

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dr. Iosif Petrakis Leonid Kolesnikov $\begin{array}{c} \text{Summer term 19} \\ \text{25.04.2019} \end{array}$

Mathematics for Physicists II Sheet 1

Exercise 1. Let $\mathcal{S} := (X; S), \mathcal{T} := (Y; T)$, and $\mathcal{U} := (Z; U)$ be S-spaces.

(i) If $(f,g) : S \simeq T$, then f and g are bijections (a function $f : X \to Y$ is a bijection, if it is an injection i.e., $\forall_{x,x'\in X} (f(x) = f(x') \Rightarrow x = x')$, and a surjection i.e., $\forall_{y\in Y} \exists_{x\in X} (f(x) = y)$). [2 points]

(ii) Replace the question marks with the appropriate functions, and prove the following: (a) (2, 2) + S = S

(a) $(?,?): \mathcal{S} \simeq \mathcal{S}.$

(b) If $(f,g) : \mathcal{S} \simeq \mathcal{T}$, then $(?,?) : \mathcal{T} \simeq \mathcal{S}$.

(c) If $(f,g) : \mathcal{S} \simeq \mathcal{T}$ and $(f',g') : \mathcal{T} \simeq \mathcal{U}$, then $(?,?) : \mathcal{S} \simeq \mathcal{U}$.

[2 points]

Exercise 2. (i) Show that the structure Rel, defined in the Example 1.0.4, is a category. [2 points]

(ii) Show that the structure Pos, defined in the Example 1.0.6, is a category.[2 points]

Exercise 3. (i) Show that the pair $F := (F_0, F_1)$, defined in the example 1.0.9, is a covariant functor from **Set** to **Rel**.

[2 points]

(ii) If C, D and E are categories, $F : C \to D$ and $G : D \to E$, define the composition of these functors $G \circ F := ((G \circ F)_0, (G \circ F)_1)$ and show that $G \circ F : C \to E$. [2 points]

Exercise 4. (i) Show that the pair $H := (H_0, H_1)$, defined in the Example 1.0.12, is a covariant functor from **Set** to **Set**.

[1 point]

(ii) Show that the family of arrows (τ_X) in **Set**, defined in the Example 1.0.12, is a natural transformation from $\mathrm{Id}_{\mathbf{Set}}$ to H.

[3 points]

Exercise 5. Let C be a category and A in C_0 . An object of C/A is an arrow f in C_1 such that cod(f) = A. If $g: C \to A$ and $h: D \to A$ are objects of C/A, an arrow α from $g: C \to A$ to $h: D \to A$ is an arrow $\alpha: C \to D$ in C_1 such that the following diagram commutes

If $g: C \to A$ is an object of C/A, the identity arrow of $g: C \to A$ is the arrow $\mathbf{1}_C$

If $g: C \to A, h: D \to A$, and $k: E \to A$ are objects of C/A, and if α is an arrow from $g: C \to A$ to $h: D \to A$, and if β is an arrow from $h: D \to A$ to $k: E \to A$, their composition is the arrow $\beta \circ \alpha$ in C_1

(i) Show that C/A is a category.

[1 point]

(ii) If B is in C_0 and $f: A \to B$ is in C_1 , define (and show that it is) a functor

$$F: \mathbf{C}/A \to \mathbf{C}/B.$$

[3 points]

Submission. Wednesday 08. May 2019, 16:00.

Discussion. Wednesday, 8. May 2019, in the Exercise-session.