

Dr. Iosif Petrakis Leonid Kolesnikov

Summer term 19 23.07.2019

Mathematics for Physicists II Sheet 15 (Probeklausur)

Exercise 1. Let X be a linear space and $x_1, x_2, x_3, x_4, x_5 \in X$. Show that if

 $x_1, x_2, x_3, x_4, x_5,$

are linearly independent, then

 $x_1, x_2, x_3 + 2019x_4, x_4, x_5$

are linearly independent. [6 Points]

Exercise 2. Let X, Y be linear spaces, $f : X \to Y$ a linear map, Y a subspace of X, and $C \subseteq X$. (i) If $x_1, x_2 \in X$, let

$$[x_1, x_2] := \{ tx_1 + (1-t)x_2 \mid t \in [0, 1] \}.$$

Show that

 $f([x_1, x_2]) = [f(x_1), f(x_2)].$

[3 Points]

(ii) If C is convex in X, then

$$C+Y:=\{c+Y\mid c\in C\}$$

is convex in X/Y.[3 Points]

Exercise 3. Let X be a linear space, $n \ge 1$, and $B_X = \{v_1, \ldots, v_n\}$ a basis of X. Let the sets

 $X^* := \{ f : X \to \mathbb{R} \mid f \text{ is linear} \},$ $X^{**} := (X^*)^* := \{ g : X^* \to \mathbb{R} \mid g \text{ is linear} \}.$

(i) Suppose that $n \ge 2$. Prove or disprove the following:

"there is $f \in X^*$ such that $\text{Ker}(f) = \{\mathbf{0}\}$ ".

[1.5 Points]

(ii) Let $\phi: X \to X^{**}$, defined by

$$x \mapsto \phi_x$$
$$\phi_x(f) := f(x),$$

for every $f \in X^*$ and every $x \in X$.

(a) If $x \in X$, show that $\phi_x \in X^{**}$.

[0.5 Point]

(b) Show that ϕ is a linear isomorphism between X and X^{**} .

[4.5 Points]

Exercise 4. Let $U \subseteq \mathbb{R}^n$ be open and $f \in (\mathbb{R}^n)^*$ such that $f \neq \mathbf{0}$. (i) Show that there exists $x_0 \in \mathbb{R}^n$ such that $f(x_0) = 1$.

[1 Point]

(ii) Let $x \in U$ and $\epsilon > 0$ such that $\mathcal{B}(x, \epsilon) \subseteq U$. If $\lambda \in \mathbb{R}$ such that

$$|\lambda| < \frac{\epsilon}{|x_0|},$$

show that $x + \lambda x_0 \in \mathcal{B}(x, \epsilon)$ and $f(x) + \lambda \in f(U)$. [2 Points] (iii) Show that f(U) is open in \mathbb{R}^n . [Hint: use (ii)] [3 Points]

[5 I OIIIts]

Exercise 5. Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a positive definite, inner product space of dimension $n \geq 1$, $B_X := \{v_1, \ldots, v_n\}$ a basis of X, and

$$x = \sum_{i=1}^{n} \lambda_i v_i \quad \& \quad y = \sum_{i=1}^{n} \mu_i v_i,$$

where $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \in \mathbb{R}$. Let

$$a_{ij} := \langle \langle v_i, v_j \rangle \rangle,$$

for every $i, j \in \{1, ..., n\}$. Show the following: (i) $\langle \langle x, y \rangle \rangle = \sum_{i,j=1}^{n} \lambda_i \mu_j a_{ij}$. [2 Points] (ii) If B_X is orthogonal, then $\langle \langle x, y \rangle \rangle = \sum_{i=1}^{n} \lambda_i \mu_i a_{ii}$. [2 Points] (iii) If B is orthonormal, then $\langle \langle x, y \rangle \rangle = \sum_{i=1}^{n} \lambda_i \mu_i$. [2 Points] **Exercise 6. (i)** Let X be a finite-dimensional linear space, $S, T \in \mathcal{L}(X)$ invertible, and let $\lambda \in \mathbb{R} \setminus \{0\}$.

(a) Show that $S \circ T$ is invertible and find $(S \circ T)^{-1}$.

[1 Point]

(b) Show that λS is invertible.

[0.5 Point]

(ii) Let $n \ge 1$, and let $A \in M_n(\mathbb{R})$ be invertible. Show that if $\lambda \ne 0$ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

[4.5 Points]

Discussion. Thursday 25. July 2019, in the last lecture.