY

(e1)Bm
. . . fBXBY

(en)Bm

]
=
[
fBXBY

(e1) . . . fBXBY
(en)

]
=
[
f(v1)BY

. . . f(vn)BY

]
.

If X 3 x =
∑n
j=1 xjvj , then by the previous equalities we get

f(x)BY
:= eBY

(f(x))

:= eBY

(
f

( n∑
j=1

xjvj

))
:= fBXBY

(
(x1, . . . , xn)

)
= AfBXBY

x1

...
xn


:= AfBXBY

xBX
.

(iv) If x := uj , for some j ∈ {1, . . . , n}, then

f(uj)BY
= AvjBX

= A



0
...
1
...
0

 =



a1j

...
aij
...

amj

 = Aj ,

hence A =
[
A1 . . . An

]
=
[
f(v1)BY

. . . f(vn)BY

]
= AfBXBY

.

(v) In this case eBn
= idRn , eBm

= idRm , and fBnBm
:= idRm ◦ f ◦ idRn = f

Rn Rm

Rn Rm.

f

fBnBm

idRn idRn

By the definition of AT in the proof of the Theorem 3.3.1 we have that AfBnBm
=[

f(e1)Bm
. . . f(en)Bm

]
= Af . �

By the above uniqueness of AfBXBY
the matrix of f ∈ L(X,Y ) is defined.

Definition 3.3.5. If X,Y are linear spaces, n,m ≥ 1, BX := {v1, . . . , vn} is
a basis of X, BY := {w1, . . . , wm} is a basis of Y , and f : X → Y is linear, the
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matrix of f with respect to BX and BY is the matrix AfBXBY
∈ Mm,n(R), where

fBXBY
:= eBY

◦f ◦e−1
BX

. If T : X → X is linear, we use the notation TBX
:= TBXBX

X X

Rn Rn.

T

eBXe−1
BX

TBX

Corollary 3.3.6. Let X be a linear space, n ≥ 1, BX := {v1, . . . , vn} and
CX := {w1, . . . , wn} are bases of X.

(i) If x ∈ X, then xCX
= A(idX)BXCX

xBX
and

A(idX)BXCX
=
[
(v1)CX

. . . (vn)CX

]
X X

Rn Rn.

idX

eCXe−1
BX

(idX)BXCX

(ii) (idX)BX
= idRn and A(idX)BX

= In

X X

Rn Rn.

idX

eBXe−1
BX

(idX)BX

Proof. Exercise. �

If dim(X) = n and dim(Y ) = m, then by the Theorem 2.4.17 we have that
dim(L(X,Y )) = mn and by the Remark 3.1.2 we have that dim(Mm,n(R)) = mn.
Hence, by the Corollary 2.4.15 we get L(X,Y ) ' Rmn 'Mmn(R), hence L(X,Y ) '
Mm,n(R). Next we provide a concrete isomorphism between these linear spaces.

Proposition 3.3.7. Let X,Y be linear spaces, n,m ≥ 1, BX := {v1, . . . , vn} a
basis of X, BY := {w1, . . . , wm} a basis of Y , and let f, g : X → Y be linear maps.

(i) A(f+g)BXBY
= AfBXBY

+AgBXBY
.

(ii) If λ ∈ R, then A(λf)BXBY
= λAfBXBY

.

(iii) The function eBXBY
: L(X,Y ) → Mm,n(R), defined by f 7→ AfBXBY

, for

every f ∈ L(X,Y ), is a linear isomorphism.
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Proof. Exercise. �

The function eBXBY
also preserves the multiplication i.e., it sends the compo-

sition of linear maps to the product of the image-matrices.

Proposition 3.3.8. Let X,Y and Z be linear spaces, n,m, l ≥ 1, BX :=
{v1, . . . , vn} a basis of X, BY := {w1, . . . , wm} a basis of Y , BZ := {u1, . . . , ul} a
basis of Z, and let f : X → Y and g : Y → Z be linear maps.

(i) (g ◦f)BXBZ
= gBY BZ

◦fBXBY
i.e., the following lower outer diagram commutes

X Y

Rn Rm

Z

Rl.

f g

gBY BZfBXBY

e−1
BX

eBY e−1
BY

eBZ

(g ◦ f)BXBZ

g ◦ f

(ii) A(g◦f)BXBZ
= AgBY BZ

AfBXBY
.

Proof. (i) Using the commutativity of the above inner diagrams we get

(g ◦ f)BXBZ
:= eBZ

◦ (g ◦ f) ◦ e−1
BX

= eBZ
◦ [g ◦ idY ◦ f ] ◦ e−1

BX

= eBZ
◦ [g ◦ (e−1

BY
◦ eBY

) ◦ f ] ◦ e−1
BX

= (eBZ
◦ g ◦ e−1

BY
) ◦ (eBY

◦ f ◦ e−1
BX

)

= gBY BZ
◦ fBXBY

.

We have that AgBY BZ
∈ Ml,m(R) and AfBXBY

∈ Mm,n(R), therefore their multi-

plication is well-defined and belongs in Ml,n(R). Moreover, A(g◦f)BXBZ
∈Ml,n(R).

By the Theorem 3.3.4(iii) we have that

A(g◦f)BXBZ
xBX

:= [g(f(x)]BZ
= AgBY BZ

f(x)BY
= AgBY BZ

AfBXBY
xBX

,

and by the uniqueness in the Theorem 3.3.4(iv) A(g◦f)BXBZ
= AgBY BZ

AfBXBY
. �

Corollary 3.3.9. Let n ≥ 1, let X be an n-dimensional linear space, and let
BX and CX be bases of X.

(i) (idX)BX
= (idX)CXBX

◦ (idX)BXCX
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X X

Rn Rn

X

Rn.

idX idX

(idX)CXBX
(idX)BXCX

e−1
BX

eCX

e−1
CX eBX

(idX)BX

idX

(ii) A(idX)BX
= A(idX)CXBX

A(idX)BXCX
, and the matrices A(idX)CXBX

, A(idX)BXCX

are inverse to each other.

Proof. (i) It follows immediately from the Proposition 3.3.7(i).
(ii) The required equality follows immediately from the Proposition 3.3.7(ii). Inter-
changing the bases BX and CX we get A(idX)CX

= A(idX)BXCX
A(idX)CXBX

. Since

by the Corollary 3.3.6(ii) we have that A(idX)BX
= In = A(idX)CX

, the matrices
A(idX)CXBX

and A(idX)BXCX
are inverse to each other. �

Corollary 3.3.10. Let X,Y, Z and W be linear spaces, n,m, l, s ≥ 1, BX :=
{v1, . . . , vn} a basis of X, BY := {w1, . . . , wm} a basis of Y , BZ := {u1, . . . , ul} a
basis of Z, BW := {ρ1, . . . , ρs} a basis of W , and let f : X → Y , g : Y → Z, and
h : Z →W be linear maps.

(i) (h ◦ g ◦ f)BXBW
= hBZBW

◦ gBY BZ
◦ fBXBY

X Y

Rn Rm

Z W

Rl Rs.

f g h

gBY BZ

fBXBY hBZBW

e−1
BX

eBY

e−1
BY eBZ

e−1
BZ eBW

(h ◦ g ◦ f)BXBW

h ◦ g ◦ f

(ii) A(h◦g◦f)BXBW
= AhBZBW

AgBY BZ
AfBXBY

.

Proof. Exercise. �

Theorem 3.3.11. If n ≥ 1, X is an n-dimensional linear space, BX and CX
are bases of X, and T : X → X is a linear map, then there exists an invertible
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matrix B ∈Mn(R) such that

ATCX
= B−1ATBX

B.

Proof. By the Corollary 3.3.10 we have that

X X

Rn Rn

X X

Rn Rn

idX T idX

TBX

(idX)CXBX
(idX)BXCX

e−1
CX

eBX

e−1
BX eBX

e−1
BX eCX

TCX

T

TCX
= (idX)BXCX

◦ TBX
◦ (idX)CXBX

and ATCX
= A(idX)BXCX

ATBX
A(idX)CXBX

.

By the Corollary 3.3.9(ii) A(idX)CXBX
and A(idX)BXCX

are inverse to each other. �

Definition 3.3.12. If n ≥ 1, X is an n-dimensional linear space, and T : X →
X is a linear map, we say that a basis BX := {v1, . . . , vn} of X diagonalises T , if
ATBX

=
[
T (v1)BX

. . . T (vn)BX

]
∈ Mn(R) is a diagonal matrix. We say that T is

diagonalisable, if there exists some basis CX of X such that CX diagonalises T . A
matrix A ∈ Mn(R) is called a diagonalisable matrix, if the linear map TA of A is
diagonalisable.

Theorem 3.3.13. If n ≥ 1, X is an n-dimensional linear space, BX is a basis
of X, and T : X → X is a linear map, then T is diagonalisable if and only if
there exists some invertible matrix B ∈Mn(R) such that B−1ATBX

B is a diagonal
matrix.

Proof. Exercise. �

Definition 3.3.14. If A,A′ ∈ Mn(R), we say that A and A′ are similar, in
symbols A ∼ A′, if there is some invertible matrix B ∈ Mn(R) such that A′ =
B−1AB.

Remark 3.3.15. The relation A ∼ A′ is an equivalence relation on Mn(R).

Proof. Exercise. �





CHAPTER 4

Inner product spaces

4.1. The Euclidean inner product space and the Minkowski spacetime

Definition 4.1.1. Let X be a linear space. A bilinear map on X is a function
〈·, ·〉 : X ×X → R such that for every x, y, z ∈ X and λ ∈ R the following hold:

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (left additivity).

(ii) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 (right additivity).

(iii) 〈λx, y〉 = λ〈x, y〉 (left homogeneity).

(iv) 〈x, λy〉 = λ〈x, y〉 (right homogeneity).

An inner product on X is a symmetric bilinear map i.e., for every x, y ∈ X
(v) 〈x, y〉 = 〈y, x〉 (symmetry),

and the pair (X, 〈·, ·〉) is called an inner product space. We call an inner product

(a) non-degenerate, if

∀x∈X
(
∀z∈X

(
〈x, z〉 = 0

)
⇒ x = 0

)
,

(b) positive, if ∀x∈X
(
〈x, x〉 ≥ 0

)
,

(c) negative, if ∀x∈X
(
〈x, x〉 ≤ 0

)
,

(c) positive definite, if

∀x∈X
(
x 6= 0⇒ 〈x, x〉 > 0

)
,

(d) negative definite, if

∀x∈X
(
x 6= 0⇒ 〈x, x〉 < 0

)
,

(e) indefinite, if it is neither positive definite nor negative definite.

If 〈·, ·〉 is an inner product on X the quadratic form Q〈·,·〉 associated with 〈·, ·〉 is
the function Q〈·,·〉 : X → R, defined by

Q〈·,·〉(x) := 〈x, x〉,

for every x ∈ X. If the inner product 〈·, ·〉 is clear from the context, we write Q(x)
instead of Q〈·,·〉(x). An element x of X is called

(α) lightlike, or null, if Q(x) := 〈x, x〉 = 0,

73
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(β) timelike, if Q(x) := 〈x, x〉 < 0,

(γ) spacelike, if Q(x) := 〈x, x〉 > 0,

(δ) unit, if Q(x) := 〈x, x〉 ∈ {1,−1}.

E.g., if C([0, 1]) is the linear space of all continuous, real-valued functions on
the compact interval [0, 1], the function

(f, g) 7→ 〈f, g〉 :=

∫ 1

0

f(t)g(t)dt,

for every f, g ∈ C([0, 1]) is a non-degenerate, positive, inner product on C([0, 1]).
As we have already seen in the Remark 3.1.9, the function

(A,B) 7→ Tr(AB)

is a non degenerate, indefinite inner product on Mn(R), and a positive definite
inner product on Symn(R).

Remark 4.1.2. Let (X, 〈·, ·〉) be an inner product space.

(i) Left additivity and left homogeneity imply right additivity and right homogene-
ity, and vice versa.

(ii) If x ∈ X, then 〈0, x〉 = 0.

(iii) If 〈·, ·〉 is positive definite, then 〈·, ·〉 is positive, and non-degenerate.

(iv) If 〈·, ·〉 is positive, then −〈·, ·〉, where −〈·, ·〉(x, y) := −〈x, y〉, for every x, y ∈ X,
is a negative inner product on X.

(v) For every x, y ∈ X we have that

〈x, y〉 =
1

4

(
〈x+ y, x+ y〉 − 〈x− y, x− y〉

)
.

(vi) If 〈〈·, ·〉〉 is an inner product on X such that Q〈·,·〉(x) = Q〈〈·,·〉〉(x), for every
x ∈ X, then 〈〈x, y〉〉 = 〈x, y〉, for every x, y ∈ X.

Proof. Exercise. �

Definition 4.1.3. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are in Rn, their
Euclidean inner product is defined by

〈x, y〉 :=

n∑
i=1

xiyi := x1y1 + . . .+ xnyn.

If n = 1, the Euclidean inner product on R is the product on R. The quadratic
form of the Euclidean inner product on Rn is given by

Q(x) := 〈x, x〉 :=

n∑
i=1

xixi =

n∑
i=1

x2
i = x2

1 + . . .+ x2
n.

The Euclidean inner product is a positive definite inner product on Rn, with 0 as
the only lightlike vector, and with no timelike vectors.
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Definition 4.1.4. If n ≥ 2, x = (x1, . . . , xn−1, s) and y = (y1, . . . , yn−1, t) are
in Rn, their Minkowski inner product, or their Lorentz inner product, is defined by

〈x, y〉 :=

n−1∑
i=1

xiyi − st = x1y1 + . . .+ xn−1yn−1 − st.

The pair M4 := (R4, 〈·, ·〉), where 〈·, ·〉 is the Minkowski inner product on R4, is
called the Minkowski spacetime. We call the pair M3 := (R3, 〈·, ·〉), where 〈·, ·〉
is the Minkowski inner product on R3, the Minkowski planetime, and the pair
M2 := (R2, 〈·, ·〉), where 〈·, ·〉 is the Minkowski inner product on R2, the Minkowski
linetime.

The quadratic forms of the Minkowski inner product on Rn and R4 are

Q
(
x1, . . . , xn−1, s)

)
:= 〈(x1, . . . , xn−1, s), (x1, . . . , xn−1, s)〉

:=

n−1∑
i=1

x2
i − s2 = x2

1 + . . .+ x2
n−1 − s2,

Q
(
(x1, x2, x3, s)

)
:= 〈(x1, x2, x3, s), (x1, x2, x3, s)〉 :=

3∑
i=1

x2
i −s2 = x2

1 +x2
2 +x2

3−s2.

The Minkowski spacetime is regarded in [18], p. 1, as “the appropriate arena
within which to formulate those laws of physics that do not refer specifically to grav-
itational phenomena”1. A non-zero vector x in Rn, equipped with the Minkowski
inner product, where x := (x1, . . . , xn−1, 0) is spacelike,

Q
(
(x1, . . . , xn−1, 0)

)
:= x2

1 + . . .+ x2
n−1 − 0 > 0,

while if x := (0, . . . , 0, s), then x is timelike, since

Q
(
(0, . . . , 0, s)

)
:= 02 + . . .+ 02 − s2 < 0.

Moreover, there are non-zero vectors in R4 that are lightlike e.g.,

Q
(
(1, 1, 0,

√
2)
)

:= 12 + 12 + 02 −
√

2
2

= 0.

If we consider the Minkowski linetime, the lightlike vectors form the lines t = x
and t = −x, the timelike vectors are within the cone at the origin (0, 0) formed by
these two lines, and the spacelike vectors are outside the cone.

1See [18] for an elaborated study of the mathematical properties of the Minkowski spacetime.
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x

t

t = xt = −x

Q < 0

Q < 0

Q > 0Q > 0

If we consider the Minkowski planetime, then one can show that its lightlike vectors
(x, y, t) ∈ R3 form a cone at the origin (0, 0, 0) with equation

x2 + y2 − t2 = 0,

its timelike vectors are inside this cone, and its spacelike vectors are outside this
cone. Next we draw the upper lightcone at the origin (0, 0, 0).

−1

1
−1

1

0.5

1

x

y

t

Proposition 4.1.5. The Minkowski inner product is an indefinite and non-
degenerate inner product on Rn.

Proof. Exercise. �
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Definition 4.1.6. A subset C of a linear space X is called a cone, if

∀x∈C∀λ>0

(
λx ∈ C

)
.

If 〈, ·, ·〉 is an inner product on X, and x0 ∈ X, the light cone C(x0) at x0 is the set

C(x0) := {x ∈ X | Q(x− x0) = 0}.

x0

The light cone C(0) of all lightlike vectors in X is a cone in X; if Q(x) = 0, for
some x ∈ X, then Q(λx) = λ2Q(x) = 0. In the case of the Euclidean inner product
C(0) = {0}, and the set of all timelike vectors “inside” C(0) is empty. Generally,
the light cone of a non-zero vector is not a cone in X; e.g., if a ∈ R and a 6= 0, then
C(a) = {b ∈ R | (b− a)2 = 0} = {a}, which is not a cone in R.

Definition 4.1.7. If X is a linear space, a norm on X is a mapping ||.|| : X →
R such that for every x, y ∈ X and λ ∈ R the following hold:

(i) ||x|| ≥ 0 (positivity).
(ii) ||x|| = 0⇒ x = 0 (definiteness).
(iii) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).
(iv) ||λx|| = |λ|||x||.
If ||.|| is a norm on X, the pair (X, ||.||) is called a normed space.

Notice that

|| − x|| = ||(−1)x|| = | − 1|||x|| = 1||x|| = ||x||.

If x = 0, then ||0|| = 0, since

||0|| = ||0 · 0|| = |0|||0|| = 0||0|| = 0.

Moreover, if x = 0, or y = 0, or y = λx, for some λ > 0, then the equality holds in
the triangle inequality ||x+ y|| ≤ ||x||+ ||y||.

Definition 4.1.8. If x ∈ Rn, the Euclidean norm |x| of x is defined by

|x| :=
( n∑
i=1

x2
i

) 1
2

=
√
x2

1 + x2
2 + . . .+ x2

n =
√
〈x, x〉.

Geometrically, if x ∈ Rn, then |x| is the length of the vector x.

Proposition 4.1.9 (Inequality of Cauchy). If x, y ∈ Rn, then

|〈x, y〉| ≤ |x||y|.

The equality holds if and only if x, y are linearly dependent.
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Proof. By definition we need to show∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣ ≤ ( n∑
i=1

x2
i

) 1
2
( n∑
i=1

y2
i

) 1
2

,

which is equivalent to

A :=

( n∑
i=1

xiyi

)2

≤
( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)
=: B.

This we get as follows:

B −A =

n∑
i=1

x2
i

n∑
j=1

y2
j −

n∑
i=1

xiyi

n∑
j=1

xjyj

=
1

2

n∑
i=1

x2
i

n∑
j=1

y2
j +

1

2

n∑
j=1

x2
j

n∑
i=1

y2
i −

n∑
i=1

xiyi

n∑
j=1

xjyj

=

n∑
i,j=1

1

2

(
x2
i y

2
j + x2

jy
2
i − 2xiyixjyj

)
=

n∑
i,j=1

1

2

(
xiyj − xjyi

)2
≥ 0.

If y = 0, then 0x + 1y = 0, hence x,0 are linearly dependent, and the equality
trivially holds. If yj 6= 0, for some j ∈ {1, . . . , n}, then B = A ⇔ x = λy, where
λ :=

xj

yj
. Clearly, xj = λyj . If i 6= j, then xi = λyi ⇔ xi− xj

yj
yi = 0⇔ xiyj−xjyi =

0. The last condition, for every i, j ∈ {1, . . . , n} such that i 6= j is equivalent to
B −A = 0⇔ B = A. �

The inequality of Cauchy is necessary to the proof that (Rn, |.|) is a normed
space; it is used in the proof of the triangle inequality for the Euclidean norm, while
the rest of the proof is easy. To understand the geometric meaning of the Euclidean
inner product we first see that a vector x ∈ Rn is orthogonal to a vector y ∈ Rn,
in symbols x⊥y, if and only if 〈x, y〉 = 0. To explain this we work as follows. It is
easy to see geometrically2 that

x⊥y ⇔ |x− y| = |x+ y|,

since the diagonals of the parallelogram are equal only if x is perpendicular to y.

2The following figure also explains why |x+ y| ≤ |x|+ |y|.
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y

x+ y

x

We show that

|x− y| = |x+ y| ⇔ 〈x, y〉 = 0.

Since |x| ≥ 0, we have that

|x− y| = |x+ y| ⇔ |x− y|2 = |x+ y|2

:⇔ 〈x− y, x− y〉 = 〈x+ y, x+ y〉
⇔ 〈x, x〉 − 2〈x, y〉+ 〈y, y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
⇔ 4〈x, y〉 = 0

⇔ 〈x, y〉 = 0.

By the last two equivalences we get the required equivalence x⊥y ⇔ 〈x, y〉 = 0.

Corollary 4.1.10 (Pythagoras theorem). If x, y ∈ Rn, such that x⊥y, then

|x+ y|2 = |x|2 + |y|2.

Proof. Since x⊥y ⇔ 〈x, y〉 = 0, we have that

|x+ y|2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 = |x|2 + |y|2.

�

By the inequality of Cauchy we have that if x, y 6= 0, then∣∣∣∣ |〈x, y〉||x||y|

∣∣∣∣ =
|〈x, y〉|
|x||y|

≤ 1⇔ −1 ≤ 〈x, y〉
|x||y|

≤ 1.

hence, there exists a unique angle θ ∈ [0, π] such that

cos θ =
〈x, y〉
|x||y|

,

and we call θ the angle between x and y. Clearly, if 〈x, y〉 = 0, then θ = π
2 .
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Proposition 4.1.11. If x, y ∈ Rn, and y 6= 0, then the projection pry(x) of x
on y is given by

y

x

λy

pry(x) := λy & λ :=
〈x, y〉
〈y, y〉

.

Proof. Since (x− λy)⊥y, and y 6= 0, we have that

〈(x− λy), y〉 = 0⇔ 〈x, y〉 − 〈λy, y〉 = 0

⇔ 〈x, y〉 − λ〈y, y〉 = 0

⇔ λ =
〈x, y〉
〈y, y〉

.

�

Because of the above characterisation of orthogonality in Rn through the Eu-
clidean inner product, we give the following definition.

Definition 4.1.12. Let (X, 〈〈·, ·〉〉) be an inner product space. If x, y ∈ X,
then x, y are 〈〈·, ·〉〉-orthogonal, or simpler, orthogonal, if 〈〈x, y〉〉 = 0, and we also
write x⊥y. If Y ⊆ X, its orthogonal complement Y ⊥ is defined by

Y ⊥ :=
{
x ∈ X | ∀y∈Y

(
〈〈x, y〉〉 = 0

)}
.

If x ∈ Y ⊥, we also write x⊥Y . It is immediate to show that Y ⊥ is a linear subspace
of X, which is called the orthogonal space of Y .

A lightlike vector v1 in the Minkowski timeline that lies on the line t = x is
orthogonal to any lightlike vector v2 that lies on the line t = −x with respect to the
Euclidean inner product. These vectors though, are not orthogonal with respect to
the Minkowski product on R2. Actually, v1 is orthogonal to any vector v3 parallel
to it, and the same for v2. I.e., for lightlike vectors orthogonality means parallelism!
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x

t

t = xt = −x

v1v2

v3

Proposition 4.1.13. Let x, y ∈ R4 such that x and y are lightlike with respect
to the Minkowski product 〈·, ·〉 on R4. Then x and y are 〈·, ·〉-orthogonal if and only
if x, y are linearly dependent.

Proof. Exercise. �

It is not a coincidence that the inequality of Cauchy is not satisfied by the
Minkowski inner product, as we can find (Exercise) timelike vectors u,w in the
Minkowski spacetime satisfying

〈u,w〉2 > 〈u, u〉〈w,w〉.

Definition 4.1.14. Let (X, 〈〈·, ·〉〉) be an inner product space. A basis B :=
{v1, . . . , vn} of X is called orthogonal, if

∀i,j∈{1,...,n}
(
i 6= j ⇒ 〈〈vi, vj〉〉 = 0

)
,

and it is called orthonormal, if it is orthogonal and Q(vi) ∈ {−1, 0, 1}, for every
i ∈ {1, . . . , n}.

Clearly, the standard basis Bn of Rn is orthonormal.

Definition 4.1.15. If (X, 〈〈·, ·〉〉) is an inner product space, a linear map T :
X → X is called an orthogonal transformation, or an inner product preserving
linear map, if for every x, y ∈ X it satisfies

〈〈T (x), T (y)〉〉 = 〈〈x, y〉〉.

Proposition 4.1.16. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, non-degenerate,
inner product space and let T : X → X be an orthogonal transformation.

(i) T preserves orthogonality i.e., x⊥y ⇔ T (x)⊥T (y), for every x, y ∈ X.

(ii) T is an isomorphism.

(iii) For every x ∈ X, we have that Q(T (x)) = Q(x).
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(iv) If S : X → X is a linear map such that Q(S(x)) = Q(x), for every x ∈ X,
then S is an orthogonal transformation.

(v) If BX := {v1, . . . , vn} is an orthonormal basis of X, then its image T (BX) :=
{T (v1), . . . , T (vn)} under T is an orthonormal basis of X.

(vi) Suppose that X has an orthonormal basis, and let S : X → X be a linear map
such that for every orthonormal basis BX := {v1, . . . , vn} of X its image S(BX)
under S is an orthonormal basis of X, and for every i ∈ {1, . . . , n}, we have that
Q(S(vi)) = Q(vi). Then S is an orthogonal transformation.

Proof. Exercise. �

The existence of orthogonal and orthonormal bases of an inner product space
is studied next.

4.2. Existence of an orthogonal basis, the positive definite case

Throughout this section 〈〈·, ·〉〉 is a positive definite inner product on a linear
space X. The properties of (X, 〈〈·, ·〉〉) generalise the properties of Rn equipped
with the Euclidean norm, if we use the following definitions, motivated by their
geometric interpretation in the case of Rn. Namely, we define

x⊥y :⇔ 〈〈x, y〉〉 = 0

pry(x) := λy(x)y, λy(x) :=
〈〈x, y〉〉
〈〈y, y〉〉

,

where y 6= 0. Since 〈〈x, x〉〉 ≥ 0, the norm induced by the positive definite inner
product 〈〈·, ·〉〉 on X is given by

||x|| :=
√
〈〈x, x〉〉,

for every x ∈ X. We need to show the generalisation of the inequality of Cauchy,
in order to prove that ||x|| is a norm on X.

Proposition 4.2.1. Let (X, 〈〈·, ·〉〉) be a positive definite, inner product space,
x, y, x1, . . . , xn ∈ X, and let || · || be the norm on X induced by 〈〈·, ·〉〉.
(i) (Pythagoras) If x⊥y, then ||x+ y||2 = ||x||2 + ||y||2.

(ii) (Generalised Pythagoras) If xi⊥xj, for every i, j ∈ {1, . . . , n} such that i 6= j,
then

||x1 + . . .+ xn||2 = ||x1||2 + . . .+ ||xn||2.
(iii) (Parallelogram law) ||x+ y||2 + ||x− y||2 = 2

(
||x||2 + ||y||2

)
.

(iv) (Polarisation identity) 〈〈x, y〉〉 := 1
4

(
||x+ y||2 − ||x− y||2

)
.

(v) If λ ∈ R, then ||λx|| = λ||x||.
(vi) ||x|| = 0⇔ x = 0.
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(vii) If x 6= 0, then ∣∣∣∣∣∣∣∣ x||x||
∣∣∣∣∣∣∣∣ = 1.

(viii) (Inequality Cauchy-Schwarz) |〈〈x, y〉〉| ≤ ||x|| ||y||, and the equality holds if
and only if x, y are linearly dependent.

(ix) (Triangle inequality) ||x + y|| ≤ ||x|| + ||y||. The equality holds if and only if
either x = 0 ∨ y = 0 or there is some λ > 0 such that x = λy.

(x) || · || is a norm on X.

(xi)
∣∣||x|| − ||y||∣∣ ≤ ||x− y||.

(xii) ||x|| − ||y|| ≤
∣∣||x|| − ||y||∣∣ ≤ ||x+ y||.

Proof. We show only the case (viii), and the rest is an exercise. If y = 0,
then both terms of the inequality are equal to 0. If y 6= 0 and ||y|| = 1, then,
(x− λy(x))⊥y, hence

(x− λy(x)y)⊥λy(x)y.

By the theorem of Pythagoras we have that

||x||2 = ||(x− λy(x)y) + λy(x)y||2

= ||x− λy(x)y||2 + ||λy(x)y||2

= ||x− λy(x)y||2 +
[
|λy(x)|||y||

]2
= ||x− λy(x)y||2 + λy(x)2,

hence λy(x)2 ≤ ||x||2, and consequently

|λy(x)| :=
∣∣∣∣ 〈〈x, y〉〉〈〈y, y〉〉

∣∣∣∣ = |〈〈x, y〉〉| ≤ ||x|| = ||x||1 = ||x||||y||.

If y 6= 0, then by the case (v) and the previous fact we have that∣∣∣∣〈〈x, y

||y||
〉〉
∣∣∣∣ ≤ ||x|| ⇔ |〈〈x, y〉〉| ≤ ||x|| ||y||.

If x, y are linearly dependent, then the equality holds; if y = 0, it is trivial, and if
y 6= 0, then x = λy, for some λ ∈ R, and

|〈〈λy, y〉〉| = |λ||〈〈y, y〉〉| = |λ|||y||2 = |λ|||y||||y|| = ||x|| ||y||.
If the equality holds and one of x, y is 0, then x, y are linearly dependent. Sup-
pose next that the equality holds and both x 6= 0 and y 6= 0. As it is expected
geometrically, we have that

||x− λy(x)y||2 = 〈〈x− λy(x)y, x− λy(x)y〉〉
= 〈〈x, x〉〉 − 2λy(x)〈〈x, y〉〉+ λy(x)2〈〈y, y〉〉

:= 〈〈x, x〉〉 − 2
〈〈x, y〉〉
〈〈y, y〉〉

〈〈x, y〉〉+
〈〈x, y〉〉2

〈〈y, y〉〉
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= 〈〈x, x〉〉 − 〈〈x, y〉〉
2

〈〈y, y〉〉

=
〈〈x, x〉〉〈〈y, y〉〉 − 〈〈x, y〉〉2

〈〈y, y〉〉
= 0,

hence x = λy(x)y. Since x 6= 0 and y 6= 0, we get λy(x) 6= 0, and hence x, y are
linearly dependent. �

Theorem 4.2.2 (Jordan, von Neumann). If (X, ||.||) is a normed space, its
norm ||.|| is induced by some positive definite inner product 〈〈·, ·〉〉 on X if and only
if ||.|| satisfies the parallelogram law.

Proof. The satisfiability of the parallelogram law follows from the Proposi-
tion 4.2.1(iii). For the converse, we define, due to the polarization identity,

(4.1) 〈〈x, y〉〉 :=
1

4

(
||x+ y||2 − ||x− y||2

)
.

It is immediate to show that 〈〈x, y〉〉 is positive definite and symmetric form on X.
It is also straightforward to see that

(4.2) 〈〈−x, y〉〉 = −〈〈x, y〉〉.
In order to show left additivity, by the parallelogram law and the definition of
〈〈x, y〉〉 we have that

4〈〈x+ z, y〉〉 = ||x+ z + y||2 − ||x+ z − y||2

=

∣∣∣∣∣∣∣∣(x+
y

2

)
+

(
z +

y

2

)∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣(x− y

2

)
+

(
z − y

2

)∣∣∣∣∣∣∣∣2
= 2

∣∣∣∣∣∣∣∣x+
y

2

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣z +
y

2

∣∣∣∣∣∣∣∣2 − ||x− z||2
−
(

2

∣∣∣∣∣∣∣∣x− y

2

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣z − y

2

∣∣∣∣∣∣∣∣2 − ||x− z||2)
= 2

(∣∣∣∣∣∣∣∣x+
y

2

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣x− y

2

∣∣∣∣∣∣∣∣2
)

+ 2

(∣∣∣∣∣∣∣∣z +
y

2

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣z − y

2

∣∣∣∣∣∣∣∣2
)

= 8〈〈x, y
2
〉〉+ 8〈〈z, y

2
〉〉,

where for the last equality we used the definition of 〈〈x, y〉〉. Hence we get

(4.3) 〈〈x+ z, y〉〉 = 2

(
〈〈x, y

2
〉〉+ 〈〈z, y

2
〉〉
)
.

If in (4.3) we set z = 0, we get for every x, y ∈ X

(4.4) 〈〈x, y〉〉 = 2〈〈x, y
2
〉〉.
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Consequently, (4.3) becomes

〈〈x+ z, y〉〉 = 2

(
〈〈x, y

2
〉〉+ 〈〈z, y

2
〉〉
)

= 〈〈x, y〉〉+ 〈〈z, y〉〉.

The rest of the proof is an exercise. �

In [2] there are around 350 characterizations of when a norm is induced by a
positive definite inner product!

Proposition 4.2.3. Let (X, 〈〈·, ·〉〉) be a positive definite, inner product space,
and || · || the norm on X induced by 〈〈·, ·〉〉. Let B := {v1, . . . , vn} ⊆ X, such that

(a) vi⊥vj, for every i, j ∈ {1, . . . , n} with i 6= j, and (b) vi 6= 0, for every i ∈
{1, . . . , n}. If x ∈ X, let

λi(x) := λvi(x) :=
〈〈x, vi〉〉
〈〈vi, vi〉〉

& xB :=

n∑
i=1

λi(x)vi.

(i) The vectors v1, . . . , vn are linearly independent.

(ii) The vector x− xB is orthogonal to every element of B.

(iii) The vector xB is the closest approximation to x from 〈B〉 i.e., for every
a1, . . . , an ∈ R, we have that

||x− xB || :=
∣∣∣∣∣∣∣∣x− n∑

i=1

λi(x)vi

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣x− n∑
i=1

aivi

∣∣∣∣∣∣∣∣.
(iv) Let ||vi|| = 1, for every i ∈ {1, . . . , n}.
(α) The following inequality, known as Bessel inequality, holds

n∑
i=1

λi(x)2 ≤ ||x||2.

(β) For every x ∈ X we have that

||x||2 =

n∑
i=1

λi(x)2

if and only if B is a basis of X.

Proof. (i) Let a1, . . . , an ∈ R such that
∑n
i=1 aivi = 0. If k ∈ {1, . . . , n}, then

0 =

〈〈 n∑
i=1

aivi, vk

〉〉
= ak〈〈vk, vk〉〉 := ak||vk||2,

and by the hypothesis (b) we get ak = 0.
(ii) If k ∈ {1, . . . , n}, then〈〈

x−
n∑
i=1

λi(x)vi, vk

〉〉
= 〈〈x, vk〉〉 −

〈〈 n∑
i=1

λi(x)vi, vk

〉〉
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= 〈〈x, vk〉〉 − 〈〈λk(x)vk, vk〉〉
= 〈〈x, vk〉〉 − λk(x)〈〈vk, vk〉〉

:= 〈〈x, vk〉〉 −
〈〈x, vk〉〉
〈〈vk, vk〉〉

〈〈vk, vk〉〉

= 0.

(iii) Since x− xB is orthogonal to B, it is also orthogonal to 〈B〉, hence(
x−

n∑
i=1

λi(x)vi

)
⊥

n∑
i=1

(
λi(x)− ai

)
vi.

By the theorem of Pythagoras we have that∣∣∣∣∣∣∣∣x− n∑
i=1

aivi

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣x− n∑
i=1

aivi +

n∑
i=1

λi(x)vi −
n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣(x− n∑
i=1

λi(x)vi

)
+

n∑
i=1

(
λi(x)− ai

)
vi

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣x− n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣ n∑
i=1

(
λi(x)− ai

)
vi

∣∣∣∣∣∣∣∣2,
and the required inequality follows.
(iv)(α) Since x− xB is orthogonal to 〈B〉, we have that(

x−
n∑
i=1

λi(x)vi

)
⊥

n∑
i=1

λi(x)vi.

By the theorem of Pythagoras and its generalised version we have that

||x||2 =

∣∣∣∣∣∣∣∣(x− n∑
i=1

λi(x)vi

)
+

n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣x− n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣ n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣x− n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2 +

n∑
i=1

||λi(x)vi||2

=

∣∣∣∣∣∣∣∣x− n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2 +

n∑
i=1

λi(x)2||vi||2

=

∣∣∣∣∣∣∣∣x− n∑
i=1

λi(x)vi

∣∣∣∣∣∣∣∣2 +

n∑
i=1

λi(x)2,

and the required inequality follows. The proof of (β) is an exercise. Notice that we
do not need to suppose that X is finite-dimensional. �
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Theorem 4.2.4. If (X, 〈〈·, ·〉〉) is a positive definite, inner product space of
dimension n ≥ 1, Y is a proper subspace of X, and BY := {y1, . . . , ym} is an
orthogonal basis of Y , there exist vm+1, . . . , vn ∈ X such that

B⊥ := {y1, . . . , ym, vm+1, . . . , vn}
is an orthogonal basis of X.

Proof. By the Corollary 2.2.16(iv) there exist um+1, . . . , un ∈ X such that
B := {y1, . . . , ym, um+1, . . . , un} is a basis of X. If Ym+1 := 〈y1, . . . , ym, um+1〉, let

vm+1 := um+1 −
m∑
j=1

λyj (um+1)yj :=

m∑
j=1

〈〈um+1, yj〉〉
〈〈yj , yj〉〉

yj .

By the Proposition 4.2.3(ii) we get vm+1⊥{y1, . . . , ym}. Since

um+1 = vm+1 +

m∑
j=1

λyj (um+1)yj ,

we get um+1 ∈ 〈y1, . . . , ym, vm+1〉. Moreover, vm+1 6= 0, since if vm+1 = 0, then
um+1 =

∑m
j=1 λyj (um+1)yj , and B is not linearly independent. Consequently,

{y1, . . . , ym, vm+1} is an orthogonal basis of Ym+1. Repeating this step m − n
number of times (actually, an induction takes place here) we reach our conclusion.

�

Corollary 4.2.5. If (X, 〈〈·, ·〉〉) is a positive definite, inner product space of
dimension n ≥ 1, there exists an orthogonal (orthonormal) basis B⊥ (B1

⊥) of X.

Proof. If v1 ∈ X such that v1 6= 0, then {v1} is an orthogonal basis of 〈v1〉,
and by the Theorem 4.2.4 there is an orthogonal basis B⊥ of X that extends {v1}.
Moreover, if B⊥ := {v1, . . . , vn} is an orthogonal basis of X, then

B1
⊥ :=

{
v1

||v1||
, . . . ,

vn
||vn||

}
is an orthonormal basis of X. �

Hence, if B := {u1, . . . , un} is a basis of X, and

v1 := u1

v2 := u2 −
〈〈u2, v1〉〉
〈〈v1, v1〉〉

v1

v3 := u3 −
〈〈u3, v2〉〉
〈〈v2, v2〉〉

v2 −
〈〈u3, v1〉〉
〈〈v1, v1〉〉

v1

...
...

vn := un −
〈〈un, vn−1〉〉
〈〈vn−1, vn−1〉〉

vn−1 − . . .−
〈〈un, v1〉〉
〈〈v1, v1〉〉

v1,
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then B⊥ := {v1, . . . , vn} is an orthogonal basis of X. The above algorithm for
finding an orthogonal basis of X, given a finite basis of X, is called the Gram-
Schmidt orthogonalisation process.

Remark 4.2.6. Let (X, 〈〈·, ·〉〉) be a positive definite, inner product space of
dimension n ≥ 1, BX := {v1, . . . , vn} a basis of X, and

x =

n∑
i=1

λivi & y =

n∑
i=1

µivi,

where λ1, . . . , λn, µ1, . . . , µn ∈ R. Let aij := 〈〈vi, vj〉〉, for every i, j ∈ {1, . . . , n}.
(i) 〈〈x, y〉〉 =

∑n
i,j=1 λiµjaij .

(ii) If BX is orthogonal, then 〈〈x, y〉〉 =
∑n
i=1 λiµiaii.

(iii) If BX is orthonormal, then 〈〈x, y〉〉 =
∑n
i=1 λiµi.

Proof. Exercise. �

Since the standard basis Bn of Rn is orthonormal, by the Remark 4.2.6(iii) the
Euclidean inner product is uniquely determined. Next we see why Y ⊥ is called the
orthogonal complement of the subspace Y .

Theorem 4.2.7. If (X, 〈〈·, ·〉〉) is a positive definite, inner product space of
dimension n ≥ 1, and Y is a subspace of X of dimension r, where 0 ≤ r ≤ n, then

X = Y ⊕ Y ⊥,
and hence dim(Y ⊥) = n− r.

Proof. Exercise. �

The above decomposition of X does not hold, in general, if the inner product
on X is not positive definite. E.g., we can find a subspace Y of the Minkowski
linetime such that {0} ( Y ⊥ ∩ Y and R2 is not equal to Y + Y ⊥ (Exercise). Next
we add one more equivalent condition to the Proposition 3.2.4.

Proposition 4.2.8. If A := [aij ] ∈ Mm,n(R) and (x1, . . . , xn) ∈ Rn, the fol-
lowing are equivalent.

(i) (x1, . . . , xn) is a solution of the following system of linear equations

a11x1 + . . .+ a1nxn = 0

...
...

...

am1x1 + . . .+ amnxn = 0.

(ii) (x1, . . . , xn) is orthogonal to the row vectors A1, . . . , Am of A.

Proof. Exercise. �

Now we can complete the Corollary 3.2.6.
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Corollary 4.2.9. If A ∈Mm,n(R), then

cRank(A) = rRank(A).

Proof. Exercise. �

4.3. Existence of an orthogonal basis, the general case

Theorem 4.3.1. If X is a non-trivial, finite-dimensional linear space and
〈〈·, ·〉〉 is an inner product on X, then X has an orthogonal basis.

Proof. We prove the following by induction on n ≥ 1:

∀n≥1∀X∈Lin

(
dim(X) = n⇒ X has an orthogonal basis

)
.

If dim(X) = 1, then if B1 := {v1} is a basis of X, then B1 is orthogonal, since
according to the Definition 4.1.12, the formula

∀i,j∈{1}
(
i 6= j ⇒ 〈〈vi, vj〉〉 = 0

)
holds trivially with the use of the rule Ex falso quodlibet (Efq). Suppose that the
formula above is true for n > 1, and we prove it for n + 1. For this we suppose
that X is a linear space with dim(X) = n + 1. If for every x ∈ X we have that
Q(x) = 0, then by the polarisation identity (Remark 4.1.2(v)) the inner product
〈〈·, ·〉〉 is the constant function 0, and hence any basis of X is trivially orthogonal.
Suppose next that there is v1 ∈ X such that Q(v1) 6= 0. If V1 := 〈v1〉, we show that

X = V1 ⊕ V ⊥1 .

First we show that V1 ∩ V ⊥1 ⊆ {0}, hence, since both V1 and V ⊥1 are subspaces of
X, we get V1 ∩ V ⊥1 = {0}. If x ∈ V1 ∩ V ⊥1 , there is some λ ∈ R such that x = λv1,
and x⊥V1, hence

〈〈λv1, v1〉〉 = λ〈〈v1, v1〉〉 = 0,

hence, since Q(v1) 6= 0, we get λ = 0, and x = 0. Next we show that X = V1 +V ⊥1 .
If x ∈ X, then

x = λv1(x) + (x− λv1(x)),

and since (x − λv1(x))⊥v1, we have that x − λv1(x) ∈ V ⊥1 . Since dim(V ⊥1 ) = n,
by the inductive hypothesis on V ⊥1 there is some orthogonal basis {v2, . . . , vn+1} of
V ⊥1 . Since v2, . . . , vn+1⊥v1, we have that

{v1, v2, . . . , vn+1}
is an orthogonal basis of X. �

If B⊥ = {v1, . . . , vn} is an orthogonal basis of a finite-dimensional inner product
space X, we assume without loss of generality, otherwise we re-enumerate B⊥
accordingly, that B⊥ is of the form

B⊥ =
{
v1, . . . , vr, vr+1, . . . , vs, vs+1, . . . , vn

}
,
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where

Q(vj) > 0, j ∈ {1, . . . , r},
Q(vk) < 0, k ∈ {r + 1, . . . , s},
Q(vl) = 0, l ∈ {s+ 1, . . . , n}.

If x ∈ X, there are λ1, . . . , λn ∈ R such that x =
∑n
i=1 λivi, and hence

Q(x) = Q

( n∑
i=1

λivi

)

=

〈〈 n∑
i=1

λivi,

n∑
i=1

λivi

〉〉

=

n∑
i=1

λ2
iQ(vi)

=

r∑
j=1

λ2
jQ(vj) +

s∑
k=r+1

λ2
kQ(vk) +

n∑
l=s+1

λ2
lQ(vl)

=

r∑
j=1

λ2
jQ(vj) +

s∑
k=r+1

λ2
kQ(vk).

Corollary 4.3.2. If X is a non-trivial, finite-dimensional linear space and
〈〈·, ·〉〉 is an inner product on X, then X has an orthonormal basis.

Proof. By the Theorem 4.3.1, and as we explained above, X has an orthogonal
basis of the form

B⊥ =
{
v1, . . . , vr, vr+1, . . . , vs, vs+1, . . . , vn

}
.

Then

B1
⊥ =

{
v1√
Q(v1)

, . . . ,
vr√
Q(vr)

,
vr+1√
−Q(vr+1)

, . . . ,
vs√
−Q(vs)

, vs+1, . . . , vn

}
is an orthonormal basis of X, since it is orthogonal, and

Q

(
vj√
Q(vj)

)
=

〈〈
vj√
Q(vj)

,
vj√
Q(vj)

〉〉
= 1,

Q

(
vk√
−Q(vk)

)
=

〈〈
vk√
−Q(vj)

,
vk√
−Q(vk)

〉〉
= −1,

for every j ∈ {1, . . . , r} and every k ∈ {r + 1, . . . , s}, respectively, and Q(vl) = 0,
for every l ∈ {s+ 1, . . . , n}. �

In the next section we show that the numbers r and s in the above form of an
orthogonal basis of X are the same in any orthogonal basis of X.
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4.4. Sylvester’s theorem

Proposition 4.4.1. Let X be a non-trivial, n-dimensional linear space, 〈〈·, ·〉〉
an inner product on X, and let

X0 :=
{
x ∈ X | ∀z∈X

(
〈〈x, z〉〉 = 0

}
.

(i) X0 is a linear subspace of X.

(ii) If B⊥ := {v1, . . . , vn} is an orthogonal basis of X, and if

i0 :=

∣∣∣∣{i ∈ {1, . . . , n} | Q(vi) = 0
}∣∣∣∣,

then dim(X0) = i0.

Proof. (i) This is immediate to show.
(ii) Let B⊥ has the form

B⊥ =
{
v1, . . . , vr, vr+1, . . . , vs, vs+1, . . . , vn

}
,

as explained in the previous section. We show that

X0 = 〈vs+1, . . . , vn〉,

and hence dim(X0) = i0 = n− s. Let x ∈ X0, and let λ1, . . . , λn ∈ R such that

x =

r∑
j=1

λjvj +

s∑
k=r+1

λkvk +

n∑
l=s+1

λlvl.

If j ∈ {1, . . . , r}, and k ∈ {r + 1, . . . , s}, then Q(vj) > 0 and Q(vk) < 0, hence

〈〈x, vj〉〉 = λjQ(vj) = 0⇒ λj = 0,

〈〈x, vk〉〉 = λkQ(vk) = 0⇒ λk = 0.

Consequently,

x =

n∑
l=s+1

λlvl ∈ 〈vs+1, . . . , vn〉.

To show that 〈vs+1, . . . , vn〉 ⊆ X0, let x ∈ 〈vs+1, . . . , vn〉 and µs+1, . . . , µn ∈ R such
that x =

∑n
l=s+1 µlvl. If z ∈ X, let λ1, . . . , λn ∈ R such that x =

∑n
i=1 λivi. Hence,

〈〈x, z〉〉 =

〈〈 n∑
i=1

λivi,

n∑
l=s+1

µlvl

〉〉

=

〈〈 r∑
j=1

λjvj +

s∑
k=r+1

λkvk +

n∑
l=s+1

λlvl,

n∑
l=s+1

µlvl

〉〉
= 0

i.e., x ∈ X0. �
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Since i0 = dim(X0), the number i0 does not depend on the choice of B⊥ i.e.,
it is the same for any orthogonal basis of X, and it is called the index of nullity
of the inner product 〈〈·, ·〉〉. By the definition of X0 we have that if 〈〈·, ·〉〉 is non-
degenerate inner product on X, then i0 = 0. As a consequence of the previous
proposition, the number s = n − i0 is the same in every orthogonal basis of X.
Next we show that r is also the same in every orthogonal basis of X.

Theorem 4.4.2 (Sylvester’s theorem). Let X be a non-trivial, n-dimensional
linear space, and let 〈〈·, ·〉〉 be an inner product on X. There is a natural number
r ≥ 0 such that for every orthogonal basis B⊥ = {v1, . . . , vn} of X there are exactly
r many integers i in {1, . . . , n} such that Q(vi) > 0.

Proof. Let B⊥ and C⊥ be orthogonal bases of X, where

B⊥ =
{
v1, . . . , vr, vr+1, . . . , vs, vs+1, . . . , vn

}
,

C⊥ =
{
w1, . . . , wr′ , wr′+1, . . . , ws, ws+1, . . . , wn

}
,

for some r, r′ ≥ 0. We show that the vectors

v1, . . . , vr, wr′+1, . . . , ws, ws+1, . . . , wn

are linearly independent in X. Let a1, . . . , ar, br′+1, . . . , bn ∈ R such that

a1v1 + . . .+ arvr + br′+1wr′+1 + . . .+ bnwn = 0,

hence
a1v1 + . . .+ arvr = −

(
br′+1wr′+1 + . . .+ bnwn

)
.

By the last equality we get

Q
(
a1v1 + . . .+ arvr

)
= Q

(
−
(
br′+1wr′+1 + . . .+ bnwn

))
= Q

(
−
(
br′+1wr′+1 + . . .+ bsws

))
,

where
Q
(
a1v1 + . . .+ arvr

)
= a2

1Q(v1) + . . .+ a2
rQ(vr)

and Q(v1), . . . , Q(vr) > 0 and

Q
(
−
(
br′+1wr′+1 + . . .+ bsws

))
= b2r′+1Q(wr′+1) + . . .+ b2sQ(ws),

with Q(wr′+1), . . . , Q(ws) < 0. Since then

0 ≤ a2
1Q(v1) + . . .+ a2

rQ(vr) = b2r′+1Q(wr′+1) + . . .+ b2sQ(ws) ≤ 0,

we get

a2
1Q(v1) + . . .+ a2

rQ(vr) = 0 = b2r′+1Q(wr′+1) + . . .+ b2sQ(ws),

hence a1 = . . . = ar = br′+1 = . . . = bs = 0. hence, the supposed equality

a1v1 + . . .+ arvr + br′+1wr′+1 + . . .+ bnwn = 0,

is reduced to the equality

bs+1ws+1 + . . .+ bnwn = 0,
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hence bs+1 = . . . = bn = 0, since ws+1, . . . , wn are linearly independent as elements
of C⊥. Since v1, . . . , vr, wr′+1, . . . , wn are linearly independent, we get

r + (n− r′) ≤ n⇔ r ≤ r′.
Working similarly, we show that the vectors

w1, . . . , wr′ , vr+1, . . . , vn

are linearly independent in X, hence

r′ + (n− r) ≤ n⇔ r′ ≤ r.
Since r ≤ r′ and r′ ≤ r, we get the required equality r = r′. �

The integer r in Sylvester’s theorem is called the index of positivity of 〈〈·, ·〉〉,
and the integer s− r, which is also independent from the choice of the orthogonal
basis, is called the index of negativity of 〈〈·, ·〉〉. If 〈〈·, ·〉〉 is the constant 0 inner
product, then r = 0, and if 〈〈·, ·〉〉 is the Minkowski inner product on R4, then
r = 3. Of course, the index of negativity of the Euclidean inner product is 0.

Corollary 4.4.3. Let X be a non-trivial, n-dimensional linear space, and let
〈〈·, ·〉〉 be an inner product on X. There is a direct sum decomposition

X = X+ ⊕X− ⊕X0

of X, where X0 is defined in the Proposition 4.4.1 and X+ and X− satisfy the
following conditions:

∀x∈X+

(
x 6= 0⇒ Q(x) > 0

)
,

∀x∈X−
(
x 6= 0⇒ Q(x) < 0

)
.

Proof. Exercise. �

4.5. Open sets in Rn

Definition 4.5.1. If x ∈ Rn, the open ball B(x, ε) with center x and radius
ε > 0 is defined by

B(x, ε) := {y ∈ Rn | d(x, y) < ε}
:= {y ∈ Rn | |x− y| < ε}

:= {y ∈ Rn |
√

(x1 − y1)2 + . . . (xn − yn)2 < ε}.

The closed ball B(x, ε] with center x and radius ε is defined by

B(x, ε] := {y ∈ Rn | d(x, y) ≤ ε}.
If U ⊆ Rn, we say that U is an open subset of Rn, if

∀x∈U∃ε>0

(
B(x, ε) ⊆ U

)
.
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If F ⊆ Rn, we say that F is a closed subset of Rn, if its complement F c := {y ∈
Rn | x /∈ F} is open.

The open ε-ball B(0, ε) at the origin (0, 0) is the open ε-disc around (0, 0)

B(0, ε) ε

and the closed ε-ball B(0, ε] at the origin (0, 0) is the ε-disc around (0, 0) with the
ε-circle around the origin. The open ε-ball B(x, ε) is an open set, since if we take
any point y in the ball B(x, ε), we can find an ε′ > 0 such that B(y, ε′) ⊆ B(x, ε). If
ε′ := ε− |y − x0|, then ε′ > 0, for y 6= x0. If y = x0, we can take ε′ = ε, and what
we want follows immediately. Let z ∈ B(y, ε′) i.e., |z − y| < ε′. Then we have that

|z − x0| = |(z − y) + (y − x0)|
≤ |z − y|+ |y − x0|
< ε′ + |y − x0|
= ε− |y − x0|+ |y − x0|
= ε.

The closed ε-ball B(0, ε] is not open, since a ball around a point at the ε-circle is not
included in B(0, ε]. It is clear though, that B(0, ε] is closed. Similarly, the interior
U of the following curve in R2 is open in R2.

U
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Note that the open ε-ball B(0, ε) in R at the origin 0 is the open interval (−ε, ε).

Proposition 4.5.2. Let n ≥ 1.

(i) Rn and ∅ are both open and closed.

(ii) If U ⊆ Rn, then U is open if and only if its complement U c is closed.

(iii) If U, V are open in Rn, then U ∩ V and U ∪ V are open in Rn.

(iv) If F,K are closed in Rn, then F ∩K and F ∪K are closed in Rn.

(v) If (Ui)i∈I is a family of open sets in Rn i.e., Ui is open for every i ∈ I, then
their union ⋃

i∈I
Ui :=

{
x ∈ Rn | ∃i∈I

(
x ∈ Ui

)}
is open.

(vi) If (Fi)i∈I is a family of closed sets in Rn i.e., Ui is closed for every i ∈ I, then
their intersection ⋂

i∈I
Fi :=

{
x ∈ Rn | ∀i∈I

(
x ∈ Fi

)}
is closed.

Proof. (i) If x ∈ Rn, then B(x, 1) ⊆ Rn, and hence Rn is open. Consequently,
∅ is closed, since ∅c = Rn. The implication x ∈ ∅ ⇒ B(x, 1) ⊆ ∅ is trivially true,
since its premise is false. Hence ∅ is open, and Rn is closed, since (Rn)c = ∅.
(ii) If U is open, then U c is closed, since (U c)c = U is open. If U c is closed, then
by definition (U c)c = U is open.
(iii) First we show that U ∩ V is open. If x ∈ U ∩ V , then x ∈ U and x ∈ V . Since
U is open, there is some ε1 > 0 such that B(x, ε1) ⊆ U . Since V is open, there is
some ε2 > 0 such that B(x, ε2) ⊆ Y . If ε := min{ε1, ε2}, then

B(x, ε) ⊆ V ∩ U.

To show this, let y ∈ Rn such that |y − x| < ε ≤ ε1. Hence y ∈ U . Similarly,
|y − x| < ε ≤ ε2, and hence y ∈ Y . Consequently, y ∈ V ∩ U . Next we show that
U ∪ V is open. If x ∈ U ∪ V , then x ∈ U , or x ∈ V . In the first case we have that
B(x, ε1) ⊆ U ⊆ U ∪ V , and in the second we have that B(x, ε2) ⊆ V ⊆ U ∪ V .
(iv) We use the case (iii) and the equalities

(F ∩K)c = F c ∪Kc & (F ∪K)c = F c ∩Kc.

(v) and (vi) Exercise. �

The intersection of a countable family of open sets is not generally open. E.g.,

(0, 1] =
⋂
n≥1

(
0, 1 +

1

n

)
,



96 4. INNER PRODUCT SPACES

and (0, 1] is not open, as any non-trivial interval around 1 intersects (1,+∞). The
union of a countable family of closed sets is not generally closed. E.g.,

(0, 1) =
⋃
n≥2

[
1

n
, 1− 1

n

]
,

and (0, 1) is not closed, since its complement (−∞, 0] ∪ [1,+∞) is not open. It is
not hard to see that the cartesian product of open sets in R is an open set in the
corresponding Rn. E.g., the set

(0, 1)× (−1, 1) := {(x, y) ∈ R2 | x ∈ (0, 1) & y ∈ (−1, 1)}

is open in R2. Similarly the set

(0, 1)× (−1, 1)× R := {(x, y, z) ∈ R3 | x ∈ (0, 1) & y ∈ (−1, 1)}

is open in R3.

4.6. Differentiable functions on open sets in Rn

If U is an open subset of Rn, and x = (x1, . . . , xn) ∈ U , then for every i ∈
{1, . . . , n}, there are appropriately small values of h ∈ R such that the point

(x1, . . . , xi + h, . . . , xn) ∈ U,

and the following concept is well-defined.

Definition 4.6.1. Let U be an open subset of Rn, x = (x1, . . . , xn) ∈ U , and
f : U → R. If the following limit exists

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
,

we let

Dif(x) :=
∂f

∂xi
(x) := lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
,

and we call Dif(x), or ∂f
∂xi

(x), the i-th partial derivative of f at x.

If Bn := {e1, . . . , ei, . . . , en} is the standard basis of Rn, we have that

Dif(x) = lim
h→0

f(x+ hei)− f(x)

h
.

If for example f : R2 → R is defined by

f(x, y) := x2y3,

then

D1f(x) :=
∂f

∂x
(x)
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:= lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y3 − x2y3

h

= y3 lim
h→0

(x+ h)2 − x2

h

= y32x

= 2xy3,

where the term 2x is the derivative of the function g(x) = x2. I.e., to calculate
D1f(x) we treat y as a constant and we differentiate with respect to x. Similarly,

D2f(x) :=
∂f

∂y
(x)

:= lim
h→0

f(x, y + h)− f(x, y)

h

= lim
h→0

x2(y + h)3 − x2y3

h

= x2 lim
h→0

(y + h)3 − y3

h

= x23y2

= 3x2y2,

where the term 3y2 is the derivative of the function h(y) = y3. I.e., to calculate
D2f(x) we treat x as a constant and we differentiate with respect to y. If f, g :
U → R, and x ∈ U such that Dif(x) and Dig(x) exist, then by the properties of
the derivative of real-valued functions on intervals of R we get

Di(f + g)(x) = Dif(x) +Dig(x),

Di(λf)(x) = λDif(x), λ ∈ R.

Definition 4.6.2. Let U be an open subset of Rn, x; = (x1, . . . , xn) ∈ U , and
f : U → R. If the partial derivatives at x

D1f(x) :=
∂f

∂x1
(x), . . . , Dnf(x) :=

∂f

∂xn
(x)

exist, the gradient (gradf)(x) of f at x is the vector

(gradf)(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
:=

(
D1f(x), . . . , Dnf(x)

)
.
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E.g., if f : R2 → R is defined as above by f(x, y) := x2y3, then

(gradf)(x) := (2xy3, 3x2y2).

Because of the above linearity of Di, we get immediately that if f, g : U → R, and
x ∈ U such that Dif(x) and Dig(x) exist, then

(grad(f + g))(x) = (gradf)(x) + (gradg)(x),

(grad(λf))(x) = λ(gradf)(x),

for every λ ∈ R. If Dif(x) and Dig(x) exist, for every x ∈ U , we get

grad(f + g) = gradf + gradg,

grad(λf) = λgradf,

for every λ ∈ R. Before defining when a function f : U → R, where U is an open
subset of Rn, is differentiable at some point x0 ∈ U , we notice the following fact.

Remark 4.6.3. Let U be an open subset of R, x0 ∈ U and f : U → R. The
following are equivalent:

(i) f is differentiable at x0.

(ii) There are ε > 0, a ∈ R, and a function g : (−ε, ε)→ R such that

f(x0 + h)− f(x0) = ah+ |h|g(h),

for every h ∈ (−ε, ε), and

lim
h→0

g(h) = 0.

Proof. (i) ⇒ (ii) If f is differentiable at x0, then

a := f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h
∈ R,

and if h 6= 0, we define

φ(h) =
f(x0 + h)− f(x0)

h
− f ′(x0),

while if h = 0, we define φ(0) := 0. Clearly,

lim
h→0

φ(h) = 0,

and for every h in some ε-interval around 0 we have that

f(x0 + h)− f(x0) = f ′(x0)h+ hφ(h).

If we define

g(h) :=

{
φ(h) , if h ≥ 0
−φ(h) , if h < 0,

we have that

|h|g(h) = hφ(h),
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and we get the required equality

f(x0 + h)− f(x0) = ah+ |h|g(h).

Of course,

lim
h→0

g(h) = 0.

(ii) ⇒ (i) If h 6= 0, then

f(x0 + h)− f(x0)

h
=
ah+ |h|g(h)

h
= a+

|h|
h
g(h),

which converges to a, as h converges to 0 i.e., a = f ′(x0). �

Definition 4.6.4. Let U be an open subset of Rn, x0 ∈ U and f : U → R. We
say that f is differentiable at x0, if

(a) The gradient of f at x0

gradf(x0) :=
(
D1f(x0), . . . , Dnf(x0)

)
=

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
exists, and

(b) there is a function g defined on a small open ball around the origin 0 such that

lim
|h|→0

g(h) = 0,

and

f(x0 + h)− f(x0) =
∂f

∂x1
(x0)h1 + . . .+

∂f

∂xn
(x0)hn + |h|g(h)

:=
〈
(gradf)(x0), h

〉
+ |h|g(h).

We say that f is differentiable on U , if it is differentiable at every point of U .

To show that a function f as above is differentiable on U , it suffices to show
that the gradient of f at every point of U exists, and that the partial derivatives
on U are continuous functions (the proof is omitted).

Proposition 4.6.5. If U is an open subset of Rn, x0 ∈ U and f : U → R, then
f is differentiable at x0, if all partial derivatives of f at x0 exist in U and for each
i ∈ {1, . . . , n} the function

U 3 x 7→ ∂f

∂xi
(x)

is continuous at x0.

Proof. See [16], p. 322. �
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4.7. The dual space of an inner product space

In the Definition 2.4.1 we defined the dual space of a linear space as the space
of functionals on X i.e.,

X∗ := {f : X → R | f is linear}.
There are many examples of important functionals from the physical point of view.
E.g., the Dirac functional δx0

: C([0, 1])→ R, where x0 ∈ [0, 1], is defined by

δx0
(f) := f(x0),

for every f ∈ C([0, 1]). If (X, 〈〈·, ·〉〉) is an n-dimensional inner product space we can
describe in an explicit way the isomorphism between X and X∗ (Corollary 2.4.16).

Theorem 4.7.1. Let (X, 〈〈·, ·〉〉) be a finite-dimensional inner product space,
and let x0 ∈ X.

(i) The function Lx0 : X → R, defined by

Lx0(x) := 〈〈x, x0〉〉,
for every x ∈ X, is in X∗.

(ii) The function L : X → X∗, defined by

L(x0) := Lx0 ,

for every x0 ∈ X, is a linear map.

(iii) If 〈〈·, ·〉〉 is non-degenerate, then L is an isomorphism between X and X∗.

Proof. (i) and (ii) are immediate to show. Since dim(X) = dim(X∗), to show
(iii) it suffices to show that L is an injection i.e., Ker(L) = {0}. If L(x) = 0, then
∀y∈X

(
Lx(y) = 〈〈y, x〉〉 = 0

)
, hence, since 〈〈·, ·〉〉 is non-degenerate, x = 0. �

Consequently, if 〈〈·, ·〉〉 is a non-degenerate inner product on X, then for every
functional f ∈ X∗ there is a unique x0 ∈ X such that

f = Lx0 ,

and the functional f is represented by the vector x0. The condition (b) in the
Definition 4.6.4 takes the form

f(x0 + h)− f(x0) = L(gradf)(x0)(h) + |h|g(h),

where L(gradf)(x0) : Rn → R is defined by

L(gradf)(x0)(y) := 〈(gradf)(x0), y〉,
for every y ∈ Rn. I.e., the differentiability of a function f on an open subset of
Rn means that “locally” f is approximated by some linear functional on Rn. The
functional L(gradf)(x0) is called the derivative of f at x0.

Recall that if BX := {v1, . . . , vn} is a basis of a linear space X, then

BX∗ := {v∗1 , . . . , v∗n}
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is a basis of X∗, where for every i, j ∈ {1, . . . , n} we have that

v∗i (vj) := δij .

Corollary 4.7.2. Let X be an n-dimensional linear space, and let Y be a
subspace of X. Let

Y perp :=
{
φ ∈ X∗ | ∀y∈Y

(
φ(y) = 0

)}
.

(i) dim(Y ) + dim(Y perp) = n.

(ii) If 〈〈·, ·〉〉 is a non-degenerate inner product on X, and if L : X → X∗ is the
isomorphism between X and X∗ defined in the Theorem 4.7.1, then the restriction
L|Y ⊥ : Y ⊥ → Y perp, defined by

x 7→ Lx,

for every x ∈ Y ⊥, is an isomorphism.

Proof. Exercise. �





CHAPTER 5

Operators

5.1. Symmetric and unitary operators

In the Definition 2.4.1 we defined the set of operators L(X) on X as

L(X) := {T : X → X | T is linear}.
Note that if 〈〈·, ·〉〉 is a non-degenerate inner product on X, then by the definition
of non-degeneracy we have that

(5.1) ∀z,z′∈X
(
∀x∈X

(
〈〈x, z〉〉 = 〈〈x, z′〉〉

)
⇒ z = z′

)
.

Lemma 5.1.1. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, non-degenerate inner
product space, and T ∈ L(X).

(i) If y ∈ X, the function φy : X → R, defined, for every x ∈ X, by

φy(x) ::= 〈〈T (x), y〉〉,
is in X∗.

(ii) There is a unique S ∈ L(X) such that, for every x, y ∈ X,

(5.2) 〈〈T (x), y〉〉 = 〈〈x, S(y)〉〉,

Proof. (i) We can use the fact that the composition of linear maps is linear.
(ii) We fix some y ∈ X. From the case (i) φy ∈ X∗, hence by the Theorem 4.7.1(iii)
there is a unique z ∈ X such that φy = Lz, hence for every x ∈ X we have that

〈〈T (x), y〉〉 = φy(x) = Lz(x) = 〈〈x, z〉〉.
Let S : X → X, defined by y 7→ z, for every z ∈ X. Since then the last equality
becomes the required equality 5.2, it suffices to show that S is the unique operator
satisfying (5.2). First we show that S is a linear map. Let y1, y2 ∈ X. Due to (5.1),
to show that S(y1 + y2) = S(y1) + S(y2), it suffices to show that

∀x∈X
(
〈〈x, S(y1 + y2)〉〉 = 〈〈x, S(y1) + S(y2)〉〉

)
.

If x ∈ X, we have that

〈〈x, S(y1 + y2)〉〉 = 〈〈T (x), y1 + y2〉〉

103
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= 〈〈T (x), y1〉〉+ 〈〈T (x), y2〉〉
= 〈〈x, S(y1)〉〉+ 〈〈x, S(y2)〉〉
= 〈〈x, S(y1) + S(y2)〉〉.

Similarly, to show that S(λy) = λS(y), where λ ∈ R, it suffices to show that

∀x∈X
(
〈〈x, S(λy)〉〉 = 〈〈x, λS(y)〉〉

)
.

If x ∈ X, we have that

〈〈x, S(λy)〉〉 = 〈〈T (x), λy〉〉
= λ〈〈T (x), y〉〉
= λ〈〈x, S(y)〉〉
= 〈〈x, λS(y)〉〉.

Let S′ ∈ L(X) such that S′ satisfies (5.2). If y ∈ X, then

〈〈x, S′(y)〉〉 = 〈〈T (x), y〉〉 = 〈〈x, S(y)〉〉,

hence by (5.1) we get S′(y) = S(y). Since y ∈ X is arbitrary, we get S′ = S. �

Definition 5.1.2. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, non-degenerate inner
product space, and T ∈ L(X). The unique S ∈ L(X) satisfying (5.2) is called the
transpose operator of T , and it is denoted by T t. If T t = T , we call T a symmetric
operator.

If T ∈ L(X), where X is as above, then, for every x, y ∈ X, (5.2) becomes

(5.3) 〈〈T (x), y〉〉 = 〈〈x, T t(y)〉〉,

and if T is symmetric, then, for every x, y ∈ X, (5.2) becomes

(5.4) 〈〈T (x), y〉〉 = 〈〈x, T (y)〉〉.

If x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then

〈x, y〉 :=

n∑
i=1

xiyi

=
[
x1 . . . xn

] y1

...
yn



=

x1

...
xn


t y1

...
yn


= xty,
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if we view x, y as (n× 1)-matrices. If T ∈ L(Rn), then

〈x, T t(y)〉 = 〈T (x), y〉
= 〈ATx, y〉

=
(
ATx

)t
y

=
(
xtAtT

)
y

= xt
(
AtT y

)
= 〈x,AtT y〉,

Since x, y are arbitrary, we get T t(y) = AtT y, and since T t(y) = AT ty, we get

AT t = AtT ,

a fact that explains the use of the same notation and terminology for the transpose
of an operator as in the case of a transpose of a matrix.

Proposition 5.1.3. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, non-degenerate in-
ner product space, S, T ∈ L(X) and λ ∈ R.

(i) (S + T )t = St + T t.

(ii) (λS)t = λSt.

(iii) (S ◦ T )t = T t ◦ St.
(iv) (St)t = S.

Proof. We work as in the proof of the Lemma 5.1.1 (exercise). �

In the Definition ?? an orthogonal transformation was defined as an operator
that was preserving the corresponding inner product. If the inner product is positive
definite, we use the following special term.

Definition 5.1.4. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, positive definite in-
ner product space, and let U ∈ L(X). We call U unitary, if it is inner product-
preserving i.e., if for every x, y ∈ X we have that

〈〈U(x), U(y)〉〉 = 〈〈x, y〉〉.

Proposition 5.1.5. Let (X, 〈〈·, ·〉〉) be a finite-dimensional, positive definite
inner product space, and let U ∈ L(X). The following are equivalent.

(i) U is unitary.

(ii) U is norm-preserving i.e., for every x ∈ X we have that

||U(x)|| = ||x||,
where ||.|| is the norm on X induced by 〈〈·, ·〉〉.
(iii) U sends a unit vector to a unit vector i.e.,

∀x∈X
(
||x|| = 1⇒ ||U(x)|| = 1

)
.
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Proof. (i) ⇒ (ii) If x ∈ X, then we use the following equality

||U(x)||2 = 〈〈U(x), U(x)〉〉 = 〈〈x, x〉〉 = ||x||2.
(ii) ⇒ (iii) If x ∈ X such that ||x|| = 1, then ||U(x)|| = ||x|| = 1.

(iii) ⇒ (ii) If x = 0, then U(0) = 0 and the required equality is immediate from
the fact that ||.|| is a function. If x 6= 0, then∣∣∣∣∣∣∣∣ x||x||

∣∣∣∣∣∣∣∣ = 1,

and by (iii) we have that

1 =

∣∣∣∣∣∣∣∣ x||x||
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣U( x

||x||

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1

||x||
U(x)

∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1

||x||

∣∣∣∣||T (x)|| = 1

||x||
||U(x)||,

hence ||U(x)|| = ||x||.
(ii) ⇒ (i) If x, y ∈ X, using the polarisation identity twice we get

〈〈x, y〉〉 =
1

4

(
〈〈x+ y, x+ y〉〉 − 〈〈x− y, x− y〉〉

)
=

1

4

(
||x+ y||2 − ||x− y||2

)
=

1

4

(
||U(x+ y)||2 − ||U(x− y)||2

)
=

1

4

(
||U(x) + U(y)||2 − ||U(x)− U(y)||2

)
=

1

4

(
〈〈U(x) + U(y), U(x) + U(y)〉〉 − 〈〈U(x)− U(y), U(x)− U(y)〉〉

)
= 〈〈U(x), U(y)〉〉.

�

Hence, a unitary operator is characterised from the fact that it sends unit
vectors to unit vectors, a property that explains the use of the term “unitary”. If

S1(X) := {x ∈ X | ||x|| = 1}
is the unit sphere of (X, ||.||), then a unitary operator sends S1(X) to itself i.e.,

U|S1(X) : S1(X)→ S1(X).

By definition, a unitary operator preserves orthogonality since

〈〈x, y〉〉 = 0⇒ 〈〈U(x), U(y)〉〉 = 0.

The converse is not always true i.e., there are operators that preserve orthogonality
but are not unitary (exercise).

Theorem 5.1.6. If (X, 〈〈·, ·〉〉) is a finite-dimensional, positive definite inner
product space, and U ∈ L(X), then U is unitary if and only if

U t ◦ U = idX .
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Proof. Exercise. �

It is easy to see that a unitary operator is invertible and with some more effort
that U−1 = U t (exercise). Moreover, it can be shown (exercise) that if U is unitary,
then U t is unitary. It can also be shown that the only unitary operators of R2 are
the linear maps whose matrices are of the form[

cos θ − sin θ
sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
.

Note that the determinant of the first is 1 and the determinant of the second is −1.

5.2. Eigenvalues and eigenvectors

Definition 5.2.1. Let X be a linear space and T ∈ L(X). An element x of X
is called an eigenvector of T , if

(5.5) ∃λ∈R
(
T (x) = λx

)
.

If x 6= 0, and x is an eigenvector of T , then there is a unique1 λ ∈ R satisfying (5.5),
which is called an eigenvalue of T that belongs to x. If A ∈Mn(R), an eigenvector
of A is an eigenvector of TA ∈ L(Rn).

If we consider the linear space

C∞(R) :=
{
f ∈ F(R) | f is infinitely differentiable

}
,

where f : R→ R is infinitely differentiable, if there exist all finite derivatives

f (1) := f ′, f (2) := f ′′, . . . , f (n) :=
(
f (n−1)

)′, . . . ,
the derivative operator is the linear operator

′
: C∞(R)→ C∞(R)

f 7→ f ′,

for every f ∈ C∞(R). If λ ∈ R, the function f ∈ C∞(R), defined by

f(t) := eλt,

for every t ∈ R, is an eigenvector of the derivative and λ belongs to f , since
f ′(t) = λf(t), for every t ∈ R. Note that if λ is an eigenvalue of T ∈ L(X) that
belongs to x ∈ X, then for every a ∈ R, we have that ax is an eigenvector of T that
also belongs to λ;

T (ax) = aT (x) = a(λx) = λ(ax).

Clearly, the set Xλ(T ) of all eigenvectors of x with λ ∈ R as an eigenvalue

Xλ(T ) :=
{
x ∈ X | T (x) = λx

}
1If T (x) = λx = µx, then (λ− µ)x = 0, and since x 6= 0, we get λ = µ.
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is a subspace of X, and actually

Xλ(T ) = Ker(T − λidX).

We call Xλ(T ) the eigenspace of X belonging to λ.

Theorem 5.2.2. If X is a linear space, T ∈ L(X), and v1, . . . , vm are eigen-
vectors of T with eigenvalues λ1, . . . , λm, respectively, such that λi 6= λj for every
i, j ∈ {1, . . . ,m} with i 6= j, then v1, . . . , vm are linearly independent.

Proof. We prove by induction on n ≥ 1 the following formula

∀m≥1

(
∀v1,...,vm∈X∀λ1,...,λm∈R

(
PWU(λ1, . . . , λm) &

& EIGENT (v1, . . . , vm;λ1, . . . , λm)⇒ LIND(v1, . . . , vm)
))
,

where
PWU(λ1, . . . , λm) :⇔ ∀i,j∈{1,...,m

(
i 6= j ⇒ λi 6= λj

)
,

EIGENT (v1, . . . , vm;λ1, . . . , λm) :⇔ T (v1) = λ1v1 & . . . & T (vm) = λmvm,

LIND(v1, . . . , vm) :⇔ v1, . . . , vm are linearly independent.

If m = 1, and if we fix some v1 ∈ X and λ1 ∈ R, then PWU(λ1) holds trivially,
and if EIGENT (v1;λ1), then necessarily v1 6= 0, hence LIND(v1). We suppose that
the formula for m > 1 and we show it for m + 1. Let v1, . . . , vm+1 ∈ X, and
λ1, . . . , λm+1 such that PWU(λ1, . . . , λm+1) and

EIGENT (v1, . . . , vm+1;λ1, . . . , λm+1),

and we show that LIND(v1, . . . , vm+1). For that, let c1, . . . , cm+1 ∈ R such that

(5.6) c1v1 + c2v2 + . . .+ cm+1vm+1 = 0.

Multiplying (5.6) by λ1 we get

(5.7) c1λ1v1 + c2λ1v2 + . . .+ cm+1λ1vm+1 = 0.

Since

0 = T (0)

= T
(
c1v1 + c2v2 + . . .+ cm+1vm+1

)
= c1T (v1) + c2T (v2) + . . .+ cm+1T (vm+1)

= c1λ1v1 + c2λ2v2 + . . .+ cm+1λm+1vm+1,

subtracting (5.7) from the last equality we get

(5.8) c2(λ2 − λ1)v2 + . . .+ cm+1(λm+1 − λ1)vm+1 = 0.

Since
PWU(λ1, . . . , λm+1)⇒ PWU(λ2, . . . , λm+1),

and
EIGENT (v1, . . . , vm+1;λ1, . . . , λm+1)⇒
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EIGENT ((λ2 − λ1)v2, . . . , (λm+1 − λ1)vm+1;λ2, . . . , λm+1),

by the inductive hypothesis on v2, . . . , vm+1 ∈ X and λ2 − λ1, . . . , λm+1 − λ1 ∈ R
we get

LIND(v2, . . . , vm+1),

and by (5.8) we get

c2(λ2 − λ1) = . . . = cm+1(λm+1 − λ1) = 0.

since by PWU(λ1, . . . , λm+1) we have that (λ2−λ1) 6= 0 and . . . and (λm+1−λ1) 6=
0, we conclude that

c2 = . . . = cm+1 = 0.

Since then (5.7) becomes c1v1 = 0, we get c1 = 0. Since c1, . . . , cm+1 are arbitrary,
we get LIND(v1, . . . , vm+1). �

By the Theorem 5.2.2 we get another proof that the functions

f1(t) = eλ1t, . . . , fm(t) = eλmt

where PWU(λ1, . . . , λm), are linearly independent in C∞(R), since

EIGEN(f1, . . . , fm;λ1, . . . , λm).

Corollary 5.2.3. If X is a linear space with dim(X) = n ≥ 1, T ∈ L(X),
and v1, . . . , vn are eigenvectors of T with eigenvalues λ1, . . . , λn, respectively, such
that λi 6= λj for every i, j ∈ {1, . . . , n} with i 6= j, then {v1, . . . , vn} is a basis of
X.

Proof. Exercise. �

Proposition 5.2.4. Let X be a non-trivial finite-dimensional linear space,
BX = {v1, . . . , vn} a basis of X, and T ∈ L(X).

(i) BX diagonalises T if and only if v1, . . . , vn are eigenvectors of T .

(ii) T is diagonalisable if and only if there is a basis of X consisting of eigenvectors
of T .

Proof. Exercise (use the Definition 3.3.12). �

Next we describe a space having a basis consisting of eigenvectors.

5.3. The simplest ode, but one of the most important

If a ∈ R and x : J → R is differentiable, where J is an interval of R, one can
show (exercise) that the ordinary differential equation (ode)

(5.9) x′(t) = ax(t)

has as set of solutions the set

Sol(5.9) =
{
s : J → R | ∃C∈R∀t∈J

(
s(t) = Ceat

)}
.
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The equation (5.9) is the simplest ode. If s ∈ Sol(5.9), then s(0) = C. Conversely,
there is a unique function s ∈ Sol(5.9) such that s(0) = C. This is a special case
of the existence of a unique s ∈ Sol(5.9) satisfying the initial condition s(t0) = s0,
where t0 ∈ J . The parameter a in (5.9) influences dramatically the way the solution
curve s looks like. If a > 0, then we have the following three cases:

a > 0 C > 0

C < 0

C = 0

If C > 0, then limt−→+∞ Ceat = +∞, and if C < 0, then limt−→+∞ Ceat = −∞.
If a = 0, the solution curves are constant functions

a = 0
C > 0

C < 0

C = 0

If a < 0, we have the following three cases:

a < 0C > 0

C < 0

C = 0

In this case, if C 6= 0, then

lim
t−→+∞

Ceat = C lim
t−→+∞

e−|a|t = C lim
t−→+∞

1

e|a|t
= 0.
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The above graphs reflect the qualitative behavior of the solution curves. If a 6= 0,
equation (5.9) is stable in the following sense: If a is replaced by some a′ sufficiently
close to a, the qualitative behavior of the solution curves does not change. E.g., we
have that

|a′ − a| < |a| ⇒ sign(a′) = sign(a),

since, if a > 0, then |a′ − a| < a⇔ −a < a′ − a < a⇒ 0 < a′ < 2a, while, if a < 0,
then |a′ − a| < −a ⇔ a < a′ − a < −a ⇒ 2a < a′ < 0. If a = 0, equation (5.9)
is unstable, since the slightest change in the value of a implies a big change in the
qualitative behavior of the solution curves. For this reason we say that a = 0 is a
bifurcation point in the one-parameter family of equations(

x′(t) = ax(t)

)
a∈R

.

Let the following system of two odes in two unknown functions:

(5.10)
x1
′(t) = a1x1(t),

x2
′(t) = a2x2(t).

Since there is no relation between x1(t) and x2(t), we have that

Sol(5.10) =

{
s : J → R2 | ∃C1,C2∈R∀t∈J

(
s(t) =

(
C1e

a1t, C2e
a2t
))}

.

If s1(t) = C1e
a1t and s2(t) = C2e

a2t, we get C1 = s1(0) and C2 = s2(0). The
equation (5.10) can be written as

(5.11) x′(t) = Ax(t),

where

A : R2 → R2,

A(x1, x2) := (a1x1, a2, x2)

is a vector field on R2, which geometrically we understand as a function that assigns
to each vector x ∈ R2 the directed line segment from x to x+Ax.

x

x(t)

Ax(t)

x(t) +Ax(t)
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We can write the equation (5.10) using matrices as follows

(5.12)

[
x1
′(t)

x2
′(t)

]
=

[
a1 0
0 a2

] [
x1(t)
x2(t)

]
.

If J is an interval of R, x1, . . . , xn : J → R are differentiable functions, and
aij ∈ R, for every i, j ∈ {1, . . . , n}, let the following system of odes

(5.13)

x1
′(t) = a11x1(t) + . . .+ a1nxn(t),

...
...

...

xi
′(t) = ai1x1(t) + . . .+ ainxn(t),

...
...

...

xn
′(t) = an1x1(t) + . . .+ annxn(t).

We can write equation (5.13) using matrices as follows

(5.14)



x1
′(t)
...

xi
′(t)
...

xn
′(t)

 =



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

an1 . . . ann





x1(t)
...

xi(t)
...

xn(t)

 ,
or, generalizing the simplest ode, we can write it in the form

(5.15) x′(t) = Ax(t),

where

(5.16) A :=



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

an1 . . . ann

 =: [aij ].

Proposition 5.3.1. Let the system of odes (5.15), and let λ1, . . . , λn ∈ R such
that

A = Diag(λ1, . . . , λn).

If Sol is the set of solutions of the system (5.15), then Sol is a linear space and

Sol =
〈[
eλ1t

]
, . . . ,

[
eλnt

]〉
,

where [
eλ1t

]
:=
(
eλ1t,0, . . . ,0

)
, . . . ,

[
eλnt

]
:=
(
0,0, . . . , eλnt

)
.

Proof. Exercise. �
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5.4. Determinants

Definition 5.4.1. If

A =

[
a b
c d

]
is a 2× 2-matrix, its determinant Det(A) is defined by

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc.

If

A1 :=

[
a
c

]
& A2 :=

[
b
d

]
are the columns of A, we use the notation

Det(A) = Det(A1, A2).

We have that

Det(I2) :=

∣∣∣∣1 0
0 1

∣∣∣∣ := 1− 0 = 1.

It is also clear that

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc =:

∣∣∣∣a c
b d

∣∣∣∣ =: Det(At).

Remark 5.4.2. Let the following 2× 1 matrices:

A1 :=

[
a1

a2

]
, C1 :=

[
c1
c2

]
, B2 :=

[
b1
b2

]
, D2 :=

[
d1

d2

]
.

The following hold.

(i) Det(A1 + C1, B2) = Det(A1, B2) + Det(C1, B2).

(ii) Det(A1, B2 +D2) = Det(A1, B2) + Det(A1, D2).

(iii) If λ ∈ R, then Det(λA1, B2) = λDet(A1, B2) = Det(A1, λB2).

(iv) If A1 = B2, then Det(A1, B2) = 0.

Proof. We prove only (i), and the rest is an exercise.

Det(A1 + C1, B2) :=

∣∣∣∣a1 + c1 b1
a2 + c2 b2

∣∣∣∣
:= (a1 + c1)b2 − b1(a2 + c2)

= (a1b2 − b1a2) + (c1b2 − b1c2)

:=

∣∣∣∣a1 b1
a2 b2

∣∣∣∣+

∣∣∣∣c1 b1
c2 b2

∣∣∣∣
:= Det(A1, B2) + Det(C1, B2).

�



114 5. OPERATORS

Although one can use the definition of Det(A) to show the following corollary,
its proof is simpler, if we use the fundamental properties of the Remark 5.4.2.

Corollary 5.4.3. Let the following 2× 1 matrices:

A1 :=

[
a1

a2

]
, B2 :=

[
b1
b2

]
.

The following hold.

(i) If λ ∈ R, then Det(A1 + λB2, B2) = Det(A1, B2).

(ii) If λ ∈ R, then Det(A1, B2 + λA1) = Det(A1, B2).

(iii) Det(A1, B2) = −Det(B2, A1).

Proof. Exercise. �

The determinant of a matrix A provides non-trivial information on vectors
related to A. We have seen that Det(I2) = 1 6= 0, and we know that the columns
e1 := (1, 0) and e2 := (0, 1) of the matrix I2 are linearly independent elements.
This is a special case of the following general fact.

Proposition 5.4.4. Let the following 2× 1 matrices:

A :=

[
a1

a2

]
, B :=

[
b1
b2

]
.

The vectors (a1, a2) and (b1, b2) are linearly independent in R2 if and only if

Det(A,B) 6= 0.

Proof. (⇒) Suppose that (a1, a2) and (b1, b2) are linearly independent in R2,
and suppose that

Det(A,B) :=

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ := a1b2 − b1a2 = 0.

Since then we have that

b2(a1, a2) + (−a2)(b1, b2) = (b2a1 − a2b1, b2a2 − a2b2) = (0, 0),

by the hypothesis of linear independence of (a1, a2) and (b1, b2) we get

b2 = 0 = −a2 = a2.

Hence the two vectors take the form (a1, 0) and (b1, 0). Since they are linearly
independent, these are non-zero vectors, hence a1 6= 0 and b1 6= 0. Consequently,
we have that (a1, 0) = a1

b1
(b1, 0) i.e., the vectors (a1, a2) and (b1, b2) are linearly

dependent, which is a contradiction. Hence, Det(A,B) 6= 0.

(⇐) Suppose that Det(A,B) 6= 0, and let λ, µ ∈ R such that

λ(a1, a2) + µ(b1, b2) = (0, 0)⇔ (λa1 + µb1, λa2 + µb2) = (0, 0),

hence
λa1 = −µb1 & λa2 = −µb2.
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Suppose that λ 6= 0 (if we suppose that µ 6= 0. we proceed similarly). By the
Remark 5.4.2 we have that

Det(A,B) =

∣∣∣∣(−µλ )b1 b1(−µ
λ

)
b2 b2

∣∣∣∣
=

(
−µ
λ

) ∣∣∣∣b1 b1
b2 b2

∣∣∣∣
=

(
−µ
λ

)
0

= 0,

which is a contradiction. Hence λ = 0 = µ, and the vectors (a1, a2), (b1, b2) are
linearly independent. �

Proposition 5.4.5. Let A,B ∈M2(R).

(i) Det(AB) = Det(A)Det(B).

(ii) A is invertible if and only if Det(A) 6= 0.

Proof. (i) Exercise.
(ii) If AA−1 = I2, then by the case (i) we have that

1 = Det(I2) = Det(AA−1) = Det(A)Det(A−1),

hence Det(A) 6= 0, Det(A−1) 6= 0, and

Det(A−1) =
1

Det(A)
.

For the converse let

A =

[
a b
c d

]
and suppose that

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc 6= 0.

We show that the system [
a b
c d

] [
x y
z w

]
=

[
1 0
0 1

]
⇔

[
ax+ bz ay + bw
cx+ dz cy + dw

]
=

[
1 0
0 1

]
⇔

ax+ bz = 1 & cx+ dz = 0,

and

ay + bw = 0 & cy + dw = 1,
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has a solution. If we multiply the equation ax + bz = 1 by d and the equation
cx+ dz = 0 by b and then we subtract them, we get

dax+ dbz − bcx− bdz = d⇔ x =
d

ad− bc
.

Working similarly, we get

A−1 :=

[
x y
z w

]
=

1

Det(A)

[
d −b
−c a

]
.

�

Definition 5.4.6. If

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


is a 3× 3-matrix, its determinant Det(A) is defined by

Det(A) :=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ := a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ .
As expected, we have that

Det(I3) :=

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ := 1

∣∣∣∣1 0
0 1

∣∣∣∣− 0

∣∣∣∣0 0
0 1

∣∣∣∣+ 0

∣∣∣∣0 1
0 0

∣∣∣∣ = 1.

More generally, if we consider a matrix in diagonal form, then for the corresponding
determinant we have that∣∣∣∣∣∣

λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣ := λ1

∣∣∣∣λ2 0
0 λ3

∣∣∣∣− 0

∣∣∣∣0 0
0 λ3

∣∣∣∣+ 0

∣∣∣∣0 λ2

0 0

∣∣∣∣ = λ1λ2λ3.

All results we showed for the determinant of a matrix in M2(R) hold for the
determinant of a matrix in Mn(R). To define Det(A), where A ∈Mn(R) and n > 2,
we suppose that we have defined Det(B), for every B ∈Mn−1(R), and we let

Det(A) := (−1)i+1ai1Det(Ai1) + . . .+ (−1)i+nainDet(Ain),

where the matrix Aij ∈ Mn−1(R) is obtained from A by crossing out the i-th row
and the j-th column. E.g., if n = 3 and i = 1, we get

Det(A) := (−1)1+1a11Det(A11) + (−1)1+2a12Det(A12) + (−1)1+3a13Det(A13)

= a11Det(A11)− a12Det(A12) + a13Det(A13).

It can be shown that Det : Mn(R) → R is the unique function from Mn(R)
to R that satisfies Remark 5.4.2(i)-(iii) and sends In to 1 (see [17] p. 149 and p.
171), and it is the unique function from Mn(R) to R that satisfies the following
conditions:
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(D1) Det(AB) = Det(A)Det(B),

(D2) Det(In) = 1,

(D3) Det(A) 6= 0 if and only if A is invertible.

If B is invertible, it is easy to see that

(D4) Det(B−1) = Det(B)−1,

(D5) Det(BAB−1) = Det(A).

From (D3) on shows that if A ∈Mn(R), then

Det(A) 6= 0⇔ Ker(TA) = {0},

and equivalently we have that

Det(A) = 0⇔ {0} ( Ker(TA)⇔ A is not invertible.

5.5. The characteristic polynomial

Proposition 5.5.1. If X is a finite-dimensional linear space, T ∈ L(X) and
λ ∈ R, then λ is an eigenvalue of T if and only if T − λidX is not invertible.

Proof. We have that

T − λidX is not invertible ⇔ T is not an injection

⇔ {0} ( Ker(T − λidX)

⇔ ∃x∈X
(
x 6= 0 & T (x) = λx

)
⇔ λ is an eigenvalue of T.

�

Definition 5.5.2. If A ∈Mn(R), the characteristic polynomial of A is

pA(t) := Det(tIn −A) =

∣∣∣∣∣∣∣∣∣
t− a11 −a12 . . . −a1n

−a21 t− a22 . . . −a2n

...
...

...
...

−an1 −an2 . . . t− ann

∣∣∣∣∣∣∣∣∣ .
If T ∈ L(Rn), the characteristic polynomial pT of T is pAT

. If X is an n-dimensional
linear space and T ∈ L(X), the characteristic polynomial pT of T is pATBX

, where

BX is a basis of X.

By the definition of Det(A) we can show inductively that

pA(t) = tn + a polynomial of a degree lower than n.
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If T ∈ L(X), pT is independent from the choice of the basis BX . For this we use
the Theorem 3.3.11 and the fact that similar matrices have equal characteristic
polynomials; if C = B−1AB, and if t ∈ R, then by the property (D5) of Det we get

Det(tIn −B−1AB) = Det(tB−1B −B−1AB)

= Det(B−1tB −B−1AB)

= Det(B−1(tB −AB))

= Det(B−1(tInB −AB))

= Det(B−1(tIn −A)B)

(D5)
= Det(tIn −A).

E.g., if

A =

 1 −1 3
−2 1 1
0 1 −1

 ,
pA(t) =

∣∣∣∣∣∣
t− 1 1 −3

2 t− 1 −1
0 −1 t+ 1

∣∣∣∣∣∣ = t3 − t2 − 2t+ 4.

Proposition 5.5.3. If A ∈Mn(R) and λ ∈ R, then λ is an eigenvalue of A if
and only if λ is a root of the characteristic polynomial of A.

Proof. By the Definition 5.2.1 and the Proposition 5.5.1 we have that

λ is an eigenvalue of A :⇔ λ is an eigenvalue of TA

⇔ TA − λidX is not invertible

⇔ λidX − TA is not invertible

⇔ Det(A[λidX−TA]) = 0

⇔ Det(λIn −A) = 0

⇔ pA(λ) = 0.

�

E.g., if

A =

[
1 4
2 3

]
,

pA(t) =

∣∣∣∣t− 1 −4
−2 t− 3

∣∣∣∣ = t2 − 4t− 5 = (t− 5)(t+ 1),

and the eigenvalues of A are 5 and −1. If (x, y) is an eigenvector of A, the system[
1 4
2 3

] [
x
y

]
=

[
λx
λy

]
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takes the form

x+ 4y = λx,

2x+ 3y = λy,

or equivalently

(1− λ)x+ 4y = 0,

2x+ (3− λ)y = 0.

If x = 1, the pair

(
1, 2

λ−3

)
is an eigenvector of A. If λ = 5, the eigenspace X5 has

as basis the set {(1, 1)}, and if λ = −1, then X−1 has as basis the set {
(
1,− 1

2

)
}.

Proposition 5.5.4. If X is a linear space, T ∈ L(X), n ≥ 1, and BX :=
{v1, . . . , vn} is a basis of X consisting of eigenvectors of T with distinct eigenvalues
λ1, . . . , λn, respectively, an eigenvector of T is a scalar multiple of some vi ∈ BX .

Proof. Exercise. �

5.6. The spectral theorem

Definition 5.6.1. If A ∈ Mn(R) is symmetric, the quadratic form qA associ-
ated with A is the function qA : Rn → R, defined, for every x ∈ Rn, by

qA(x) := 〈x,Ax〉.

If x ∈ Rn, by our remark after the Definition 5.1.2 we have that

qA(x) = xtAx

=
[
x1 . . . xn

] a11 . . . a1n

...
...

...
an1 . . . ann


x1

...
xn


=
[
x1a11 + . . .+ xnan1 . . . x1a1n + . . . xnann

] x1

...
xn


=
[∑n

i=1 xiai1 . . .
∑n
i=1 xiain

] x1

...
xn


= x1

n∑
i=1

xiai1 + . . .+ xn

n∑
i=1

xiain

=

n∑
j=1

( n∑
i=1

xiaij

)
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=

n∑
j=1,i=1

xjxiaij

=

n∑
i,j=1

aijxixj ,

hence, since x ∈ Rn is arbitrary, we get

(5.17) qA =

n∑
i,j=1

aijpriprj

Definition 5.6.2. A function f : Rn → Rm is called continuous, if for every
V ⊆ Rm open its inverse image

f−1(V ) := {x ∈ Rn | f(x) ∈ V }

under f is open in Rn. We denote by C(Rn,Rm) the set of continuous functions
from Rn to Rm, and we also use the notation C(Rn) := C(Rn,R).

It is easy to see that C(Rn) is a linear space and it is also closed under multi-
plication. The composition of continuous functions is also continuous. If G is open
in R, we have that

pr−1
i (G) = R× . . .× R×G× R . . .× R,

hence pri is a continuous function, and by (5.17) qA ∈ C(Rn).

Definition 5.6.3. A subset B of Rn is called bounded, if there are r > 0 and
x0 ∈ Rn such that B ⊆ B(x0, r). A subset K of Rn is called compact, if K is closed
and bounded.

Clearly, the unit sphere S1(Rn) of Rn, where

S1(Rn) := {x ∈ Rn | |x| = 1},

is closed and bounded, therefore a compact subset of Rn. One can show that if
f ∈ C(Rn), its restriction f|K : K → R to a compact subset K of Rn has a
maximum on K i.e., there is some u ∈ K such that

∀x∈K
(
f(u) ≥ f(x)

)
.

This fundamental result is a generalisation of the fact that a continuous function
f : [a, b]→ R has a maximum value. For a proof of this see e.g., [11], p. 31.

Theorem 5.6.4. Let A ∈Mn(R) be symmetric, and qA : Rn → R the quadratic
form associated with A. If P ∈ S1(Rn) such that qA(P ) is the maximum value of
qA on S1(Rn), then P is an eigenvector of A.

Proof. If we define Y := 〈P 〉⊥, then dim(Y ) = n− 1. Let also

Y1 := Y ∩ S1(Rn) = {y ∈ Y | |y| = 1}.
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If Q ∈ Y1, let the curve2 xQ : R→ Rn, defined by

xQ(t) := (cos t)P + (sin t)Q,

for every t ∈ R. Clearly, xQ(0) = P . If t ∈ R, and since Q⊥P , we have that

|xQ(t)| =
√
〈xQ(t),xQ(t)〉

=
√
〈(cos t)P + (sin t)Q, (cos t)P + (sin t)Q〉

=
√
〈(cos t)P, (cos t)P 〉+ 〈(sin t)Q, (sin t)Q〉

=

√
(cos2 t)〈P, P 〉+ (sin2 t)〈Q,Q〉

=

√
(cos2 t) + (sin2 t)

= 1

i.e., xQ : R→ S1(Rn). Moreover, if t ∈ R, then

xQ
′(t) := (− sin t)P + (cos t)Q,

hence xQ
′(0) = Q. If g := qA ◦ xQ : R→ R

R Rn

R,

xQ

qAg

then for every t ∈ R we have that

g(t) := qA(xQ(t)) := 〈xQ(t), AxQ(t)〉,

hence using the Leibniz rule for the derivative of the product of two real-valued
functions3 and by the symmetry of A we get

g′(t) = 〈xQ′(t), AxQ(t)〉+ 〈xQ(t), AxQ
′(t)〉

= 〈xQ′(t), AxQ(t)〉+ 〈AxQ(t),xQ
′(t)〉

= 2〈xQ′(t), AxQ(t)〉

2A curve in Rn is a function x : I → Rn, where I is an interval of R. If x(t) =(
x1(t), . . . , xn(t)

)
, for every t ∈ I, we say that x is differentiable on I if the coordinate functions

x1(t), . . . , xn(t) of x are differentiable on I. If x : I → Rn is a differentiable curve, its derivative

is the curve x′ : I → Rn defined, for every t0 ∈ I, by x′(t0) := dx
dt

(t0) :=
(
x1′(t0), . . . , xn′(t0)

)
:=( dx1

dt
(t0), . . . , dxn

dt
(t0)

)
. We call x′(t0) the velocity vector of x(t) at time t0.

3If I is an interval of R and x,y : I → Rn are differentiable curves, then it is easy to show
that the function 〈x,y〉 : I → R satisfies the Leibniz rule: 〈x,y〉′(t) = 〈x′(t),y(t)〉+ 〈x(t),y′(t)〉.
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for every t ∈ R. Since g(0) = qA(xQ(0)) = qA(P ) is the maximum value of qA on
S1(Rn), we have that

0 = g′(0)⇔ 2〈xQ′(0), AxQ(0)〉 = 0

⇔ 〈Q,AP 〉 = 0

⇔ AP⊥Q.

Since Q is an arbitrary element of Y1, we get AP⊥Y1 i.e., AP ∈ Y ⊥1 , hence AP ∈
〈P 〉 i.e., there is some λ ∈ R such that AP = λP . �

Theorem 5.6.5. Let (X, 〈〈, 〉〉) be a finite-dimensional, positive definite inner
product space. If T ∈ L(X) is symmetric, then T has a non-zero eigenvector.

Proof. We use the Theorem 5.6.4 and the fact that AT is symmetric. �

Definition 5.6.6. Let (X, 〈〈·, ·〉〉) be a linear space, Y is a subspace of X and
T ∈ L(X). We say that Y is invariant under T , or T -invariant, if T (Y ) ⊆ Y i.e.,

∀y∈Y
(
T (y) ∈ Y

)
,

and we write INV(Y ;T ).

Proposition 5.6.7. Let X be a finite-dimensional, positive definite inner prod-
uct space, Y a subspace of X, T ∈ L(X) symmetric with respect to 〈〈·, ·〉〉, and
x0 ∈ X a non-zero eigenvector of T .

(i) If z ∈ X such that z⊥x0, then T (z)⊥x0.

(ii) If INV(Y ;T ), then INV(Y ⊥;T ).

Proof. (i) If λ ∈ R such that T (x0) = λx0, then by the symmetry of T we get

0 = λ〈〈x0, z〉〉 = 〈〈λx0, z〉〉 = 〈〈T (x0), z〉〉 = 〈〈x0, T (z)〉〉.
(ii) If z ∈ Y ⊥, we show that T (z) ∈ Y ⊥. If y ∈ Y , by the symmetry of T we get

〈〈T (z), y〉〉 = 〈〈y, T (z)〉〉 = 〈〈T (y), z〉〉 = 0,

since T (y) ∈ Y and z ∈ Y ⊥. �

Definition 5.6.8. A basis BX of a linear space consisting of eigenvectors of
some T ∈ L(X) is called a spectral basis for T .

Clearly, a spectral basis for T diagonalises T .

Theorem 5.6.9 (Spectral theorem). Let (X, 〈〈·, ·〉〉) be a non-trivial, finite-
dimensional, positive definite inner product space. If T ∈ L(X) is symmetric with
respect to 〈〈·, ·〉〉, then X has an orthogonal spectral basis for T .

Proof. By the Theorem 5.6.5 T has a non-zero eigenvector v1 with eigenvalue
λ1 ∈ R. Let Y1 := 〈y1〉. If x = av1 ∈ Y1, for some a ∈ R, then

T (x) = T (av1) = aT (v1) = aλ1v1 = (aλ1)v1 ∈ Y1
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i.e., INV(Y1;T ). By the Proposition 5.6.7(ii) we get INV(Y ⊥1 ;T ). Since X =
Y1 ⊕ Y ⊥1 , we get dim(Y ⊥1 ) = n − 1 ≥ 0. If n − 1 = 0, then what we want follows
immediately. If n − 1 > 0, we repeat the previous argument for the symmetric
operator

T|Y ⊥1 : Y ⊥1 → Y ⊥1 .

Note that a non-zero eigenvector of T|Y ⊥1 is a non-zero eigenvector of T . After n

number of steps an orthogonal basis of X is formed consisting of eigenvectors of
T . �

If BX is an orthogonal spectral basis for T , then multiplying each element of
BX with the inverse of its norm we get an orthonormal spectral basis for T .

Corollary 5.6.10. Let (X, 〈〈·, ·〉〉) be a non-trivial, finite-dimensional, positive
definite inner product space, T ∈ L(X) symmetric with respect to 〈〈·, ·〉〉, and v1, v2

eigenvectors of T with eigenvalues λ1, λ2, respectively. If λ1 6= λ2, then v1⊥v2.

Proof. Exercise. �





CHAPTER 6

Appendix

In the appendix we include some material from various areas that is necessary
to the understanding of the main topics of the lecture course.

6.1. Some logic

If P is any formula1, we define its negation ¬P (not P ) by

¬P := P ⇒ ⊥,

where ⊥ is a formula representing an absurdity.

When we prove a formula we use some logical rules, like the following:

[P & (P ⇒ Q)]⇒ Q,

which is called Modus Ponens (MP), or like the following rules for the conjunction
“P and Q” (P & Q) of the formulas P,Q:

(P & Q)⇒ P,

(P & Q)⇒ Q.

Conversely, if we have a proof of P and a proof of Q, we get a proof of P & Q. A
logical rule used in classical mathematics2 is the double negation shift (DNS)

(¬¬P )⇒ P.

The principle of the excluded middle (PEM) is the rule

P ∨ (¬P ),

1A comprehensive introduction to first-order logic can be found in [20].
2Mathematics can be done also without the use of DNS and of PEM, in a way that does not

contradict classical mathematics i.e., mathematics done with classical logic. This more general

kind of mathematics is called constructive mathematics (see [5] and [4]). The mathematics used
in physics is mainly classical mathematics. There are though, applications of constructive mathe-
matics in physics (see [13] and [7]). The logical system generated by excluding DNS, or PEM, is

called intuitionistic logic and its father is the great Dutch topologist L. E. J. Brouwer.

125
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where P ∨ Q is the disjunction, “P or Q”, of the formulas P,Q. The Ex falso
quodlibet (Efq) - “from falsity anything follows” - is the rule, where P is any formula,

⊥ ⇒ P,

Lemma 6.1.1. If P,Q are formulas, then
[
¬(P & Q)

]
⇔
(
Q⇒ ¬P

)
.

Proof. First we show that
[
¬(P & Q)

]
⇒
(
Q⇒ ¬P

)
. For that we suppose

¬(P & Q) := (P & Q)⇒ ⊥,
and we prove

Q⇒ ¬P := Q⇒ (P ⇒ ⊥).

For that we suppose Q and we show P ⇒ ⊥. Suppose P . Since we already have
supposed a proof of Q, we get a proof of P & Q, and by MP we get ⊥.

Next we show the converse implication
(
Q ⇒ ¬P

)
⇒
[
¬(P & Q)

]
. For that we

suppose
Q⇒ ¬P := Q⇒ (P ⇒ ⊥),

and we prove
¬(P & Q) := (P & Q)⇒ ⊥.

For that we suppose P & Q and we show ⊥. If we have P & Q, we get Q. Hence
by MP with our hypothesis we get P ⇒ ⊥. Similarly, if we have P & Q, we get P ,
hence by MP with the hypothesis P ⇒ ⊥ we get ⊥. �

If φ(x) is a formula, we use the following abbreviations:

∃x∈Xφ(x) := ∃x
(
x ∈ X & φ(x)

)
,

∀x∈Xφ(x) := ∀x
(
x ∈ X ⇒ φ(x)

)
.

Proposition 6.1.2. (i) ¬∃x∈Xφ(x)⇔ ∀x∈X
(
¬φ(x)

)
.

(ii) ¬∀x∈Xφ(x)⇔ ∃x
(
¬φ(x)

)
.

Proof. (i) First we show that ¬∃x∈Xφ(x) ⇒ ∀x∈X
(
¬φ(x)

)
. For that we

suppose

¬∃x∈Xφ(x) :=
[
∃x∈Xφ(x)

]
⇒ ⊥ :=

[
∃x
(
x ∈ X & φ(x)

)]
⇒ ⊥,

and we prove

∀x∈X
(
¬φ(x)

)
:= ∀x

(
x ∈ X ⇒ ¬φ(x)

)
:= ∀x

(
x ∈ X ⇒ (φ(x)⇒ ⊥)

)
.

Let x such that x ∈ X. We show that φ(x) ⇒ ⊥. For that we suppose φ(x). But
then we have that ∃x

(
x ∈ X & φ(x)

)
, and by MP we get ⊥.

Next we show that ∀x∈X
(
¬φ(x)

)
⇒ ¬∃x∈Xφ(x). For that we suppose

∀x∈X
(
¬φ(x)

)
:=:= ∀x

(
x ∈ X ⇒ ¬φ(x)

)
:= ∀x

(
x ∈ X ⇒ (φ(x)⇒ ⊥)

)
,

and we show that

¬∃x∈Xφ(x) :=
[
∃x∈Xφ(x)

]
⇒ ⊥ :=

[
∃x
(
x ∈ X & φ(x)

)]
⇒ ⊥.
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Suppose ∃x
(
x ∈ X & φ(x)

)
. By our hypothesis instantiated to this x ∈ X we get

φ(x)⇒ ⊥. Since from x ∈ X & φ(x) we get φ(x), by MP we get ⊥.

(ii) Exercise. �

If φ(x, y) is a formula, we use the following abbreviations:

∃x,y∈Xφ(x, y) := ∃x∈X∃y∈Xφ(x, y),

∀x,y∈Xφ(x, y) := ∀x∈X∀y∈Xφ(x, y),

and, generally, if n ≥ 1, and φ(x1, . . . , xn) is a formula, we use the following abbre-
viations:

∃x1,...,xn∈Xφ(x1, . . . , xn) := ∃x1∈X . . . ∃xn∈Xφ(x1, . . . , xx),

∀x1,...,xn∈Xφ(x1, . . . , xn) := ∀x1∈X . . . ∀xn∈Xφ(x1, . . . , xx).

Corollary 6.1.3.

(i) ¬
(
∃x1,...,xn∈Xφ(x1, . . . , xn)

)
⇔ ∀x1,...,xn∈X

(
¬φ(x1, . . . , xn)

)
.

(ii) ¬
(
∀x1,...,xn∈Xφ(x1, . . . , xn)

)
⇔ ∃x1,...,xn∈X

(
¬φ(x1, . . . , xn)

)
.

Proof. We prove only (i), and for n = 2. The proof of the inductive step is
the same. For (ii) we work similarly. By the repeated use of the Proposition 6.1.2(i)
we get

¬∃x,y∈Xφ(x, y) := ¬∃x∈X∃y∈Xφ(x, y)

:= ¬∃x∈X
[
∃y∈Xφ(x, y)

]
⇔ ∀x∈X¬

[
∃y∈Xφ(x, y)

]
⇔ ∀x∈X∀y∈X

(
¬φ(x, y)

)
:= ∀x,y∈X

(
¬φ(x, y)

)
�

Next we write the expression that abbreviates the unique existence of an ele-
ment of a set X satisfying a formula φ(x):

∃!x∈X
(
φ(x)

)
:⇔ ∃x∈X

(
φ(x) & ∀y∈X

(
φ(y)⇒ y = x

))
.
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6.2. Some set theory

The theory of sets is a very recent enterprise in the history of mathematics,
which was created by Cantor. At the beginning, Cantor used the Full Comprehen-
sion Scheme (FCS):

∃u(u = {x | φ(x)}),
which guarantees the existence of a set generated by any formula φ that is formed
by the symbol of elementhood ∈. Russell, and independently Zermelo, found that
Cantor’s principle was contradictory: if φ(x) := x /∈ x, then by FCS we have that

R = {x | x /∈ x}
is a set. The contradiction

R ∈ R⇔ R /∈ R
is known as Russell’s paradox. Zermelo’s Restricted Comprehension Scheme (RCS),
also known as Separation Scheme,

∃u(u = {x ∈ v | φ(x)})
replaced the problematic principle FCS, and Russell’s paradox was avoided. If V
is the universe of all sets i.e.,

V := {x | x = x},
then RCS implies that V /∈ V : if V ∈ V , then by RCS we have that u = {x ∈ V |
x /∈ x} ∈ V and then u ∈ u ↔ u /∈ u. If FCS was not contradictory, we wouldn’t
need so many axioms to describe our intuition about sets. E.g., the union of two
sets would be defined as u ∪ v = {x | x ∈ u ∨ x ∈ v}. The first-order non-logical
axioms of the Zermelo-Fraenkel set theory ZF in the first-order language of the
symbol ∈ are the following3:

Extensionality : ∀x,y
(
∀z(z ∈ x⇔ z ∈ y)⇒ x = y

)
.

Empty set : ∃x∀y(y /∈ x).

Unordered pair : ∀x,y∃z∀w(w ∈ z ⇔ w = x ∨ w = y).

Union: ∀x∃y∀z
(
z ∈ y ⇔ ∃w(w ∈ x & z ∈ w)

)
.

Replacement Scheme: If φ(x, y, ~w) is a function formula, then

∀x∃v∀y
(
y ∈ v ⇔ ∃z(z ∈ x & φ(z, y, ~w))

)
.

Power-set : ∀x∃y∀z
(
z ∈ y ⇔ ∀w(w ∈ z ⇒ w ∈ x)

)
.

Foundation: ∀x
(
x 6= ∅ ⇒ ∃z

(
z ∈ x & ¬∃w(w ∈ z ∧ w ∈ x)

))
.

Infinity : ∃x
(
∅ ∈ x & ∀y(y ∈ x⇒ y ∪ {y} ∈ x)

)
.

3An introduction to the axiomatic set theory can be found in [10]. A more advanced book

on the subject is [15].
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Unlike the axioms for linear spaces (first came the examples, or models, of linear
spaces, and then came the axioms for a linear space) the axioms for sets were given
first and then their models were studied! The axioms of ZF are generally “accepted”
by the classical mathematicians, and ZF is considered the standard foundation of
classical mathematics. A function f : x→ y, where x, y are sets in ZF, is defined as
an appropriate subset of x× y, where the notion of an ordered pair can be defined
through the notion of an unordered pair as follows

(a, b) :=
{
{a}, {a, b}

}
.

Clearly, {
{a}, {a, b}

}
=
{
{c}, {c, d}

}
⇔ a = c & b = d.

If we add to ZF the axiom of choice, we get the system ZFC, where the axiom of
choice can be formulated4 as follows.

Axiom of choice (AC): If (Aj)j∈J is a family of non-empty sets indexed by some
set J , there is a function

f : J →
⋃
j∈J

Aj ,

such that f(j) ∈ Aj , for every j ∈ J .

The axiom of choice might be considered trivial, in case I is finite, but as we
show in the next theorem, in conjunction with the classical notion of sets, the AC,
even for finite I, has non-trivial consequences. If one considers a constructive notion
of set5, then the AC for I finite is not problematic, but the acceptance of the AC
when J is countable (i.e., when J has as many elements as N) is debatable. The ex-
trapolation though, to the case of an arbitrary set J has non-trivial, and sometimes
unexpected, consequences even from the point of view of classical mathematics6.

Theorem 6.2.1 (Diaconescu 1975). The AC together with some very small
part of Zermelo-Fraenkel set theory implies (constructively7) the principle of the
excluded middle PEM.

Proof. Let P be any well-formed formula, 2 := {0, 1}, and let the sets

A0 := {x ∈ 2 | x = 0 ∨ P},

4Another formulation of AC is the following: ∀v∃f :v→V ∀x∈v
(
x 6= ∅ ⇒ f(x) ∈ x

)
.

5There is a a constructive theory of sets CZF that uses intuitionistic logic and it is equivalent

to ZF, if PEM is added to it. See [1] for a comprehensive study of CZF.
6A consequence of the AC is the Banach-Tarski “paradox”, according to which, given a solid

ball in 3-dimensional space, there exists a decomposition of the ball into a finite number of disjoint

subsets, which can then be put back together in a different way to yield two identical copies of the
original ball. Indeed, the reassembly process involves only moving the pieces around and rotating

them without changing their shape. However, the pieces themselves are not solids in the usual
sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces.

7I.e., without the use of PEM.
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A1 := {x ∈ 2 | x = 1 ∨ P}.
Since 0 ∈ A0 and 1 ∈ A1, the sets A0 and A1 are non-empty. By AC there is

f : 2→
⋃
j∈2

Aj = A0 ∪A1 ⊆ 2

such that

f(0) ∈ A0 ⇔ f(0) = 0 ∨ P and

f(1) ∈ A1 ⇔ f(1) = 1 ∨ P.
Since f takes values in 2, we consider the following cases. If f(0) = 1, then, since
f(0) ∈ A0, we get P . If f(0) = 0, we consider the two possible cases for f(1). If
f(1) = 0, then, since f(1) ∈ A1, we get P . If f(1) = 1, we show ¬P i.e., we reach a
contradiction by supposing P . Suppose P . In this case A0 = A1 = 2. Let the set
{A0, A1} and the function f∗ : {A0, A1} → 2, defined by f∗(Aj) := f(j), for every
j ∈ 2. Since A0 = A1 ⇒ f∗(A0) = f∗(A1) ⇔ f(0) = f(1) ⇔ 0 = 1, we get the
required contradiction. Hence, we showed P ∨ ¬P . �

In the previous proof we used the (full) Separation Scheme, and the axioms for
the unordered pair, the empty set, to define 0 and 1, and the extensionality axiom.

Zorn’s lemma (ZL) [1935]: If I is a non-empty poset, such that every chain in I
is bounded, then I has a maximal element.

Theorem 6.2.2. AC⇒ ZL.

Proof. (Sketch) Let (I,�) be a non-empty poset, such that every chain in
I is bounded. Let C be a fixed chain in I, where by hypothesis

B(C) := {i ∈ I | i is a bound of C} 6= ∅.

With the use of PEM, either C contains a maximal element of I, or not. In the first
case, the existence of a maximal element follows immediately. Hence, we suppose
that C does not contain a maximal element of I (Hyp1). In this case, we show that

B∗(C) := {i ∈ B(C) | i /∈ C} 6= ∅.

Suppose that B∗(C) = ∅ i.e.,

∀i∈B(C)(i ∈ C) (Hyp2).

Let i0 ∈ B(C). By Hyp2 we get i0 ∈ C. If i ∈ I, such that i0 � i, then i ∈ B(C)
too, hence by Hyp2 we have that i ∈ C. Since i0 ∈ B(C), we get i � i0, hence by
the transitivity of � we conclude that i0 = i. Since i is an arbitrary element of I,
we have that i0 is a maximal element in I that it is also in C, which contradicts
the hypothesis Hyp1. Let

C :=
{
C ⊆ I | C is a chain in I that contains no maximal element of I

}
.
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By the previous remark the family
(
B∗(C)

)
C∈C is a family of non-empty sets in-

dexed by C, hence by AC there is a function

f : C →
⋃
C∈C

B∗(C)

such that

f(C) ∈ B∗(C), for every C ∈ C.
The idea of the rest of the proof is the following. Let i0 ∈ I. By PEM, either i0 is
maximal in I, and we are done, or it is not. In the latter case, {i0} is a chain in I
that contains no maximal element of I i.e., {i0} ∈ C. Hence,

f
(
{i0}

)
∈ B∗

(
{i0}

)
:=
{
i ∈ B

(
{i0}

)
| i 6∈ {i0}

}
i.e., f

(
{i0}

)
:= i1, such that i0 ≺ i1 :⇔ i0 � i1 & i0 6= i1. Repeating the same

argument, either i1 is maximal in I, or not. In the latter case, {i0, i1} is a chain in
I that contains no maximal element of I i.e., {i0, i1} ∈ C. Consequently,

i0 ≺ i1 ≺ f
(
{i0, i1}

)
.

Proceeding similarly, and repeating these steps at most as many times as the car-
dinality of I, the procedure will terminate, something which is equivalent to the
existence of a maximal element in I. �

6.3. Some more category theory

Definition 6.3.1. If C is a category, and f : A → B is an arrow in C, f is
called an iso, if there is an arrow g : B → A such that g ◦ f = 1A and f ◦ g = 1B .

In the Proposition 2.4.9 we showed that the product linear space X × Y of X
and Y satisfies the universal property of the products. Next we show that X × Y
is unique up to isomorphism i.e., if there is some linear space W and linear maps
$X : W → X and $Y : W → Y such that W also satisfies the universal property
of the products

X W Y ,

Z

$X $Y

f gh

then W is linearly isomorphic to X × Y . Our proof holds in any category i.e., if
A,B and C are objects in C, and if A×B and C satisfy the universal property of
the products in C, then there is an iso from A×B to C.

First we remark that if we consider Z := W, f := $X and g := $Y
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X W Y ,

W

$X $Y

$X $YidW

then, since idW makes the above inner diagrams commutative, and since the linear
map h is unique, we have that h = idW . Since X × Y and W both satisfy the
universal property of the products we get from the previous remark that

X W Y

X × Y

X × Y

$X $Y

prX prYh

gprX prY

g ◦ h = idX×Y . Similarly from the commutative diagrams

X X × Y Y

W

W

prX prY

$X $Yg

h$X $Y

we get that h ◦ g = idW , hence X × Y and W are (linearly) isomorphic.

Definition 6.3.2. In a commutative diagram of sets and functions, the arrows

X Y
f

X Y
f

X Y
f

denote an injection, a surjection, and a bijection, respectively.
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