

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 19/20 09.12.2019

Dr. Iosif Petrakis

Mathematische und Statistische Methoden für Pharmazeuten

Blatt 8

Aufgabe 1. Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} -1 & , x \le \sqrt{2} \\ 1 & , x > \sqrt{2}. \end{cases}$$

(i) Zeichnen Sie den Graphen von f.

[2 Punkte]

(ii) Ist f eine stetige Funktion im Punkt $\sqrt{2}$?

[2 Punkte]

Aufgabe 2. Sei $D \subseteq \mathbb{R}$ und sei $f: D \to \mathbb{R}$ stetig in D. Zeigen Sie das folgende:

(i) Die Funktion $f_1: D \to \mathbb{R}$ definiert durch

$$f_1(x) = |f(x)|,$$

für alle $x \in \mathbb{R}$, ist stetig in D.

[1 Punkt]

(ii) Die Funktion $f_2: D \to \mathbb{R}$ definiert durch

$$f_2(x) = -f(x)^2,$$

für alle $x \in \mathbb{R}$, ist stetig in D.

[1 Punkt]

(iii) Die Funktion $f_1:D\to\mathbb{R}$ definiert durch

$$f_3(x) = \sqrt{2019f(x)^4 + 2020f(x)^2},$$

für alle $x \in \mathbb{R}$, ist stetig in D.

[2 Punkte]

Aufgabe 3. Seien $a, b \in \mathbb{R}$ mit a < b und seit $f : [a, b] \to [a, b]$ stetig. Dann existiert ein $x_0 \in [a, b]$ mit $f(x_0) = x_0$.

[4 Punkte]

Aufgabe 4. Sei die Funktion $g: \mathbb{Q} \cap [-3,3] \to \mathbb{R}$ definiert durch

$$g(p) = \begin{cases} -1 & , -3 \le p < \sqrt{2} \\ 1 & , \sqrt{2} < p \le 3. \end{cases}$$

(i) Man zeige, dass g auf $\mathbb{Q} \cap [-3, 3]$ stetig ist.

[2 Punkte]

(ii) Mithilfe der Funktion g zeigen Sie dass der Zwischenwertsatz nicht stimmt, wenn man nur innerhalb der rationalen Zahlen arbeitet.

[2 Punkte]

[**Hinweis** Berechnen Sie das Produkt g(-3)g(3).]

Abgabe. Montag 16. Dezember 2019, in der Übung.

Besprechung. Montag 16. Dezember 2019, in der Übung.