

- MATHEMATISCHES INSTITUT

Dr. Iosif Petrakis Leonid Kolesnikov



Summer term 19 23.07.2019

## Mathematics for Physicists II Sheet 14

Exercise 1. (i) Show the following:

$$\begin{vmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{vmatrix} = a df$$

## [2 Points]

(ii) Show the following:

$$\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_2)(x_3 - x_1).$$

## [2 Points]

**Exercise 2.** Let X be a linear space,  $T \in \mathcal{L}(X)$ ,  $n \geq 1$ , and  $B_X := \{v_1, \ldots, v_n\}$  is a basis of X consisting of eigenvectors of T having distinct eigenvalues  $\lambda_1, \ldots, \lambda_n$ , respectively. Show that an eigenvector of T is a scalar multiple of some  $v_i$ , where  $i \in \{1, \ldots, n\}$ . [4 Points]

Exercise 3. (i) Find the eigenvalues and a basis for the eigenspaces of the matrix

$$A = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{vmatrix}.$$

## [2 Points]

(ii) Find the eigenvalues and a basis for the eigenspaces of the matrix

$$B = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 5 & -1 \\ 0 & 0 & 7 \end{vmatrix}.$$

[2 Points]

**Exercise 4.** Let  $(X, \langle \langle \cdot, \cdot \rangle \rangle)$  be a non-trivial, finite-dimensional, positive definite inner product space. If  $T \in \mathcal{L}(X)$  is symmetric with respect to  $\langle \langle \cdot, \cdot \rangle \rangle$ , we call X positive definite, if

$$\forall_{x \in X} (x \neq \mathbf{0} \Rightarrow \langle \langle T(x), x \rangle \rangle > 0).$$

Show that if T is positive definite, then all eigenvalues of T are strictly positive real numbers. [4 Points]

**Exercise 5.** Let  $(X, \langle \langle \cdot, \cdot \rangle \rangle)$  be a non-trivial, finite-dimensional, positive definite inner product space,  $T \in \mathcal{L}(X)$  symmetric with respect to  $\langle \langle \cdot, \cdot \rangle \rangle$ , and  $v_1, v_2$  eigenvectors of T with eigenvalues  $\lambda_1, \lambda_2$ , respectively. Show that

$$\lambda_1 \neq \lambda_2 \Rightarrow v_1 \bot v_2.$$

[4 Points]