

Dr. Iosif Petrakis Leonid Kolesnikov

Summer term 19 04.07.2019

Mathematics for Physicists II Sheet 11

Exercise 1. Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a positive definite, inner product space, $x, y, x_1, \ldots, x_n \in X$, and let $|| \cdot ||$ be the norm on X induced by $\langle \langle \cdot, \cdot \rangle \rangle$. (i) If $x_i \perp x_j$, for every $i, j \in \{1, \ldots, n\}$ such that $i \neq j$, then

$$||x_1 + \ldots + x_n||^2 = ||x_1||^2 + \ldots + ||x_n||^2.$$

[1 Point]

(ii) $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. [0.5 Point] (iii) $||x + y|| \le ||x|| + ||y||$. The equality holds if and only if either $x = \mathbf{0} \lor y = \mathbf{0}$ or there is some $\lambda > 0$ such that $x = \lambda y$. [1 Point] (iv) $|||x|| - ||y||| \le ||x - y||$. [1 Point] (v) $||x|| - ||y|| \le |||x|| - ||y||| \le ||x + y||$.

[0.5 Point]

Exercise 2. Complete the proof of the Theorem 4.2.2.

[Hint: Use the fact that every real number is the limit of a sequence of rational numbers.] [4 Points]

Exercise 3. (i) Find an orthonormal basis for the vector subspace Y of the Euclidean space \mathbb{R}^4 , where

$$Y := \left\langle (1, 1, 0, 1), (1, -2, 0, 0), (1, 0, -1, 2) \right\rangle.$$

[1 Point]

(ii) If $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ is a positive definite, inner product space of dimension $n \ge 1$, and Y is a subspace of X of dimension r, where $0 \le r \le n$, then

$$X = Y \oplus Y^{\perp}.$$

[2 Points]

(iii) Find a subspace Y of the Minkowski linetime such that $\{\mathbf{0}\} \subsetneq Y^{\perp} \cap Y$ and \mathbb{R}^2 is not equal to $Y + Y^{\perp}$.

[1 Point]

Exercise 4. Let $(X, \langle \langle \cdot, \cdot \rangle \rangle)$ be a positive definite, inner product space, and $|| \cdot ||$ the norm on X induced by $\langle \langle \cdot, \cdot \rangle \rangle$. Let $B := \{v_1, \ldots, v_n\} \subseteq X$, such that (a) $v_i \perp v_j$, for every $i, j \in \{1, \ldots, n\}$ such that $i \neq j$, and (b) $v_i \neq \mathbf{0}$, for every $i \in \{1, \ldots, n\}$. (c) $||v_i|| = 1$, for every $i \in \{1, \ldots, n\}$. Show that the following are equivalent. (i) For every $x \in X$ it holds

$$||x||^2 = \sum_{i=1}^n \lambda_i(x)^2,$$

where, for every $i \in \{1, \ldots, n\}$

$$\lambda_i(x) := \frac{\langle \langle x, v_i \rangle \rangle}{\langle \langle v_i, v_i \rangle \rangle} = \langle \langle x, v_i \rangle \rangle.$$

(ii) *B* is a basis of *X*.[4 Points]

Exercise 5. (i) If $A := [a_{ij}] \in M_{m,n}(\mathbb{R})$ and $(x_1, \ldots, x_n) \in \mathbb{R}^n$, show that the following are equivalent.

(a) (x_1, \ldots, x_n) is a solution of the following system of linear equations

$$a_{11}x_1 + \ldots + a_{1n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = 0.$$

(b) (x₁,...,x_n) is orthogonal to the row vectors A₁,..., A_m of A.
[2 Points]
(ii) If A ∈ M_{m,n}(ℝ), show that

cRank(A) = rRank(A).

[2 Points]

Submission. Wednesday 10. Juli 2019, 16:00.

Discussion. Wednesday 10. Juli 2019, in the Exercise-session.