

Dr. Iosif Petrakis Leonid Kolesnikov MATHEMATISCHES INSTITUT

Summer term 19 28.05.2019

Mathematics for Physicists II Sheet 6

Exercise 1. (i) Find a set X such that $\varepsilon(\varepsilon X)$ is not linearly isomorphic to εX . [2 Points]

(ii) If X is a linear space, show that there is a unique linear map $\pi_X : \varepsilon X \to X$ such that $\pi_X \circ i_X = \mathrm{id}_X$

[2 Points]

Exercise 2. Let W be a linear space and $j_X : X \to W$ an injection, such that for every linear space Y and every function $h : X \to Y$ there is a unique linear map $h_W : W \to Y$ such that the following diagram commutes

Show that W is linearly isomorphic to εX . [4 Points]

Exercise 3. Let X, Y, Z be sets, and $h: X \to Y, g: Y \to Z$ functions.

(i) There is a unique linear map $\varepsilon h : \varepsilon X \to \varepsilon Y$ such that the following diagram commutes

[1.5 Points]

(ii) The following lower outer diagram commutes i.e., $\varepsilon(g \circ h) = \varepsilon g \circ \varepsilon h$

[1.5 Points]

(iii) If X is a set, let $E_0(X) := \varepsilon X$, and, if $h : X \to Y$ is a function from the set X to the set Y, let $E_1(h) := \varepsilon h : \varepsilon X \to \varepsilon Y$ is the linear map determined in the case (i).

Show that the pair $E := (E_0, E_1)$ is a covariant functor from the category **Set** to the category **Lin**.

[1 Point]

Exercise 4. Let X, Y be linear spaces and $h: X \to Y$ a function.

The function h is a linear map if and only if $\pi_Y \circ \varepsilon h = h \circ \pi_X$

$$X \xrightarrow{h} Y$$

$$\pi_X \left(\left[i_X \quad i_Y \right] \right) \pi_Y$$

$$\varepsilon X \xrightarrow{---}{\varepsilon h} \varepsilon Y,$$

where the functions π_X and π_Y are from the Exercise 1(ii). (if) [3 Points] (only if) [1 Point]

Exercise 5. Let X be a linear space, and let the linear map $\pi_X : \varepsilon X \to X$ from the Exercise 1(ii). Moreover, let

$$N(X) := \left\{ f_{\lambda x + \mu y} - \lambda f_x - \mu f_y \mid x, y \in X \& \lambda, \mu \in \mathbb{R} \right\}.$$

(i) Show that ⟨N(X)⟩ ⊆ Ker(π_X).
[0.5 Point]
(ii) Show that f₀ ∈ N(X), and show that if f = f(x₁)f_{x1} ∈ Ker(π_X), then f ∈ ⟨N(X)⟩.
[0.5 Point]
(iii) Show that if f = f(x₁)f_{x1} + f(x₂)f_{x2} ∈ Ker(π_X), then f ∈ ⟨N(X)⟩.
[0.5 Point]
(iv) Show that if f = f(x₁)f_{x1} + f(x₂)f_{x2} + f(x₃)f_{x3} ∈ Ker(π_X), then f ∈ ⟨N(X)⟩.
[1 Point]
(iv) Show that if f = f(x₁)f_{x1} + f(x₂)f_{x2} + f(x₃)f_{x3} + f(x₄)f_{x4} ∈ Ker(π_X), then f ∈ ⟨N(X)⟩.

Submission. Wednesday 05. June 2019, 16:00.

Discussion. Wednesday 05. June 2019, in the Exercise-session.