

Dr. Iosif Petrakis Leonid Kolesnikov

Summer term 19 09.05.2019

Mathematics for Physicists II Sheet 3

Exercise 1. Let $n \ge 1$, and let v_1, \ldots, v_n be linearly independent elements of a linear space X.

(i) If their set $M := \{v_1, \ldots, v_n\}$ is a maximal set of linearly independent elements of X i.e., for every $x \in X$ we have that

 x, v_1, \ldots, v_n

are linearly dependent elements of X, then M is a basis of X. [1 point]

(ii) If $\dim(X) = n$, and w_1, \ldots, w_n are linearly independent elements of X, then $B := \{w_1, \ldots, w_n\}$ is a basis of X.

[1 point]

(iii) If Y is a subspace of X with $\dim(Y) = \dim(X) = n$, then Y = X. [1 point]

(iv) If $\dim(X) = n, 1 \leq r < n$, and w_1, \ldots, w_r are linearly independent elements of X, then there are elements v_{r+1}, \ldots, v_n of X such that the set

$$\{w_1,\ldots,w_r,v_{r+1},\ldots,v_n\}$$

is a basis of X. [1 point]

Exercise 2. If X is a linear space, and $Y, Z \leq X$, such that

$$\forall_{x \in X} \exists_{!y \in Y} \exists_{!z \in Z} (x = y + z),$$

we write $X := Y \oplus Z$. The following are equivalent: (a) $X = Y \oplus Z$.

(b) X = Y + Z and $Y \cap Z = \{0\}$.

(a) \Rightarrow (b) [2 points],

(b) \Rightarrow (a) [2 points]

Exercise 3. Let X be a linear space, $n \in \mathbb{N}$, and $\dim(X) = n$. (i) If $Y \leq X$, there is some $Z \leq X$ such that $X = Y \oplus Z$. [1.5 points] (ii) Is this Z in case (i) unique? [0.5 point] (iii) If $Y, Z \leq X$ such that $X = Y \oplus Z$, then $\dim(X) = \dim(Y) + \dim(Z)$. [2 points]

Exercise 4. Let Y be a linearly independent subset of a linear space X, and $x_0 \in X$. If $x_0 \notin \langle Y \rangle$, then $Y \cup \{x_0\}$ is a linearly independent subset of X. [4 points]

Exercise 5. If Y is a linearly independent subset of a non-trivial linear space X, there is a basis B of X, such that $Y \subseteq B$. [4 points]

Submission. Wednesday 15. May 2019, 16:00.

Discussion. Wednesday, 15. May 2019, in the Exercise-session.