

Dr. Iosif Petrakis

Summer term 19 06.05.2019

Mathematics for Natural Scientists II Sheet 1

Exercise 1. Let $\mathcal{V} := (X; +, \mathbf{0}, \cdot)$ be a linear space, $a, b \in \mathbb{R}$, and $x, y, z, w \in X$. (i) If z = w and x = y, then z + x = w + y. [0.5 point] (ii) If x = y and a = b, then $a \cdot x = b \cdot y$. [0.5 point] (iii) If $x + y = x + z = \mathbf{0}$, then y = z. [1 point] (iv) $0 \cdot x = \mathbf{0}$. [0.5 point] (v) $(-1) \cdot x = -x$, where, because of case (iii), -x is the unique element y of X in condition (LS₃) such that $x + y = \mathbf{0}$. [0.5 point] (vi) If $x \neq \mathbf{0}$ and $a \cdot x = \mathbf{0}$, then a = 0. [1 point]

Exercise 2. Let $\mathbb{F}(\mathbb{R})$ be the linear space of all real-valued functions on \mathbb{R} .

(i) Show that the set $C(\mathbb{R})$ of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ is a linear subspace of $\mathbb{F}(\mathbb{R})$. [2 points]

(ii) Show that the set $D(\mathbb{R})$ of all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ is a linear subspace of $C(\mathbb{R})$.

[1.5 points]

(iii) Is $D(\mathbb{R})$ a linear subspace of $\mathbb{F}(\mathbb{R})$? [0.5 point] **Exercise 3.** Let $\mathcal{V} := (X; +, \mathbf{0}, \cdot)$ be a linear space, and let $(U_i)_{i \in I}$ be a family of subspaces of \mathcal{V} indexed by the set I.

(i) Show that the intersection

$$\bigcap_{i \in I} U_i := \left\{ x \in X \mid \forall_{i \in I} \left(x \in U_i \right) \right\}$$

is a linear subspace of \mathcal{V} . [0.5 point]

(ii) If we define

$$\langle Y \rangle := \bigcap \left\{ U \preceq X \mid Y \subseteq U \right\} := \left\{ x \in X \mid \forall_{U \preceq X} (Y \subseteq U \Rightarrow x \in U) \right\},\$$

then $\langle Y \rangle$ is the least linear subspace of X that includes Y. [1.5 point]

(iii) If $Y \neq \emptyset$, then

$$\langle Y \rangle = \bigg\{ \sum_{i=1}^{n} a_i y_i \mid n \ge 1 \& i \in \{1, \dots, n\} \& a_i \in \mathbb{R} \& y_i \in Y \bigg\}.$$

[1.5 point]

(iv) Prove, or find a counterexample to the inclusion $\langle Y \cup Z \rangle \subseteq \langle Y \rangle \cup \langle Z \rangle$. [0.5 point]

Exercise 4. Let $D(\mathbb{R})$ be the linear space of all differentiable functions $f : \mathbb{R} \to \mathbb{R}$. (i) Show that the functions $p : \mathbb{R} \to \mathbb{R}$ and $q : \mathbb{R} \to \mathbb{R}$, defined by p(t) := t, and $q(t) := t^2$, for every $t \in \mathbb{R}$, respectively, are linearly independent in $D(\mathbb{R})$. [2 points]

(ii) Show that the functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, defined by $f(t) := e^t$, and $g(t) := e^{2t}$, for every $t \in \mathbb{R}$, respectively, are linearly independent in $D(\mathbb{R})$. [2 points]

Submission. Monday 13. May 2019, in the Exercise-session.

Discussion. Wednesday 13. May 2019, in the Exercise-session.