

Dr. Iosif Petrakis Leonid Kolesnikov

Summer term 19 16.05.2019

Mathematics for Physicists II Sheet 4

Exercise 1. Let X, Y, Z be linear spaces, $f \in \mathcal{L}(X, Y)$ and $g \in \mathcal{L}(Y, Z)$. (i) The composition function $g \circ f$ is in $\mathcal{L}(X, Z)$. [0.5 point] (ii) id_X $\in \mathcal{L}(X)$. [0.5 point] (iii) The constant function $\overline{\mathbf{0}} : X \to Y, x \mapsto \mathbf{0}$, is in $\mathcal{L}(X, Y)$. [0.5 point] (iv) $f(\mathbf{0}) = \mathbf{0}$. [0.5 point] (v) if $x \in X$, then f(-x) = -f(x). [0.5 point] (vi) If $n \ge 1, a_1, \ldots a_n \in \mathbb{R}$, and $x_1, \ldots x_n \in X$, then

$$f\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i f(x_i).$$

[0.5 point]

(vii) Suppose that f satisfies the following property: if x_1, \ldots, x_n are linearly independent in X, then $f(x_1), \ldots, f(x_n)$ are linearly independent in Y, for every $x_1, \ldots, x_n \in X$, and $n \ge 1$. Show that f is an injection.

[0.5 point]

(viii) If we define

$$\begin{split} & \operatorname{Ker}(f) := \big\{ x \in X \mid f(x) = \mathbf{0} \big\}, \\ & \operatorname{Im}(f) := \big\{ y \in Y \mid \exists_{x \in X} \big(f(x) = y \big) \big\} \end{split}$$

show that $\text{Ker}(f) \preceq X$, $\text{Im}(f) \preceq Y$, and $\text{Ker}(f) = \{0\}$ if and only if f is an injection. [0.5 point] **Exercise 2.** Let X, Y be linear spaces with $\dim(X) = n$ and $\dim(Y) = m$, for some $n, m \ge 1$. Let the following linear operations defined on $X \times Y$:

$$(x, y) + (x', y') := (x + x', y + y'),$$

 $a \cdot (x, y) := (a \cdot x, a \cdot y),$
 $\mathbf{0} := (\mathbf{0}, \mathbf{0}).$

Show the following:

(i) X × Y is a linear space.
[0.5 point]
(ii) If {v₁,..., v_n} is a basis of X and {w₁,..., w_m} is a basis of Y, then

$$\{(v_1, \mathbf{0}), \ldots, (v_n, \mathbf{0}), (\mathbf{0}, w_1), \ldots, (\mathbf{0}, w_m)\}$$

is a basis of $X \times Y$. **[1 point]** (iii) dim $(X \times Y) = n + m$. **[0.5 point]** (iv) The projections $pr_X : X \times Y \to X$ and $pr_Y : X \times Y \to Y$, defined by

$$\operatorname{pr}_X(x,y) := x \& \operatorname{pr}_Y(x,y) := y,$$

are linear maps.

[0.5 point]

(v) The product linear space $X \times Y$ satisfies the universal property of products i.e., for every linear space Z, and every linear map $f: Z \to X$, and every linear map $g: Z \to Y$ there is a unique linear map $h: Z \to X \times Y$ such that the following inner diagrams commute

i.e., $f = \operatorname{pr}_X \circ h$ and $g = \operatorname{pr}_Y \circ h$. [1.5 points]

Exercise 3. If X is a linear space, and $n \in \mathbb{N}$, such that $\dim(X) = n$, then if $Y \preceq X$ and $Z \preceq X$, show that

$$\dim(Y) + \dim(Z) = \dim(Y + Z) + \dim(Y \cap Z).$$

[4 points]

Exercise 4. Let X, Y be linear spaces, and $f \in \mathcal{L}(X, Y)$.

(i) If $n \in \mathbb{N}$, and $\dim(X) = n = \dim(Y)$, the following are equivalent:

- (a) $\text{Ker}(f) = \{0\}.$
- (b) Im(f) = Y.

(c) f is a bijection i.e., f is an injection and a surjection.

(a) ⇒ (b) [0.5 point]
(b) ⇒ (c) [0.5 point]
(c) ⇒ (a) [0.5 point]
(ii) If f is a linear isomorphism, then g := f⁻¹ ∈ L(Y, X), and if dim(X) = n, for some n ∈ N, then dim(Y) = n.
[1.5 points]
(iii) If n ≥ 1, then dim(X) = n if and only if X is isomorphic to ℝⁿ.
[1 point]

Exercise 5. If X is a linear space, and $T \in \mathcal{L}(X)$, we define

$$T^{n} := \begin{cases} \operatorname{id}_{X} & , n = 0\\ T \circ T^{n-1} & , n > 0. \end{cases}$$

(i) If X is a linear space, and $P \in \mathcal{L}(X)$, such that $P^2 = P$, then

$$X = \operatorname{Ker}(P) \oplus \operatorname{Im}(P).$$

[2 points]

(ii) Let X be a linear space, $T \in \mathcal{L}(X)$, such that $T^2 = \mathrm{id}_X$, and let

$$P := \frac{1}{2}(\mathrm{id}_X + T) \quad \& \quad Q := \frac{1}{2}(\mathrm{id}_X - T).$$

Show the following:

(a) P + Q = id_X.
[0.5 point]
(b) P² = P, and Q² = Q.
[1 point]
(iii) PQ = QP = 0.
[0.5 point]

Submission. Wednesday 22. May 2019, 16:00.

Discussion. Wednesday 22. May 2019, in the Exercise-session.