

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Dr. Iosif Petrakis Leonid Kolesnikov Summer term 19 02.05.2019

Mathematics for Physicists II

Sheet 2

Exercise 1. Let $\mathbb{Q}(\sqrt{18}) := \{a + b\sqrt{18} \mid a \in \mathbb{Q} \& b \in \mathbb{Q}\}, \text{ and } a, a', b, b' \in \mathbb{Q}.$

(i) If $a + b\sqrt{18} = a' + b'\sqrt{18}$, then a = a' and b = b'.

[1 point]

(ii) Show that $0, 1 \in \mathbb{Q}(\sqrt{18})$ and that $\mathbb{Q}(\sqrt{18})$ is closed under the operations of addition and multiplication of real numbers.

[1.5 points]

(iii) If $a + b\sqrt{18} \in \mathbb{Q}(\sqrt{18})$ and $a + b\sqrt{18} \neq 0$, calculate its inverse

$$z := \frac{1}{a + b\sqrt{18}}$$

and show that $z \in \mathbb{Q}(\sqrt{18})$.

[1.5 points]

Exercise 2. Let $\mathcal{V} := (X; +, \mathbf{0}, \cdot)$ be a linear space, $a, b \in \mathbb{R}$, and $x, y, z, w \in X$.

(i) If z = w and x = y, then z + x = w + y.

[0.5 points]

(ii) If x = y and a = b, then $a \cdot x = b \cdot y$.

[0.5 points]

(iii) If x + y = x + z = 0, then y = z.

[1 point]

(iv) $0 \cdot x = \mathbf{0}$.

[0.5] points

(v) $(-1) \cdot x = -x$, where, because of case (iii), -x is the unique element y of X in condition (LS₃) such that x + y = 0.

[0.5 points]

(vi) If $x \neq 0$ and $a \cdot x = 0$, then a = 0.

[1 point]

Exercise 3. Let $\mathcal{V} := (X; +, \mathbf{0}, \cdot)$ be a linear space, $Y, Z \subseteq X$, and let $U, V \preceq X$.

(i) If $U + V := \{u + v \mid u \in U \& v \in V\}$, then $U + V \leq X$. [0.5 point]

(ii) If $U \cap V := \{x \in X \mid x \in U \& x \in V\}$, then $U \cap V \leq X$. [0.5 point]

(iii) If we define

$$\langle Y \rangle := \bigcap \{ U \leq X \mid Y \subseteq U \} := \{ x \in X \mid \forall_{U \leq X} (Y \subseteq U \Rightarrow x \in U) \},$$

then $\langle Y \rangle$ is the least linear subspace of X that includes Y.

[0.5 point]

(iv) If $Y \neq \emptyset$, then $\langle Y \rangle = \{ \sum_{i=1}^{n} a_i y_i \mid n \geq 1 \& i \in \{1, ..., n\} \& a_i \in \mathbb{R} \& y_i \in Y \}$. [0.5 point]

(v) If $Y \subseteq Z$, then $\langle Y \rangle \subseteq \langle Z \rangle$.

[0.5 point]

(vi) $\langle \langle Y \rangle \rangle = \langle Y \rangle$.

[0.5 point]

(vii) $\langle Y \rangle \cup \langle Z \rangle \subseteq \langle Y \cup Z \rangle$.

[0.5 point]

(viii) Prove, or find a counterexample to the inclusion $\langle Y \cup Z \rangle \subseteq \langle Y \rangle \cup \langle Z \rangle$. [0.5 point]

Exercise 4. For every $n \ge 1$, the functions

$$f_1(t) := e^t, \ldots, f_n(t) := e^{nt}$$

are linearly independent in $\mathbb{F}(\mathbb{R})$.

[4 points]

Exercise 5. Prove the following implications:

(i)
$$(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$$
.

[0.5 point]

(ii) $(\neg\neg\neg P) \Rightarrow \neg P$ (prove it without using the rule DNS).

[0.5 point]

(iii) $\neg \forall_{x \in X} \phi(x) \Rightarrow \exists_x (\neg \phi(x))$ (use the rule DNS).

[2 points]

(iv) $\exists_x (\neg \phi(x)) \Rightarrow \neg \forall_{x \in X} \phi(x)$.

[1 point]

Submission. Wednesday 08. May 2019, 16:00.

Discussion. Wednesday, 8. May 2019, in the Exercise-session.