\square
LUDWIG-
MAXIMILIANSUNIVERSITÄT MÜNCHEN

Mathematics for Natural Scientists II Sheet 1

Exercise 1. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $a, b \in \mathbb{R}$, and $x, y, z, w \in X$.
(i) If $z=w$ and $x=y$, then $z+x=w+y$.
[0.5 point]
(ii) If $x=y$ and $a=b$, then $a \cdot x=b \cdot y$.
[0.5 point]
(iii) If $x+y=x+z=\mathbf{0}$, then $y=z$.
[1 point]
(iv) $0 \cdot x=\mathbf{0}$.
[0.5 point]
(v) $(-1) \cdot x=-x$, where, because of case (iii), $-x$ is the unique element y of X in condition $\left(\mathrm{LS}_{3}\right)$ such that $x+y=\mathbf{0}$.
[0.5 point]
(vi) If $x \neq \mathbf{0}$ and $a \cdot x=\mathbf{0}$, then $a=0$.
[1 point]

Exercise 2. Let $\mathbb{F}(\mathbb{R})$ be the linear space of all real-valued functions on \mathbb{R}.
(i) Show that the set $C(\mathbb{R})$ of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a linear subspace of $\mathbb{F}(\mathbb{R})$. [2 points]
(ii) Show that the set $D(\mathbb{R})$ of all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a linear subspace of $C(\mathbb{R})$.
[1.5 points]
(iii) Is $D(\mathbb{R})$ a linear subspace of $\mathbb{F}(\mathbb{R})$?
[0.5 point]

Exercise 3. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, and let $\left(U_{i}\right)_{i \in I}$ be a family of subspaces of \mathcal{V} indexed by the set I.
(i) Show that the intersection

$$
\bigcap_{i \in I} U_{i}:=\left\{x \in X \mid \forall_{i \in I}\left(x \in U_{i}\right)\right\}
$$

is a linear subspace of \mathcal{V}.

[0.5 point]

(ii) If we define

$$
\langle Y\rangle:=\bigcap\{U \preceq X \mid Y \subseteq U\}:=\left\{x \in X \mid \forall_{U \preceq X}(Y \subseteq U \Rightarrow x \in U)\right\},
$$

then $\langle Y\rangle$ is the least linear subspace of X that includes Y.
[1.5 point]
(iii) If $Y \neq \emptyset$, then

$$
\langle Y\rangle=\left\{\sum_{i=1}^{n} a_{i} y_{i} \mid n \geq 1 \& i \in\{1, \ldots, n\} \& a_{i} \in \mathbb{R} \& y_{i} \in Y\right\} .
$$

[1.5 point]

(iv) Prove, or find a counterexample to the inclusion $\langle Y \cup Z\rangle \subseteq\langle Y\rangle \cup\langle Z\rangle$.
[0.5 point]

Exercise 4. Let $D(\mathbb{R})$ be the linear space of all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
(i) Show that the functions $p: \mathbb{R} \rightarrow \mathbb{R}$ and $q: \mathbb{R} \rightarrow \mathbb{R}$, defined by $p(t):=t$, and $q(t):=t^{2}$, for every $t \in \mathbb{R}$, respectively, are linearly independent in $D(\mathbb{R})$.
[2 points]
(ii) Show that the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(t):=e^{t}$, and $g(t):=e^{2 t}$, for every $t \in \mathbb{R}$, respectively, are linearly independent in $D(\mathbb{R})$.
[2 points]

Submission. Monday 13. May 2019, in the Exercise-session.
Discussion. Wednesday 13. May 2019, in the Exercise-session.

