

Dr. Iosif Petrakis Leonid Kolesnikov

Summer term 19 13.06.2019

Mathematics for Physicists II Sheet 8

Exercise 1. Let $A, B \in M_{m,n}(\mathbb{R})$, $C \in M_n(\mathbb{R})$, and $a \in \mathbb{R}$. (i) $(A + B)^t = A^t + B^t$. [1 Point] (ii) $(a \cdot B)^t = a \cdot B^t$. [1 Point] (iii) $(A^t)^t = A$. [1 Point] (iv) $C + C^t$ is symmetric. [1Point]

Exercise 2. Let $A \in M_{m,n}(\mathbb{R})$, $B, C \in M_{n,l}(\mathbb{R})$, and $D \in M_{l,s}(\mathbb{R})$. i) $AI_n = A$ and $I_m A = A$. [0.5 Point] (ii) A(B + C) = AB + AC. [1 Point] (iii) If $a \in \mathbb{R}$, then $A(a \cdot B) = a \cdot (AB)$. [0.5 Point] (iv) A(BD) = (AB)D. [1 Point] (v) The multiplication $B^t A^t$ is well-defined, and $(AB)^t = B^t A^t$. [1 Point] Exercise 3. Let $A, B, C \in M_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Show the following. (i) $\operatorname{Tr}(A + B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$. [0.5 Point] (ii) $\operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A)$. [0.5 Point] (iii) $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$. [0.5 Point] (iv) If B is invertible, then $\operatorname{Tr}(B^{-1}AB) = \operatorname{Tr}(A)$. [0.5 Point] (v) $\operatorname{Tr}(A(B + C)) = \operatorname{Tr}(AB) + \operatorname{Tr}(AC)$. [0.5 Point] (vi) $\operatorname{Tr}((\lambda A)B) = \lambda \operatorname{Tr}(AB)$. [0.5 Point] (vi) Tr((\lambda A)B) = $\lambda \operatorname{Tr}(AB)$. [0.5 Point] (vii) There are no matrices $A, B \in M_n(\mathbb{R})$ such that

$$AB - BA = I_n.$$

[0.5 Point]

(viii) If $A \in M_n(\mathbb{R})$ such that for every $B \in M_n(\mathbb{R})$, we have that Tr(AB) = 0, then $A = \mathbf{0}_n$. [0.5 Point]

Exercise 4. Show the following.

(i) The set of symmetric matrices $\text{Sym}_n(\mathbb{R})$ is a linear subspace of $M_n(\mathbb{R})$, and determine its dimension.

[1 Point]

(ii) Determine the dimension of all $n \times n$ -matrices $A := [a_{ij}]$ such that

$$a_{11} + a_{22} + \ldots + a_{nn} = 0.$$

[1 Point] (iii) If $A \in \text{Sym}_n(\mathbb{R})$, then $\text{Tr}(AA) \ge 0$. [1 Point] (iv) If $A \in \text{Sym}_n(\mathbb{R})$ and $A \neq \mathbf{0}_n$, then Tr(AA) > 0. [1 Point]

Exercise 5. If $\theta \in \mathbb{R}$, let the matrix

$$R(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

(i) Show that $R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2)$.

[1 Point]

(ii) Show that the matrix $R(\theta)$ has an inverse, and write down this inverse.

[1 Point]

(iii) If $(x, y) \in \mathbb{R}^2$, its *length*, or its *norm*, is defined by

$$|(x,y)| := \sqrt{x^2 + y^2}.$$

Show that the linear map $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$, defined by

$$R_{\theta}(x,y) := R(\theta) \begin{bmatrix} x \\ y \end{bmatrix},$$

preseves the length of vectors i.e.,

$$|R_{\theta}(x,y)| = |(x,y)|.$$

[1 Point]

(iv) Show that

$$R^{2}(\theta) := \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}.$$

[1 Point]

Submission. Wednesday 19. June 2019, 16:00.

Discussion. Wednesday 19. June 2019, in the Exercise-session.