

Summer term 19 17.07.2019

Mathematics for Physicists II Sheet 13

Exercise 1. Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a finite-dimensional, non-degenerate inner product space, $S, T \in \mathcal{L}(X)$ and $\lambda \in \mathbb{R}$. Show the following.

(i) $(S + T)^{t} = S^{t} + T^{t}$. [1 Point] (ii) $(\lambda S)^{t} = \lambda S^{t}$. [1 Point] (iii) $(S \circ T)^{t} = T^{t} \circ S^{t}$. [1 Point] (iv) $(S^{t})^{t} = S$. [1 Point]

Exercise 2. (i) Give an example of a finite-dimensional, positive definite inner product space $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ and of an operator $T \in \mathcal{L}(X)$ such that T preserves orthogonality with respect to $\langle \langle \cdot, \cdot \rangle \rangle$, but T is not unitary.

[1 Point]

(ii) Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a finite-dimensional, positive definite inner product space, and $U \in \mathcal{L}(X)$. Show the following.

(a) U is unitary if and only if $U^t \circ U = id_X$.

[2 Points]

(b) If U is unitary, then U is invertible and $U^{-1} = U^t$. [1 Point]

Exercise 3. (i) Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a finite-dimensional, positive definite inner product space, and $U \in \mathcal{L}(X)$. If U is unitary, then U^t is unitary.

[2 Points]

(ii) If X is a linear space with $\dim(X) = n \ge 1$, $T \in \mathcal{L}(X)$, and v_1, \ldots, v_n are eigenvectors of T with eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively, such that $\lambda_i \ne \lambda_j$ for every $i, j \in \{1, \ldots, n\}$ with $i \ne j$, show that $\{v_1, \ldots, v_n\}$ is a basis of X.

[2 Points]

Exercise 4. Let X be a non-trivial finite-dimensional linear space, $B_X = \{v_1, \ldots, v_n\}$ a basis of X, and $T \in \mathcal{L}(X)$. Show that B_X diagonalises T if and only if v_1, \ldots, v_n are eigenvectors of T. [4 Points]

Exercise 5. (i) If $a \in \mathbb{R}$ and $x : J \to \mathbb{R}$ is differentiable, where J is an interval of \mathbb{R} , show that the ordinary differential equation

$$x'(t) = ax(t) \tag{1}$$

has as set of solutions the set

$$\mathsf{Sol}(1) = \{s : J \to \mathbb{R} \mid \exists_{C \in \mathbb{R}} \forall_{t \in J} (s(t) = Ce^{at}) \}.$$

[2 Points]

(ii) Let the system of odes (5.15), and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$A = \text{Diag}(\lambda_1, \ldots, \lambda_n).$$

If Sol is the set of solutions of the system (5.15), then Sol is a linear space and

$$\operatorname{Sol} = \left\langle \left[e^{\lambda_1 t} \right], \dots, \left[e^{\lambda_n t} \right] \right\rangle,$$

where

$$\left[e^{\lambda_1 t}\right] := \left(e^{\lambda_1 t}, \mathbf{0}, \dots, \mathbf{0}\right), \ \dots, \ \left[e^{\lambda_n t}\right] := \left(\mathbf{0}, \mathbf{0}, \dots, e^{\lambda_n t}\right).$$

[2 Points]

Submission. Wednesday 24. Juli 2019, 16:00.

Discussion. Wednesday 24. Juli 2019, in the Exercise-session.