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CHAPTER 1

Linear spaces and linear maps

In this chapter we study the basic properties of the linear spaces–also called
vector spaces–and of the linear maps between them. A linear space is a set endowed
with a linear structure, and a linear map between linear spaces is a function between
their corresponding sets that preserves their linear structure.

1.1. Linear spaces

Definition 1.1.1. A linear space, or a vector space, over R is a structure
V := (X; +,0, ·), where X is a set, 0 ∈ X, and +, · are functions

+ : X ×X → X, · : R×X → X

(x, y) 7→ x+ y, (a, x) 7→ a · x,
such that the following conditions are satisfied:

(LS1) ∀x,y,z∈X
(
(x+ y) + z = x+ (y + z)

)
.

(LS2) ∀x∈X
(
x+ 0 = 0 + x = x

)
.

(LS3) ∀x∈X∃y∈X
(
x+ y = 0

)
.

(LS4) ∀x,y∈X
(
x+ y = y + x

)
.

(LS5) ∀x,y∈X∀a∈R
(
a · (x+ y) = a · x+ a · y

)
.

(LS6) ∀x∈X∀a,b∈R
(
(a+ b) · x = a · x+ b · x

)
.

(LS7) ∀x∈X∀a,b∈R
(
(ab) · x = a · (b · x)

)
.

(LS8) ∀x∈X
(
1 · x = x

)
.

For simplicity, we may write ax instead of a · x. The triple (+,0, ·) is called the
signature of the linear space V. If, instead of R, we consider any field1 F, the

1A field is a structure (F;+,0, ·,1), where F is a set, 0,1 ∈ F, + : F×F→ F, and · : F×F→ F
such that together with (LS1)− (LS4) the following conditions are satisfied:

∀x,y,z∈F
(
x · (y · z) = (x · y) · z

)
.

∀x,y,z∈F
(
x · (y+ z) = x · y+ x · z

)
.

∀x,y∈F
(
x · y = y · x

)
.

∀x∈F
(
1 · x = x

)
.

1
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corresponding structure is called a linear space over F. A linear space over R is
also called a real linear space, and a linear space over the field of complex numbers
C is called a complex linear space. If V is a linear space, the elements of X are
traditionally called vectors. A linear space is called non-trivial, if it contains a
vector x such that x 6= 0. Unless stated otherwise, the linear spaces considered here
are going to be real. When the linear structure on X is clear from the context, we
use for simplicity X to denote the vector space V.

Recall that if X,Y are sets, then

X × Y := {(x, y) | x ∈ X & y ∈ Y },

and if (x, y), (x′, y′) ∈ X × Y , then

(x, y) = (x′, y′)⇔ (x = x′ & y = y′.

Example 1.1.2. Let the structure Rn := (Rn; +,0, ·), where

Rn := {(x1, . . . , xn) | x1 ∈ R & . . . & xn ∈ R},

(x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 & . . . & xn = yn,

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

0 := (0, . . . , 0),

a · (x1, . . . , xn) := (ax1, . . . , axn).

Clearly, Rn a linear space over R, and, similarly, Qn := (Qn; +,0, ·) is linear space
over Q, and Cn := (Cn; +,0, ·) is a linear space over C.

If F(X,Y ) is the set of all functions from X to Y , and f, g ∈ F(X,Y ), then

f = g ⇔ ∀x∈X
(
f(x) = g(x)

)
.

Example 1.1.3. If X is a set, F(X) is the set of all functions f : X → R, and

if we define the functions f + g, 0
X

and a · f , where a ∈ R, by

(f + g)(x) := f(x) + g(x),

0
X

(x) := 0,

(a · f)(x) := af(x),

for every x ∈ X, then F(X) := (F(X); +, 0
X
, ·) is a linear space over R.

∀x∈F
(
x 6= 0⇒ ∃y∈F(x · y = 1)

)
.

It is immediate to see that the rational numbers Q, the real numbers R and the complex numbers C
have a field structure. Actually, Q is a subfield of R and R is a subfield of C i.e., the field-signature
(+,0, ·,1) of Q is inherited from the field-signature of R, which, in turn, can be inherited from

the field-signature of C.
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The Example 1.1.3 shows that a mathematical object can be viewed as a vector,
although no immediate geometric intuition is associated with it. If

n := {0, 1, . . . , n− 1}
though, an element of Rn can be identified with a function f : n → R, and then
the Example 1.1.2 is a special case of the Example 1.1.3. If f, g ∈ F(X) and a ∈ R,

f ≤ g ⇔ ∀x∈X
(
f(x) ≤ g(x)

)
,

f ≤ a :⇔ f ≤ aX ⇔ ∀x∈X
(
f(x) ≤ a)

)
,

where aX(x) := a, for every x ∈ X.

Remark 1.1.4. Let V := (X; +,0, ·) be a linear space, a, b ∈ R, and x, y, z, w ∈
X. The following hold:

(i) If z = w and x = y, then z + x = w + y.

(ii) If x = y and a = b, then a · x = b · y.

(iii) If x+ y = x+ z = 0, then y = z.

(iv) 0 · x = 0.

(v) (−1) · x = −x, where, because of case (iii), −x is the unique element y of X
in condition (LS3) such that x+ y = 0.

(vi) If x 6= 0 and a · x = 0, then a = 0.

Proof. Exercise. �

Definition 1.1.5. Let V := (X; +,0, ·) be a linear space, and Y ⊆ X such
that the following conditions are satisfied:

(i) ∀y,y′∈Y
(
y + y′ ∈ Y

)
,

(ii) 0 ∈ Y ,

(iii) ∀y∈Y ∀a∈R
(
a · y ∈ Y

)
.

Then the structure
V|Y := (Y,+|Y×Y ,0, ·|R×Y ),

where +|Y×Y is the restriction of + to Y × Y and ·|R×Y is the restrictions of ·
to R × Y , is called a linear subspace of V, or, simpler, a subspace of V. We write
V|Y � V to denote that V|Y is a linear subspace of V, although, for simplicity, we
refer to a linear subspace V|Y mentioning only the set Y , and we write Y � X. We
denote by Sub(V) the set of all subspaces of V.

Clearly, {0} and X are linear subspaces of X.

Example 1.1.6. If F∗(X) is the set of all bounded functions in F(X) i.e.,

F∗(X) =
{
f ∈ F(X) | ∃M>0∀x∈X

(
|f(x)| ≤M

)}
,

then F∗(X) is a linear subspace of F(X) (see Example 1.1.3). To see this let
f, g ∈ F(X) and Mf > 0,Mg > 0, such that |f | ≤ Mf and |g| ≤ Mg. Then
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|f+g| ≤Mf +Mg and |af | ≤ (1+ |a|)Mf , where Mf +Mg > 0 and (1+ |a|)Mf > 0.
Recall that |f | ∈ F(X) is defined by |f |(x) := |f(x)|, for every x ∈ X.

Example 1.1.7. If V := (X; +,0, ·) is a linear space, n ≥ 1, and x1, . . . , xn ∈
X, the set

〈{x1, . . . , xn}〉 :=
{
a1 · x1 + . . .+ an · xn | a1 ∈ R & . . . & an ∈ R

}
is a linear subspace of V. We call an element

n∑
i=1

aixi := a1 · x1 + . . .+ anxn

of 〈{x1, . . . , xn}〉 a linear combination of x1, . . . , xn, and the space 〈{x1, . . . , xn}〉
the linear span of x1, . . . , xn. We may write 〈x1, . . . , xn〉 instead of 〈{x1, . . . , xn}〉.

If e1 := (1, 0), e2 := (0, 1), (x, y) ∈ R2, we get R2 = 〈e1, e2〉, since

(x.y) := x(1, 0) + (0, 1)y := xe1 + ye2.

Proposition 1.1.8. Let V := (X; +,0, ·) be a linear space, Y ⊆ X, and let
U, V � X.

(i) If U + V := {u+ v | u ∈ U & v ∈ V }, then U + V � X.

(ii) If U ∩ V := {x ∈ X | x ∈ U & x ∈ V }, then U ∩ V � X.

(iii) If we define

〈Y 〉 :=
⋂{

U � X | Y ⊆ U
}

:=
{
x ∈ X | ∀U�X(Y ⊆ U ⇒ x ∈ U)

}
,

then 〈Y 〉 is well-defined (i.e., the set {U � X | Y ⊆ Y } is non-empty) and it is the
least linear subspace of X that includes Y .

(iv) If Y 6= ∅, then

〈Y 〉 =

{ n∑
i=1

aiyi | n ≥ 1 & ∀i∈{1,...,n}
(
ai ∈ R & yi ∈ Y

)}
.

Proof. Exercise. �

Since ∅ ⊆ {0}, we have that 〈∅〉 = {0}. The subspace U + V of X is called the
sum of U and V . By Proposition 1.1.8 the linear span 〈x1, . . . , xn〉 of x1, . . . , xn ∈ X
is the least linear space containing x1, . . . , xn. If X = 〈Y 〉, we say that Y generates
the linear space V (or X), and the elements of Y are called generators of V.

1.2. Finite-dimensional linear spaces

Definition 1.2.1. Let V := (X; +,0, ·) be a linear space, n ≥ 1, and let
x1, . . . , xn ∈ X. We say that the vectors x1, . . . , xn are linearly dependent, or that
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their set {y1, . . . , yn} is a linearly dependent subset of X, if

∃a1,...,an∈R
(
∃i∈{1,...,n}

(
ai 6= 0

)
&

n∑
i=1

aixi = 0

)
.

We say that x1, . . . , xn are linearly independent, if they are not linearly dependent.
A subset Y of X is called linearly dependent, if

∃n≥1∃y1,...,yn∈Y
(
{y1, . . . , yn} is linearly dependent

)
,

while it is called linearly independent, if it is not a linearly dependent subset of X.

If x1, . . . , xn are linearly dependent, a1x1 + . . .+ anxn = 0, and ai 6= 0, then

xi =

(
−a1
ai

)
x1 + . . .+

(
−ai−1
ai

)
xi−1 +

(
−ai+1

ai

)
xi+1 + . . .+

(
−an
ai

)
xn

i.e., xi is a linear combination of a1, . . . , ai−1, ai+1, . . . , an.

Remark 1.2.2. Let X be a linear space and Y,Z ⊆ X.

(i) If x1, . . . , xn ∈ X, then x1, . . . , xn are linearly independent if and only if

∀a1,...,an∈R
( n∑
i=1

aixi = 0⇒ ∀i∈{1,...,n}(ai = 0)

)
.

(ii) Y is linearly independent if and only if

∀n≥1∀y1,...,yn∈Y
(
{y1, . . . , yn} is linearly independent

)
.

(iii) {0} and X are linearly dependent subsets of X.

(iv) If x 6= 0, then {x} is a linearly independent subset of X.

(v) The empty set ∅ is a linearly independent subset of X.

(vi) If Y is linearly dependent and Y ⊆ Z, then Z is linearly dependent.

(vii) If Y is linearly independent and Z ⊆ Y , then Z is linearly independent.

Proof. (i) and (ii) By negating the corresponding defining formulas.
(iii) 1 · 0 = 0, and {0} is a linearly dependent subset of X.
(iv) It follows immediately by Remark 1.1.4(vi).
(v) If we suppose that ∅ is a linearly dependent subset of X i.e.,

∃n≥1∃y1,...,yn
(
y1 ∈ ∅ & . . . & yn ∈ ∅ & {y1, . . . , yn} is linearly dependent

)
,

it is immediate that we get a contradiction from it.
(vi) and (vii) are immediate to show. �
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Example 1.2.3. The following n-vectors in Rn

e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1)

are linearly independent, since for every a1, . . . , an ∈ R we have that
n∑
i=1

aiei = 0⇔ (a1, . . . , an) = 0⇔ a1 = . . . = an = 0.

Example 1.2.4. For every n ≥ 1, the following n-vectors in F(R)

f1(t) := et, . . . , fn(t) := ent

are linearly independent (Exercise).

Remark 1.2.5. Let V := (X; +,0, ·) be a linear space, n ≥ 1, and x1, . . . , xn ∈
X linearly independent. If a1, . . . , an, b1, . . . , bn ∈ R, then

n∑
i=1

aixi =

n∑
i=1

bixi ⇒
(
a1 = b1 & . . . & an = bn

)
.

Moreover, xi 6= 0, for every i ∈ {1, . . . , n}.
Proof. It follows from the Definition 1.2.1 and the equivalence

n∑
i=1

aixi =

n∑
i=1

bixi ⇔
n∑
i=1

(ai − bi)xi = 0.

If there is i ∈ {1, . . . , n} such that xi = 0, then 0x1 + 0xi−1 + 1xi + 0xi+1 + . . .+
0xn = 0, which is impossible. �

Definition 1.2.6. If V := (X; +,0, ·) is linear space, a subset B of X is called
a basis of V (or, for simplicity a basis of X), if B is linearly independent, and
〈B〉 = X. If V has a finite basis B, it is called a finite-dimensional linear space,
while if it has an infinite basis, it is called infinite-dimensional.

Consequently, the subspace {0} has as a basis the empty set.

Example 1.2.7. The set En := {e1, . . . , en} of the linearly independent ele-
ments in Rn that were defined in the Example 1.2.3 is the standard basis of Rn.
Hence, Rn is finite-dimensional. It is easy to see that Rn has more than one bases.
E.g., B := {(1, 1), (−1, 2)} is another basis of R2.

Example 1.2.8. Since the set E := {ent | n ≥ 1} is a linearly independent
subset of F(R), the set E is a basis of the linear subspace 〈E〉 of F(R), and 〈E〉 is
infinite-dimensional.

Corollary 1.2.9. Let V := (X; +,0, ·) be a linear space, and x ∈ X. If
B := {v1, . . . , vn} is a basis of V, there are unique a1, . . . , an ∈ R such that

x =

n∑
i=1

aivi.
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Proof. It follows by the definition of a basis and the Remark 1.2.5. �

These unique a1, . . . , an ∈ R are called the coordinates of x with respect to B.

Definition 1.2.10. Let V := (X; +,0, ·) be a linear space, {v1, . . . , vn} ⊆
X and m ≤ n. The set {v1, . . . vm} is a maximal subset of linearly independent
elements of X, if it is a linearly independent subset of X, and for every k ∈ N,
such that m < k ≤ n, the set {v1, . . . , vm, vk} is a linearly dependent subset of X.

Theorem 1.2.11 (Finite basis-criterion I). Let V := (X; +,0, ·) be a linear
space, n ≥ 1, and {v1, . . . , vn} ⊆ X such that X = 〈{v1, . . . , vn}〉. If {v1, . . . , vr}
is a maximal subset of linearly independent elements of X, where 1 ≤ r ≤ n, then
{v1, . . . , vr} is a basis of V.

Proof. If r = n, then {v1, . . . , vr} is a linearly independent subset generating
X i.e., it is a basis of V. If r < n, by the maximality of {v1, . . . , vr} the sets

{v1, . . . , vr, vr+1}, {v1, . . . , vr, vr+2}, . . . , {v1, . . . , vr, vn}

are linearly dependent subsets of X. We show that

vr+1 ∈ 〈{v1, . . . , vr}〉 & vr+2 ∈ 〈{v1, . . . , vr}〉 & . . . & vn ∈ 〈{v1, . . . , vr}〉.

We show this only for vr+1, and for vr+2, . . . , vn we proceed similarly. Since
{v1, . . . , vn, vr+1} is linearly dependent, there are a1, . . . , ar, ar+1 ∈ R such that

a1v1 + . . .+ arvr + ar+1vr+1 = 0,

and not all of them are equal to 0. If ar+1 = 0, then a1v1 + . . . + arvr = 0,
hence a1 = . . . = ar = ar+1 = 0, which is a contradiction. Hence ar+1 6= 0, and
hence vr+1 can be written as a linear combination of v1, . . . , vr. Since an element
x of X is a linear combination of v1, . . . , vr, vr+1, . . . , vn and vr+1, . . . , vn are linear
combinations of v1, . . . , vr, then x is a linear combination of v1, . . . , vr. �

Next we show that we can replace any number of elements of a finite basis by
an equal number of any linearly independent vectors.

Lemma 1.2.12 (Exchange lemma (Steinitz)). Let n,m ≥ 1, {v1, . . . vn} a basis
of the linear space V := (X; +,0, ·), and let w1, . . . , wm ∈ X be linearly independent.

(i) If m < n, there are um+1, . . . , un ∈ {v1, . . . vn} such that

〈{w1, . . . , wm, um+1, . . . , un}〉 = X.

(ii) If m = n, then 〈{w1, . . . , wn}〉 = X.

Proof. (i) By the definition of a basis there are a1, . . . an ∈ R such that

w1 = a1v1 + . . .+ anvn.

Since by Remark 1.2.5 w1 6= 0, there is some ai 6= 0, where i ∈ {1, . . . , n}. Without
loss of generality we can take i = 1 (if a1 = 0, we can re-enumerate the elements
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of the set {v1, . . . vn} so that the first coefficient in the writing of w1 as a linear
combination of the elements of the set {v1, . . . vn} is non-zero). Hence

a1v1 = w1 −
n∑
i=2

aivi ⇔ v1 =
1

a1
w1 −

n∑
i=2

ai
a1
vi,

and consequently

v1 ∈
〈{
w1, v2, . . . , vn

}〉
,

and 〈{
w1, v2, . . . , vn

}〉
= X.

By the inductive hypothesis, if 1 ≤ r < m we get (possibly after a re-enumeration
of the set {v1, . . . vn}) 〈

{w1, . . . , wr, vr+1, . . . , vn}
〉

= X.

Hence,

wr+1 = b1w1 + . . .+ brwr + cr+1vr+1 + . . .+ cnvn.

Not all the terms cr+1, . . . , cn are equal to 0, since then wr+1 would be a linear
combination of w1, . . . , wr, something that contradicts the hypothesis of linear in-
dependence of the vectors w1, . . . , wm. Without loss of generality, let cr+1 6= 0,
hence

cr+1vr+1 = wr+1 −
[ r∑
i=1

biwi +

n∑
j=r+2

cjvj
]
⇔

vr+1 =
1

cr+1
wr+1 −

r∑
i=1

bi
cr+1

wi −
n∑

j=r+2

cj
cr+1

vj ,

and consequently

vr+1 ∈
〈{
w1, . . . , wr, wr+1, vr+2, . . . , vn

}〉
,

and 〈
{w1, . . . , wr, wr+1, vr+2, . . . , vn}

〉
= X.

After m-number of steps, we get 〈{w1, . . . , wm, um+1, . . . , un}〉 = X.
(ii) It follows immediately by (i). �

Theorem 1.2.13. Let 0 < n < m, and let {v1, . . . vn} be a basis of the linear
space V := (X; +,0, ·). If w1, . . . , wm ∈ X, then w1, . . . , wm are linearly dependent.

Proof. Suppose that the vectors w1, . . . , wm are linearly independent. Since
then the vectors w1, . . . , wn are also linearly independent, by the Lemma 1.2.12(ii)
we have that w1, . . . , wn is a basis of X. By the hypothesis of linear indepen-
dence we have that wn+1 6= 0, hence it is also a non-trivial linear combination
of w1, . . . , wn. By this contradiction we conclude that the vectors w1, . . . , wm are
linearly dependent. �
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Corollary 1.2.14. If B1, B2 are finite bases of a linear space V, then B1 and
B2 have the same number of elements.

Proof. If V is a trivial linear space, then the two bases are equal to the
empty set, and |B1| = |B2| = 0, where |I| denotes the number of elements, or the
cardinality, of a set I. Let V be non-trivial, and let n,m ≥ 1 such that |B1| = n
and |B2| = m. If n < m, then by the Theorem 1.2.13 we have that B2 is linearly
dependent, which is a contradiction. Hence n ≥ m. Similarly we get m ≥ n. �

Because of the Corollary 1.2.14 the following concept is well-defined.

Definition 1.2.15. If n ≥ 1 and {v1, . . . , vn} is a basis of a linear space V :=
(X; +,0, ·), we call V an n-dimensional space, and we write dim(X) := n. A trivial
linear space has dimension 0.

Clearly, dim(Rn) := n.

Corollary 1.2.16. Let n ≥ 1, and let v1, . . . , vn be linearly independent ele-
ments of a linear space X.

(i) (Finite basis-criterion II) If their set M := {v1, . . . , vn} is a maximal set of
linearly independent elements of X i.e., for every x ∈ X we have that

x, v1, . . . , vn

are linearly dependent elements of X, then M is a basis of X.

(ii) If dim(X) = n, and w1, . . . , wn are linearly independent elements of X, then
B := {w1, . . . , wn} is a basis of X.

(iii) If Y is a subspace of X with dim(Y ) = dim(X) = n, then Y = X.

(iv) If dim(X) = n, 1 ≤ r < n, and w1, . . . , wr are linearly independent elements
of X, then there are elements vr+1, . . . , vn of X such that the set

{w1, . . . , wr, vr+1, . . . , vn}
is a basis of X.

Proof. Exercise. �

Next we show that the existence of a basis of a linear space X implies the
existence of a basis of any subspace of X.

Corollary 1.2.17. Let V := (X; +,0, ·) be a linear space with dim(X) = n.
If Y � X, then Y has a basis and dim(Y ) ≤ dim(X).

Proof. If Y := {0}, then ∅ is a basis of Y and dim(Y ) = 0 ≤ dim(X). If
Y is non-trivial, then either Y = X, or Y is a proper subspace of X. In the first
case what we want to show follows trivially. If Y is a proper, non-trivial subspace
of X, then there is some y1 ∈ Y such that y1 6= 0, and by the Remark 1.1.4(vi)
M1 := {y1} is linearly independent. By the principle of the excluded middle2

2This is the logical principle P ∨ ¬P , where P is any well-formed formula.
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(PEM), we have that M1 is either a maximal set of linearly dependent elements of
Y , hence by the Corollary 1.2.16(i) it is also a basis of Y , and hence dim(Y ) = 1,
or there is y2 ∈ Y such that M2 := {y1, y2} is linearly independent. Proceeding
similarly, we can repeat the same argument at most (n − 1) number of times, in
order to reach the required conclusion. �

Next we write the expression that abbreviates the unique existence of an ele-
ment of a set X satisfying a formula φ(x):

∃!x∈X
(
φ(x)

)
:⇔ ∃x∈X

(
φ(x) & ∀y∈X

(
φ(y)⇒ y = x

))
.

Proposition 1.2.18. If X is a linear space, and Y,Z � X, such that

∀x∈X∃!y∈Y ∃!z∈Z
(
x = y + z

)
,

we write X := Y ⊕ Z. The following are equivalent:

(i) X = Y ⊕ Z.

(ii) X = Y + Z and Y ∩ Z = {0}.

Proof. Exercise. �

Proposition 1.2.19. Let X be a linear space, n ∈ N, and dim(X) = n.

(i) If Y � X, there is some Z � X such that X = Y ⊕ Z.

(ii) If Y, Z � X such that X = Y ⊕ Z, then dim(X) = dim(Y ) + dim(Z).

Proof. Exercise. �

Next we give a condition under which, a linearly independent subset of a linear
space X can be extended to a larger linearly independent subset of X.

Lemma 1.2.20. Let Y be a linearly independent subset of a linear space X, and
x0 ∈ X. If x0 /∈ 〈Y 〉, then Y ∪ {x0} is a linearly independent subset of X.

Proof. Exercise. �

1.3. Linear maps

Definition 1.3.1. If X and Y are linear spaces, a function f : X → Y is called
linear, or a linear map, if it satisfies the following conditions:

(i) ∀x,x′∈X
(
f(x+ x′) = f(x) + f(x′)

)
.

(ii) ∀x∈X∀a∈R
(
f(a · x) = a · f(x)

)
.

Moreover, we define the following sets:

L(X,Y ) := {f : X → Y | f is linear},
L(X) := L(X,X) := {f : X → X | f is linear},
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X∗ := L(X,R) := {f : X → R | f is linear}.
The elements of L(X) are called operators on X, or linear transformations on X,
while X∗ is called the dual space of X.

Example 1.3.2. If X is a linear space with dim(X) = n, for some n ≥ 1, and
B := {v1, . . . , vn} is a fixed basis of X, then the function fB : X → Rn, defined by

fB(x) := (a1, . . . , an), x =

n∑
i=1

aivi,

is a linear map. Moreover, if i ∈ {1, . . . , n}, the function prBi : X → R, defined by

prBi (x) := ai, x =

n∑
i=1

aivi,

X Rn

R

fB

prBi pri

is a linear map. If n > m ≥ 1, the function g : Rn → Rm is linear, where

g(a1, . . . , am, am+1, . . . , an) := (a1, . . . , am).

Remark 1.3.3. The set L(X,Y ) is equipped with the following linear structure

(f + g)(x) := f(x) + g(x), x ∈ X,

(a · f)(x) := a · f(x), a ∈ R, x ∈ X,

0(x) := 0, x ∈ X.

Proof. Exercise. �

Definition 1.3.4. If m,n ≥ 1, an array of real numbers

A :=



a11 . . . a1n
...

...
...

ai1 . . . ain
...

...
...

am1 . . . amn

 =: [aij ].

is called a matrix of m-rows and n-columns. If 1 ≤ i ≤ m, the i-th row of A is the
array

Ai :=
[
ai1 . . . ain

]
:= [aij ]i,
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and if 1 ≤ j ≤ n, the j-th column of A is the array

Aj :=

a1j...
amj

 := [aij ]
j .

The set of m×n-matrices is denoted by Mm,n(R), while the set of square matrices
Mn,n(R) is also denoted by Mn(R). If [aij ], [bij ] ∈Mm,n(R), and a ∈ R, we define

[aij ] = [bij ] :⇔ ∀i∈{1,...,m}∀j∈{1,...,n}
(
aij = bij

)
.

[aij ] + [bij ] := [aij + bij ],

a · [bij ] := [abij ],

0mn := [0],

and if m = n, we denote 0nn by 0n, or, if n is clear from the context, by 0.

If m = n = 2, the above definitions take the form[
a b
c d

]
=

[
a′ b′

c′ d′

]
⇔ a = a′ & b = b′ & c = c′ & d = d′,[

a b
c d

]
+

[
a′ b′

c′ d′

]
=

[
a+ a′ b+ b′

c+ c′ d+ d′

]
,

λ

[
a b
c d

]
=

[
λa λb
λc λd

]
, λ ∈ R,

02 :=

[
0 0
0 0

]
.

It is easy to see that Mm,n(R), and as a special case M2(R), equipped with the
above operations, is a linear space.

Example 1.3.5. If

A =

[
a b
c d

]
,

let fA : R2 → R2 be defined by

fA(x, y) := A

[
x
y

]
:=

[
a b
c d

] [
x
y

]
:=

[
ax+ by
cx+ dy

]
.

Since

fA
(
(x, y) + (x′, y′)

)
:=

[
a b
c d

] [
x+ x′

y + y′

]
=

[
a(x+ x′) + b(y + y′)
c(x+ x′) + d(y + y′)

]
=

[
ax+ by
cx+ dy

]
+

[
ax′ + by′

cx′ + dy′

]
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= A

[
x
y

]
+A

[
x′

y′

]
= fA

(
(x, y)

)
+ fA

(
(x′, y′)

)
.

Similarly we show that fA
(
λ(x, y)

)
= λfA

(
(x, y)

)
, for every λ ∈ R.

Remark 1.3.6. Let X,Y, Z be linear spaces, f ∈ L(X,Y ) and g ∈ L(Y,Z).

(i) The composite function g ◦ f is in L(X,Z), where g ◦ f : X → Z is defined by

(g ◦ f)(x) := g(f(x)), x ∈ X.
(ii) idX ∈ L(X).

(iii) f(0) = 0.

(iv) if x ∈ X, then f(−x) = −f(x).

(v) If n ≥ 1, a1, . . . an ∈ R, and x1, . . . xn ∈ X, then

f

( n∑
i=1

aixi

)
=

n∑
i=1

aif(xi).

Proof. Exercise. For the inductive proof of the case (vi), use the following
recursive definition of

∑n
i=1 xi, where x1, . . . , xn ∈ X and n ≥ 1:

n∑
i=1

xi :=

 x1 , n = 1(∑n−1
i=1 xi

)
+ xn , n > 1

�

A linear map preserves linear dependence, but not necessarily linear indepen-
dence. The latter holds if a linear map is injective. If it is a bijection i.e., an
injection and a surjection, it sends a basis of its domain to a basis of its codomain.

Proposition 1.3.7. If X,Z are linear spaces, Y ⊆ X, f ∈ L(X,Z), and
x1, . . . , xn ∈ X, the following hold.

(i) If x1, . . . xn are linearly dependent in X, then f(x1), . . . , f(xn) are linearly de-
pendent in Z.

(ii) If Y is a linearly dependent subset of X, then f(Y ) := {f(y) | y ∈ Y } is a
linearly dependent subset of Z.

(iii) If x1, . . . xn are linearly independent in X, then there is a linear map g : X → Z
such that g(x1), . . . , g(xn) are linearly dependent in Z.

(iv) If x1, . . . xn are linearly independent in X, and if f is an injection, then
f(x1), . . . , f(xn) are linearly independent in Z.

(v) If Y is a linearly independent subset of X, and if f is an injection, then f(Y )
is a linearly independent subset of Z.

(vi) If X = 〈Y 〉, and if f is a surjection, then Z = 〈f(Y )〉.
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(vii) If Y is a basis of X, and if f is a bijection, then f(Y ) is a basis of Z.

Proof. (i) Let a1, . . . an ∈ R, where ai 6= 0, for some i ∈ {1, . . . , n} such that∑n
i=1 aixi = 0. Then what we want follows from the equalities

0 = f(0) = f

( n∑
i=1

aixi

)
=

n∑
i=1

aif(xi).

(ii) It follows immediately from the case (i).

(iii) For example, we can take g to be the zero map.

(iv) By the injectivity of f , if a1, . . . , an ∈ R, we have that

n∑
i=1

aif(xi) = 0⇔ f

( n∑
i=1

aixi

)
= f(0)

⇔
n∑
i=1

aixi = 0

⇔ a1 = . . . = an = 0.

(v) It follows immediately from the case (iv).

(vi) If X is trivial, then Y = ∅ or Y = X. In both cases what we want follows
immediately. Let X be non-trivial, and let z ∈ Z. Then there is x ∈ X such that
f(x) = z. If a1, . . . , an ∈ R and y1, . . . , yn ∈ Y such that x =

∑n
i=1 aiyi, then

z = f(x) = f

( n∑
i=1

aiyi

)
=

n∑
i=1

aif(yi) ∈ 〈f(Y )〉.

(vii) By the case (v) we have that f(Y ) is a linearly independent subset of Z, and
by the case (vi) we have that Z = 〈f(Y )〉. �

A linear map f : X → Y , which is is a linear isomorphism guarantees that the
two linear spaces X and Y are the “same” from the linear-structure point of view.

Definition 1.3.8. If X,Y are linear spaces, an f ∈ L(X,Y ) is a linear iso-
morphism between X,Y , if there is g : Y → X with f ◦ g = idY and g ◦ f = idX

X Y X Y .
f g

f

idX

idY

In this case, we write f : X ' Y , and we say that the linear spaces X and Y are
(linearly) isomorphic.

Next we see that two isomorphic finite-dimensional linear spaces have the same
dimension.
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Proposition 1.3.9. Let X,Y be linear spaces, and f ∈ L(X,Y ) a linear iso-
morphism.

(i) f is a bijection (i.e., an injection and a surjection).

(ii) If g : Y → X such that f ◦ g = idY and g ◦ f = idX , then g ∈ L(Y,X).

(iii) If n ∈ N, and dim(X) = n, then dim(Y ) = n.

(iv) If h : X → Y is a linear map, which is a bijection, then h is a linear isomor-
phism.

Proof. Exercise. �

The condition (iv) above could be taken as the definition of a linear isomor-
phism. If n ≥ 1, an n-dimensional linear space is isomorphic to Rn.

Corollary 1.3.10. If X is a linear space, and n ≥ 1, then dim(X) = n if and
only if X is isomorphic to Rn.

Proof. Exercise. �

The set of operators L(X) of a linear space X is algebraically more interesting
than L(X,Y ), since a “multiplication”, the composition of functions, is defined
between its elements.

Definition 1.3.11. If X is a linear space, and T ∈ L(X), we define

Tn :=

{
idX , n = 0
T ◦ Tn−1 , n > 0.

E.g., T 3 = T ◦ T ◦ T

X X X X.
T T T

T 3

Remark 1.3.12. If X is a linear space, and P ∈ L(X), such that P 2 = P , then

X = Ker(P )⊕ Im(P ).

Proof. Exercise. �

Remark 1.3.13. Let X be a linear space, T ∈ L(X), with T 2 = idX , and let

P :=
1

2
(idX + T ) & Q :=

1

2
(idX − T ).

(i) P +Q = idX .

(ii) P 2 = P , and Q2 = Q.

(iii) PQ = QP = 0.

Proof. Exercise. �
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Proposition 1.3.14. Let n ≥ 1, X,Z be linear spaces, Y ⊆ X, and let the
function f0 : Y → Z.

(i) If X = 〈Y 〉, there is at most one linear map f : X → Z that extends f0 i.e.,
f(y) = f0(y), for every y ∈ Y , or, in other words, the following diagram commutes

Y Z

X.

f0

idY f

(ii) If Y = {v1, . . . , vn} is a basis of X, there is a unique linear map f : X → Z
that extends f0, and hence, if g, h : X → Z are linear maps, we have that3

g|Y = h|Y ⇒ g = h.

Proof. (i) If X is a trivial linear space, then Y = ∅ or Y = X. In the first
case, f0 is the empty set (as a set of pairs), and the only linear map that extends f0
is the constant zero linear map. If Y = X, the only extension of f0 is f0 itself. If X
is non-trivial, let f, g : X → Z be linear maps such that their restrictions f|Y , g|Y
to Y are equal to f0, i.e.,

∀y∈Y
(
f(y) = f0(y) = g(y)

)
.

If x ∈ X, let a1, . . . , an ∈ R and y1, . . . yn ∈ Y such that x =
∑n
i=1 aiyi. By the

Remark 1.3.6(v) we have that

f(x) = f

( n∑
i=1

aiyi

)
=

n∑
i=1

aif(yi) =

n∑
i=1

aig(yi) = g

( n∑
i=1

aiyi

)
= g(x).

(ii) If x ∈ X, then x has a unique writing as x =
∑n

=1 aivi, for some a1, . . . , an ∈ R.
We define f : X → Z by

f

( n∑
i=1

aivi

)
=

n∑
i=1

aif0(vi).

It is easy to check that f is a linear map that extends f0. Since Y generates X, by
the case (i) we get that f is the unique extension of f0. Moreover, if g and h are
equal on the basis Y , then they are equal as functions from X to Z, since there is
a unique extension of the restriction g|Y of g to Y .

�

3The restriction g|Y of g is the function g|Y : Y → Z, where g|Y (y) := g(y), for every y ∈ Y .

Clearly, if Y is a subspace of a linear space X and f ∈ L(X,Z), then fY ∈ L(Y, Z).
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1.4. The space of matrices

The set of m× n-matrices Mm,n(R), and the set of square matrices Mn(R) :=
Mn,n(R) was defined in the Definition 1.3.4.

Remark 1.4.1. Mm,n(R) is a linear space of dimension mn.

Proof. The fact that Mm,n(R) is a linear space is immediate from the Defini-
tion 1.3.4. To determine the dimension of Mm,n(R), we associate to an m×n-matrix

A :=



a11 . . . a1n
...

...
...

ai1 . . . ain
...

...
...

am1 . . . amn


the following element of Rmn(

a11, . . . , a1n, . . . , ai1, . . . , ain, . . . , am1, . . . , amn
)
.

E.g., to the 2× 2-matrix [
a b
c d

]
we associate the 4-tuple

(a, b, c, d).

It is easy to see that this mapping e : Mm,n(R) → Rmn is a linear isomorphism,
hence by the Proposition 1.3.9(iii) we get dim

(
Mm,n(R)

)
= dim(Rmn) = mn. �

Definition 1.4.2. Let the mapping t : Mm,n(R)→Mn,m(R), defined by

[aij ] 7→ [aij ]
t,

where

[aij ]
t := [bji], bji := aij .

The matrix [aij ]
t is called the transpose of [aij ], and it has columns the rows of

[aij ] and rows the columns of [aij ]. If A ∈ Mn(R) with At = A, we say that A is
symmetric, and we denote their set by Symn(R). A diagonal matrix in Mn(R) has
the form

λ1
λ2

. . .

λn

 :=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 =: Diag(λ1, . . . , λn).
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We denote by In the unit matrix in Mn(R), defined by

In :=


1

1
. . .

1

 =: [δij ],

where4

δij :=

{
1 , if i = j
0 , if i 6= j.

E.g., if we consider the 2× 3-matrix

A :=

[
2 1 0
1 3 5

]
,

then its transpose At is the following 3× 2-matrix

At :=

2 1
1 3
0 5

 .
An example of a symmetric matrix is the following:

A =

 3 1 −2
1 5 4
−2 4 −8

 = At.

Remark 1.4.3. Let A,B ∈Mm,n(R) , C ∈Mn(R), and a ∈ R.

(i) (A+B)t = At +Bt.

(ii) (a ·B)t = a ·Bt.
(iii)

(
At
)t

= A.

(iii) C + Ct is symmetric.

Proof. Exercise. �

Next we define the multiplication between matrices, an operation which, as
we shall see later, is related to the composition of linear maps. To define the
multiplication AB the number of columns of A has to be the number of rows of B!

Definition 1.4.4. If A := [aij ] ∈ Mm,n(R) and B := [bjk] ∈ Mn,l(R), their
product AB ∈Mm,l(R) is defined by

AB := [aij ][bjk] := [cik],

cik :=

n∑
j=1

aijbjk,

4The symbol δki is known as Kronecker’s delta.
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for every 1 ≤ i ≤ m and 1 ≤ k ≤ l. If A ∈Mn(R), let

An :=

{
In , n = 0
AAn−1 , n > 0

A matrix A ∈Mn(R) is invertible, if there is B ∈Mn(R) such that AB = BA = In.
We denote by Invn(R) the set of invertible matrices in Mn(R).

E.g., if

A :=

[
2 1 5
1 3 2

]
& B :=

 3 4
−1 2

2 1

 ,
then

AB :=

[
2 1 5
1 3 2

] 3 4
−1 2

2 1

 =

[
15 15
4 12

]
.

It is not always true that AB = BA. E.g.,[
3 2
0 1

] [
2 −1
0 5

]
=

[
6 7
0 5

]
,

and [
2 −1
0 5

] [
3 2
0 1

]
=

[
6 −3
0 5

]
.

If a, b ∈ R, and

A :=

[
1 a
0 1

]
& B :=

[
1 b
0 1

]
,

then

AB :=

[
1 a+ b
0 1

]
.

Hence [
1 −a
0 1

] [
1 a
0 1

]
= I2.

Notice that, in contrast to what happens in R, there are non-zero square ma-
trices that are not invertible, like the matrix[

1 1
1 1

]
.

Proposition 1.4.5. Let A ∈Mm,n(R), B,C ∈Mn,l(R), and D ∈Ml,s(R).

(i) AIn = A and ImA = A.

(ii) A(B + C) = AB +AC.

(iii) If a ∈ R, then A(a ·B) = a · (AB).

(iv) A(BD) = (AB)D.

(v) The multiplication BtAt is well-defined, and (AB)t = BtAt.
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Proof. Exercise. �

Corollary 1.4.6. Let A,B,C ∈Mn(R).

(i) If AB = BA = In = AC = CA, then B = C. We denote the unique matrix B
such that AB = BA = In by A−1, and we call it the inverse of A.

(ii) Itn = In.

(ii) If A is invertible, then (A−1)t = (At)−1.

Proof. (i) C = InC = (AB)C = (BA)C = B(AC) = BIn = B.
(ii) [δij ]

t := [dij ], where dij := δij , and what we want follows from the obvious
equality δij = δji.
(iii) By the Proposition 1.4.5(v) and the case (ii) we have that In = Itn = (AA−1)t =
(A−1)tAt, and In = Itn = (A−1A)t = At(A−1)t. Since In = (At)−1At = At(At)−1,
by the case (i) we get (A−1)t = (At)−1. �

One can show that if A,B ∈Mn(R), then

AB = In ⇒ BA = In,

hence we do not need to check both equalities in order to show that a matrix A is
invertible. Note that this is the case only when the product AB is equal to In. If
A,B ∈ Mn(R) are invertible, then AB is also invertible and (AB)−1 = B−1A−1,
since

(AB)(B−1A−1) = A[B(B−1A−1)] = A[(BB−1)A−1] = A[InA
−1] = AA−1 = In.

1.5. Matrices and linear maps

Matrices can be used to represent linear maps. Let’s see the following important
example. If θ ∈ R, let the matrix

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

Let the map Rθ : R2 → R2 defined by

Rθ(x, y) :=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r cosφ
r sinφ

]
= r

[
cos θ cosφ− sin θ sinφ
sin θ cosφ+ cos θ cosφ

]
= r

[
cos(θ + φ)
sin(θ + φ)

]
,
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(r cosφ, r sinφ)

(cosφ, sinφ)

(cos(θ + φ), sin(θ + φ))

φθ

where r :=
√
x2 + y2. Hence, Rθ is the anti-clockwise θ-rotation of the vector

(x, y). If θ1, θ2 ∈ R, it is easy to see that

R(θ1)R(θ2) = R(θ1 + θ2).

From that we can infer that the matrix R(θ) has an inverse.

Definition 1.5.1. If A := [aij ] ∈Mm,n(R), the linear map of A is the mapping

TA : Rn → Rm

TA(X) := AX,

where we view an arbitrary element x := (x1, . . . , xn) ∈ Rn as an n × 1-matrix X
and the output m× 1-matrix represents a vector in Rm. I.e., we haveTA(X)1

...
TA(X)m

 :=

a11 . . . a1n
...

...
...

am1 . . . amn


x1...
xn

 .
In a non-matrix form we write

TA(x) :=

( n∑
j=1

a1jxj , . . . ,

n∑
j=1

aijxj , . . . ,

n∑
j=1

amjxj

)
.

If {e1, . . . , en} is the standard basis of Rn, and l ∈ {1, . . . , n}, then

TA(el) := (a1l, . . . , aml) = Al,

where Al is the l-column of the matrix A. and hence

TA(el)i = ail,

for every i ∈ {1, . . . ,m}. Using the Proposition 1.4.5 we can show the following.
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Proposition 1.5.2. If A,B ∈Mm,n(R), and a ∈ R, the following hold:

(i) TA ∈ L(Rn,Rm).

(ii) If TA = 0, then A = 0mn, and if TA = TB, then A = B.

(iii) TA+B = TA + TB.

(iv) Ta·A = aTA.

(v) TIn = idRn and T0mn = 0.

(vi) If C ∈Mn,l(R), then TAC = TA ◦ TC

Rl Rn Rm
TC TA

TAC

(vii) If A is invertible, then TA is invertible and T−1A = TA−1 .

(viii) The function T : Mm,n(R) → L(Rn,Rm), defined by A 7→ TA, is a linear
map.

Proof. Exercise. �

So far we defined a a linear map TA : Rn → Rm, given a matrix A ∈Mm,n(R).
Next we define a matrix AT ∈ Mm,n(R), given a linear map T : Rn → Rm. The
two constructions are inverse to each other.

Theorem 1.5.3. Let n,m ≥ 1. If T : Rn → Rm is a linear map, there is a
matrix AT ∈Mm,n(R) such that T = TAT i.e., for every x ∈ Rn we have that

T (x) = TAT (x) := ATx.

The matrix AT is called the matrix of the linear map T .

Proof. If B := {e1, . . . , en} is the standard basis of Rn, then for every i ∈
{1, . . . , n} we write T (e1) a linear combination of the standard basis of Rm i.e.,

T (ei) :=
(
T (ei)1, . . . , T (ei)m

)
.

The matrix AT is formed by taking these m-tuples as its columns i.e., we define

AT :=



T (e1)1 . . . T (en)1
...

...
...

T (e1)j . . . T (en)j
...

...
...

T (e1)m . . . T (en)m

 =: [aji] =
[
T (ei)j

]
.

By the Proposition 1.3.14, to show that the linear maps T and TAT are equal, it
suffices to show that they are equal on the elements of B. Since

TAT (ei) := AT ei :=
[
T (ei)j

]
ei = [aji]ei = [cj1],
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where

cj1 =

n∑
i=1

ajibi1 = aji := T (ei)j ,

we get5 the required equality with the vector T (ei) :=
(
T (ei)1, . . . , T (ei)m

)
. �

For example, if T : R2 → R2 is a linear map such that

T (0, 1) := (a, c) & T (1, 0) := (b, d),

then we have that

AT =

[
a b
c d

]
.

Proposition 1.5.4. Let the function A : L(Rn)→Mn(R)

T 7→ AT := A(T ).

(i) The mappings T and A satisfy the following conditions:

(i) A ◦ T = idMn(R) and T ◦ A = idL(Rn)

Mn(R) L(Rn) Mn(R) L(Rn)
T A T

idMn(R)

idL(Rn)

(ii) AS◦T = ASAT .
(iii) AIn = In and AOn = On.
(ix) AS+T = AS +AT .
(x) AλT = λAT .
(xi) If T is invertible, then AT is invertible and A−1T = AT−1 .

Proof. Exercise. �

1.6. Determinants

Definition 1.6.1. If

A =

[
a b
c d

]
5A simpler argument is the following. As we have shown after the Definition 1.5.1, TA(ei) is

the i-column of A. Hence, TAT (ei) is the i-column of AT , which is exactly T (ei) by the definition

of AT .
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is a 2× 2-matrix, its determinant Det(A) is defined by

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc.

If

A1 :=

[
a
c

]
& A2 :=

[
b
d

]
are the columns of A, we use the notation

Det(A) = Det(A1, A2).

We have that

Det(I2) :=

∣∣∣∣1 0
0 1

∣∣∣∣ := 1− 0 = 1.

It is also clear that

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc =:

∣∣∣∣a c
b d

∣∣∣∣ =: Det(At).

Remark 1.6.2. Let the following 2× 1 matrices:

A1 :=

[
a1
a2

]
, C1 :=

[
c1
c2

]
, B2 :=

[
b1
b2

]
, D2 :=

[
d1
d2

]
.

The following hold.

(i) Det(A1 + C1, B2) = Det(A1, B2) + Det(C1, B2).

(ii) Det(A1, B2 +D2) = Det(A1, B2) + Det(A1, D2).

(iii) If λ ∈ R, then Det(λA1, B2) = λDet(A1, B2) = Det(A1, λB2).

(iv) If A1 = B2, then Det(A1, B2) = 0.

Proof. We prove only (i), and the rest is an exercise.

Det(A1 + C1, B2) :=

∣∣∣∣a1 + c1 b1
a2 + c2 b2

∣∣∣∣
:= (a1 + c1)b2 − b1(a2 + c2)

= (a1b2 − b1a2) + (c1b2 − b1c2)

:=

∣∣∣∣a1 b1
a2 b2

∣∣∣∣+

∣∣∣∣c1 b1
c2 b2

∣∣∣∣
:= Det(A1, B2) + Det(C1, B2).

�

Although one can use the definition of Det(A) to show the following corollary,
its proof is simpler, if we use the fundamental properties of the Remark 1.6.2.
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Corollary 1.6.3. Let the following 2× 1 matrices:

A1 :=

[
a1
a2

]
, B2 :=

[
b1
b2

]
.

The following hold.

(i) If λ ∈ R, then Det(A1 + λB2, B2) = Det(A1, B2).

(ii) If λ ∈ R, then Det(A1, B2 + λA1) = Det(A1, B2).

(iii) Det(A1, B2) = −Det(B2, A1).

Proof. Exercise. �

The determinant of a matrix A provides non-trivial information on vectors
related to A. We have seen that Det(I2) = 1 6= 0, and we know that the columns
e1 := (1, 0) and e2 := (0, 1) of the matrix I2 are linearly independent elements.
This is a special case of the following general fact.

Proposition 1.6.4. Let the following 2× 1 matrices:

A :=

[
a1
a2

]
, B :=

[
b1
b2

]
.

The vectors (a1, a2) and (b1, b2) are linearly independent in R2 if and only if

Det(A,B) 6= 0.

Proof. (⇒) Suppose that (a1, a2) and (b1, b2) are linearly independent in R2,
and suppose that

Det(A,B) :=

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ := a1b2 − b1a2 = 0.

Since then we have that

b2(a1, a2) + (−a2)(b1, b2) = (b2a1 − a2b1, b2a2 − a2b2) = (0, 0),

by the hypothesis of linear independence of (a1, a2) and (b1, b2) we get

b2 = 0 = −a2 = a2.

Hence the two vectors take the form (a1, 0) and (b1, 0). Since they are linearly
independent, these are non-zero vectors, hence a1 6= 0 and b1 6= 0. Consequently,
we have that (a1, 0) = a1

b1
(b1, 0) i.e., the vectors (a1, a2) and (b1, b2) are linearly

dependent, which is a contradiction. Hence, Det(A,B) 6= 0.

(⇐) Suppose that Det(A,B) 6= 0, and let λ, µ ∈ R such that

λ(a1, a2) + µ(b1, b2) = (0, 0)⇔ (λa1 + µb1, λa2 + µb2) = (0, 0),

hence

λa1 = −µb1 & λa2 = −µb2.
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Suppose that λ 6= 0 (if we suppose that µ 6= 0. we proceed similarly). By the
Remark 1.6.2 we have that

Det(A,B) =

∣∣∣∣(−µλ )b1 b1(−µ
λ

)
b2 b2

∣∣∣∣
=

(
−µ
λ

) ∣∣∣∣b1 b1
b2 b2

∣∣∣∣
=

(
−µ
λ

)
0

= 0,

which is a contradiction. Hence λ = 0 = µ, and the vectors (a1, a2), (b1, b2) are
linearly independent. �

Proposition 1.6.5. Let A,B ∈M2(R).

(i) Det(AB) = Det(A)Det(B).

(ii) A is invertible if and only if Det(A) 6= 0.

Proof. (i) Exercise.
(ii) If AA−1 = I2, then by the case (i) we have that

1 = Det(I2) = Det(AA−1) = Det(A)Det(A−1),

hence Det(A) 6= 0, Det(A−1) 6= 0, and

Det(A−1) =
1

Det(A)
.

For the converse let

A =

[
a b
c d

]
and suppose that

Det(A) :=

∣∣∣∣a b
c d

∣∣∣∣ := ad− bc 6= 0.

We show that the system [
a b
c d

] [
x y
z w

]
=

[
1 0
0 1

]
⇔

[
ax+ bz ay + bw
cx+ dz cy + dw

]
=

[
1 0
0 1

]
⇔

ax+ bz = 1 & cx+ dz = 0,

and

ay + bw = 0 & cy + dw = 1,
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has a solution. If we multiply the equation ax + bz = 1 by d and the equation
cx+ dz = 0 by b, and we subtract them we get

dax+ dbz − bcx− bdz = d⇔ x =
d

ad− bc
.

Working similarly, we get

A−1 :=

[
x y
z w

]
=

1

Det(A)

[
d −b
−c a

]
.

�

Definition 1.6.6. If

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


is a 3× 3-matrix, its determinant Det(A) is defined by

Det(A) :=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ := a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣ .
As expected, we have that

Det(I3) :=

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ := 1

∣∣∣∣1 0
0 1

∣∣∣∣− 0

∣∣∣∣0 0
0 1

∣∣∣∣+ 0

∣∣∣∣0 1
0 0

∣∣∣∣ = 1.

More generally, if we consider a matrix in diagonal form, then for the corresponding
determinant we have that∣∣∣∣∣∣

λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣ := λ1

∣∣∣∣λ2 0
0 λ3

∣∣∣∣− 0

∣∣∣∣0 0
0 λ3

∣∣∣∣+ 0

∣∣∣∣0 λ2
0 0

∣∣∣∣ = λ1λ2λ3.

All results we showed for the determinant of a matrix in M2(R) hold also for
the determinant of a matrix in M3(R).

1.7. The inner product on Rn

Definition 1.7.1. Let X be a linear space. An inner product on X is a
mapping 〈·, ·〉 : X ×X → R such that for every x, y, z ∈ X and λ ∈ R the following
conditions hold:

(i) 〈x, x〉 ≥ 0 (positivity).
(ii) 〈x, x〉 = 0⇒ x = 0 (definiteness).
(iii) 〈x, y〉 = 〈y, x〉 (symmetry).
(iv) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (left additivity).
(v) 〈λx, y〉 = λ〈x, y〉 (left homogeneous).
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If 〈·, ·〉 is an inner product on X, the pair (X, 〈·, ·〉) is called an inner product space.
A norm on X is a mapping ||.|| : X → R such that for every x, y ∈ X and λ ∈ R
the following hold:

(i) ||x|| ≥ 0 (positivity).
(ii) ||x|| = 0⇒ x = 0 (definiteness).
(iii) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).
(iv) ||λx|| = |λ|||x||.
If ||.|| is a norm on X, the pair (X, ||.||) is called a normed space.

Because of symmetry an inner product is bilinear i.e., it is also right additive
and right homogeneous:

(iv′) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 (right additivity).

(v′) 〈x, λy〉 = λ〈x, y〉 (right homogeneous).

Notice also that

|| − x|| = ||(−1)x|| = | − 1|||x|| = 1||x|| = ||x||.

Definition 1.7.2. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are in Rn, their
Euclidean inner product is defined by

〈x, y〉 :=

n∑
i=1

xiyi.

If n = 1, then the Euclidean inner product on R is the standard product on R.
By definition we have that

〈x, x〉 :=

n∑
i=1

xixi =

n∑
i=1

x2i = x21 + . . .+ x2n.

It is easy to see that the Euclidean inner product is an inner product on Rn. Next
we show that an inner product is determined by its diagonal entries.

Proposition 1.7.3. Let (X, 〈·, ·〉) be an inner product space and x, y ∈ X.

(i) (Polarization identity ) 〈x, y〉 = 1
4

(
〈x+ y, x+ y〉 − 〈x− y, x− y〉

)
.

(ii) x = 0⇔ ∀z∈X
(
〈x, z〉 = 0

)
.

(iii) ∀z∈X
(
〈x, z〉 = 〈y, z〉

)
⇒ x = y.

Proof. Exercise. �

If x = 0, then ||x|| = 0, since

||0|| = ||0 · 0|| = |0|||0|| = 0||0|| = 0.

Moreover, if x = 0, or y = 0, or y = λx, for some λ > 0, then the equality holds in
the triangle inequality ||x+ y|| ≤ ||x||+ ||y||.
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Definition 1.7.4. If x ∈ Rn, the Euclidean norm |x| of x is defined by

|x| :=
( n∑
i=1

x2i

) 1
2

=
√
x21 + x22 + . . .+ x2n =

√
〈x, x〉.

Geometrically, if x ∈ Rn, then |x| is the length of the vector x. To show that
the Euclidean norm is a norm we need the following inequality.

Proposition 1.7.5 (Inequality of Cauchy). If x, y ∈ Rn, then

|〈x, y〉| ≤ |x||y|.

Proof. By definition we need to show∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣ ≤ ( n∑
i=1

x2i

) 1
2
( n∑
i=1

y2i

) 1
2

,

which is equivalent to

A :=

( n∑
i=1

xiyi

)2

≤
( n∑
i=1

x2i

)( n∑
i=1

y2i

)
=: B.

This we get as follows:

B −A =

n∑
i=1

x2i

n∑
j=1

y2j −
n∑
i=1

xiyi

n∑
j=1

xjyj

=
1

2

n∑
i=1

x2i

n∑
j=1

y2j +
1

2

n∑
j=1

x2j

n∑
i=1

y2i −
n∑
i=1

xiyi

n∑
j=1

xjyj

=

n∑
i,j=1

1

2

(
x2i y

2
j + x2jy

2
i − 2xiyixjyj

)
=

n∑
i,j=1

1

2

(
xiyj − xjyi

)2
≥ 0.

�

An inner product on X always induces a norm on X, which is defined by

||x|| = 〈x, x〉 12 ,

for every x ∈ X. To show that ||.|| is a norm on X we need the inequality∣∣〈x, y〉∣∣ ≤ ||x|| ||y||,
which generalizes the inequality of Cauchy.
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Definition 1.7.6. A metric d on a set X is a function d : X × X → R such
that for every x, y, z ∈ X the following hold:

(i) d(x, y) ≥ 0.
(ii) d(x, y) = 0⇔ x = y.
(iii) d(x, y) = d(y, x).
(iv) d(x, y) ≤ d(x, z) + d(z, y).
If d is a metric on X, the pair (X, d) is called a metric space.

A norm ||.|| on a linear space X induces a metric on X defined by

d(x, y) := ||x− y||.

Definition 1.7.7. The Euclidean metric d on Rn is the metric induced by the
Euclidean norm on Rn i.e.,

d(x, y) := |x− y| :=
( n∑
i=1

(xi − yi)2
) 1

2

=

=
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 =
√
〈x− y, x− y〉,

for every x, y ∈ Rn.

The Euclidean norm is the norm induced by the Euclidean inner product. To
understand the geometric meaning of the Euclidean inner product we first see that
a vector x ∈ Rn is orthogonal to a vector y ∈ Rn, in symbols x⊥y, if and only if
〈x, y〉 = 0. To explain this we work as follows. It is easy to see geometrically6 that

x⊥y ⇔ |x− y| = |x+ y|,

since the diagonals of the parallelogram are equal only if x is perpendicular to y.

y

x+ y

x

6The following figure also explains why |x+ y| ≤ |x|+ |y|.
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We show that

|x− y| = |x+ y| ⇔ 〈x, y〉 = 0.

Since |x| ≥ 0, we have that

|x− y| = |x+ y| ⇔ |x− y|2 = |x+ y|2

:⇔ 〈x− y, x− y〉 = 〈x+ y, x+ y〉
⇔ 〈x, x〉 − 2〈x, y〉+ 〈y, y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
⇔ 4〈x, y〉 = 0

⇔ 〈x, y〉 = 0.

By the last two equivalences we get the required equivalence

x⊥y ⇔ 〈x, y〉 = 0.

Corollary 1.7.8 (Pythagoras theorem). If x, y ∈ Rn, such that x⊥y, then

|x+ y|2 = |x|2 + |y|2.

Proof. Exercise. �

By the inequality of Cauchy we have that∣∣∣∣ |〈x, y〉||x||y|

∣∣∣∣ =
|〈x, y〉|
|x||y|

≤ 1⇔ −1 ≤ 〈x, y〉
|x||y|

≤ 1.

hence, there exists a unique angle θ ∈ [0, π] such that

cos θ =
〈x, y〉
|x||y|

,

and we call θ the angle between x and y. Clearly, if 〈x, y〉 = 0, then θ = π
2 .

Proposition 1.7.9. If x, y ∈ Rn, and y 6= 0, then the projection pry(x) of x
on y is given by

y

λy

x
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pry(x) := λy & λ :=
〈x, y〉
〈y, y〉

.

Proof. Since (x− λy)⊥y, and y 6= 0, we have that

〈(x− λy), y〉 = 0⇔ 〈x, y〉 − 〈λy, y〉 = 0

⇔ 〈x, y〉 − λ〈y, y〉 = 0

⇔ λ =
〈x, y〉
〈y, y〉

.

�



CHAPTER 2

Functions of several variables

2.1. Curves in Rn

Definition 2.1.1. Let I be an interval of R of the form

(−∞, a), (−∞, a], (a,+∞), [a,+∞), R, (a, b), (a, b], [a, b), [a, b],

where a, b ∈ R such that a ≤ b. A curve in Rn is a function

x : I → Rn I 3 t 7→ x(t) ∈ Rn, t ∈ I.

We also write

x(t) =
(
x1(t), . . . , xn(t)

)
, t ∈ I,

where xi : I → R is the i-coordinate function of x, for every i ∈ {1, . . . , n}. We
also call x(t) the position vector of x at time t. We call x differentiable on (every
element of) I, if the coordinate functions x1(t), . . . , xn(t) of x are differentiable on
(every element of) I. A point P ∈ Rn belongs to x, if there is some t ∈ I such that
P = x(t).

Next we draw the image of a differentiable curve x : [a, b]→ R2

R2

x(t)

x(a)

x(b)

and the image of a differentiable curve x : (a, b)→ R2.

33
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R2

x(t)

Let also the curve c : [0, 2π]→ R2, defined by θ 7→ (cos θ, sin θ), for every θ ∈ [0, 2π],
the image of which is the unit circle in R2.

c(θ) := (cos θ, sin θ)

θ

This is a differentiable curve, since c(θ) :=
(
c1(θ), c2(θ)

)
, and its coordinate func-

tions c1(θ) := cos θ, and c2(θ) := sin θ are differentiable on [0, 2π], since cos ′θ =
− sin θ, and sin ′θ = cos θ, for every θ ∈ [0, 2π]. Moreover, c is a closed curve, since
c(0) = c(2π).

If x(t) : I → Rn is a differentiable curve in Rn, t0 ∈ I, and h ∈ R, then

x(t0 + h)− x(t0)

h
=

1

h

[(
x1(t0 + h), . . . , xn(t0 + h)

)
−
(
x1(t0), . . . , xn(t0)

)]
=

1

h

(
x1(t0 + h)− x1(t0), . . . , xn(t0 + h)− xn(t0)

)
=

(
x1(t0 + h)− x1(t0)

h
, . . . ,

xn(t0 + h)− xn(t0)

h

)
,

and hence

lim
h→0

x(t0 + h)− x(t0)

h
=
(
x1
′(t0), . . . , xn

′(t0)
)
.
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Definition 2.1.2. If x : I → Rn is a differentiable curve, its derivative is the
curve x′ : I → Rn defined, for every t0 ∈ I, by

x′(t0) :=
dx

dt
(t0) :=

(
x1
′(t0), . . . , xn

′(t0)
)

:=

(
dx1
dt

(t0), . . . ,
dxn
dt

(t0)

)
.

We call x′(t0) the velocity vector of x(t) at time t0.

The velocity vector x′(t0) is located at the origin of the Euclidean plane, but
we view it as a vector tangent to the curve at t0 and parallel to it.

x(t0)

x′(t0

x(t0) + x′(t0)

Definition 2.1.3. Let x : I → Rn be a differentiable curve. Its speed vx : I →
[0,+∞) is defined, for every t ∈ I, by

vx(t) := |x′(t)|,

where |x′(t)| is the Euclidean norm of the vector x′(t). If the derivative x′ : I → Rn
of x is differentiable, the acceleration vector of x(t) at time t0 ∈ I is defined by

x′′(t0) :=
dx′

dt
(t0) :=

d2x

dt
(t0).

Notice that by the definition of the Euclidean norm |.| we have that

vx(t)2 := |x′(t)|2 = 〈x′(t), x′(t)〉.

Proposition 2.1.4. Let x,y : I → Rn be differentiable curves, λ ∈ R, and
f : I → R a differentiable function.

(i) The sum x + y : I → Rn, defined by

(x + y)(t) := x(t) + y(t),

for every t ∈ I, is a differentiable curve, and, for every t0 ∈ I, we have that

(x + y)′(t0) = x′(t0) + y′(t0).

(ii) The product λx : I → Rn, defined by

(λx)(t) := λx(t),
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for every t ∈ I, is a differentiable curve, and, for every t0 ∈ I, we have that

(λx)′(t0) = λx′(t0).

(iii) The product 〈x,y〉 : I → R, defined by

〈x,y〉(t) := 〈x(t),y(t)〉,

for every t ∈ I, where 〈x(t),y(t)〉 is the Euclidean inner product of x(t),y(t), is a
differentiable function, and, for every t0 ∈ I, we have that

〈x,y〉′(t0) = 〈x′(t0),y(t0)〉+ 〈x(t0),y′(t0)〉.

(iv) The product x2 : I → R, defined by

(x2)(t) := 〈x(t),x(t)〉,

for every t ∈ I, is a differentiable function, and, for every t0 ∈ I, we have that

(x2)′(t0) = 2〈x(t0),x′(t0)〉.

(v) The product fx : I → Rn, defined by

(fx)(t) := f(t)x(t),

for every t ∈ I, is a differentiable curve, and, for every t0 ∈ I, we have that

(fx)′(t0) = f ′(t0)x(t0) + f(t0)x′(t0).

Proof. We prove only the case (iii), and the rest is an exercise. By the
definition of the Euclidean inner product we have that

〈x,y〉(t) := 〈x(t),y(t)〉 :=

n∑
i=1

xi(t)yi(t) = x1(t)y1(t) + . . .+ xn(t)yn(t),

hence we have that

〈x,y〉′(t0) =

= [x1(t)y1(t)]′(t0) + . . .+ [xn(t)yn(t)]′(t0)

= [x1
′(t0)y1(t0) + x1(t0)y1

′(t0)] + . . .+ [xn
′(t0)yn(t0) + xn(t0)yn

′(t0)]

= [x1
′(t0)y1(t0) + . . .+ xn

′(t0)yn(t0)] + [x1(t0)y1
′(t0) + . . .+ xn(t0)yn

′(t0)]

=

n∑
i=1

xi
′(t0)yi(t0) +

n∑
i=1

x(t0)yi
′(t0)

:= 〈x′(t0),y(t0)〉+ 〈x(t0),y′(t0)〉.

�

Corollary 2.1.5. Let x : I → Rn be a differentiable curve such that for every
t ∈ I the distance of x(t) from the origin remains constant i.e.,

|x(t)| = r > 0,
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for every t ∈ I. Then for every t0 ∈ I the position vector x(t0) of x at t0 is
orthogonal to the velocity vector x′(t0) of x at t0.

x(t0)

x′(t0)

Proof. If |x(t)| = r > 0, for every t ∈ I, then x(t) lies on the sphere of radius
r. Moreover,

r2 = |x(t)|2 = 〈x(t),x(t)〉 := 〈x,x〉(t),
hence by the Proposition 2.1.4(iv), and since 〈x,x〉 is a constant function on I, we
have that

0 = 〈x,x〉′(t0) = 2〈x(t0),x′(t0)〉 ⇔ 0 = 〈x(t0),x′(t0)〉 ⇔ x(t0)⊥x′(t0).

�

Definition 2.1.6. If x : I → R is a differentiable curve with continuous deriv-
ative x′, its length Lab(x) between two values a, b ∈ I, where a ≤ b, is defined by
the corresponding integral of its speed i.e.,

La,b(x) :=

∫ b

a

vx(t)dt :=

∫ b

a

|x′(t)|dt.

By the definition of the Euclidean norm we have that

La,b(x) =

∫ b

a

√(
dx1
dt

(t)

)2

+

(
dx2
dt

(t)

)2

dt,

if x(t) :=
(
x1(t), x2(t)

)
, and

La,b(x) =

∫ b

a

√(
dx1
dt

(t)

)2

+

(
dx2
dt

(t)

)2

+

(
dx3
dt

(t)

)2

dt,
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if x(t) :=
(
x1(t), x2(t), x3(t)

)
. In the general case, where x(t) :=

(
x1(t), . . . , xn(t)

)
,

we have that

La,b(x) =

∫ b

a

√(
dx1
dt

(t)

)2

+ . . .+

(
dx3
dt

(t)

)2

dt.

If for example, we consider the unit circle c(θ) := (cos θ, sin θ), where θ ∈ [0, 2π],
then we have that

vc(θ) := |c′(θ)|

:=
√
c1′(θ)2 + c2′(θ)2

=
√

(− sin θ)2 + (cos θ)2

=
√

sin2 θ + cos2 θ

=
√

1

= 1,

and hence we get the expected value for the length of c between 0 and 2π:

L0,2π(c) :=

∫ 2π

0

vc(θ)dθ :=

∫ 2π

0

1dθ =

∫ 2π

0

dθ = 2π − 0 = 2π.

Let the differentiable curve x : R→ R2 defined by

x(t) := (et cos t, et sin t),

for every t ∈ R. Its derivative x′ is given by

x′(t) := (et cos t− et sin t, et sin t+ et cos t),

for every t ∈ R. After some calculations we get

|x(t)| = et & |x′(t)| =
√

2et & 〈x′(t),x(t)〉 = e2t,

for every t ∈ R. Hence,

〈x′(t),x(t)〉
|x′(t)||x(t)|

=
e2t√
2etet

=
1√
2
,

for every t ∈ R i.e., the angle between x′(t) and x(t) is constant π
4 , for every t ∈ R.

Moreover,

L0,1(x) =

∫ 1

0

√
2etdt =

√
2(e− 1).
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2.2. Open sets in Rn

We consider vector-valued functions defined on appropriate subsets of Rn that
we call open.

Definition 2.2.1. Let x ∈ Rn and ε > 0. The open ball B(x, ε) with center x
and radius ε is defined by

B(x, ε) := {y ∈ Rn | d(x, y) < ε}
:= {y ∈ Rn | |x− y| < ε}

:= {y ∈ Rn |
√

(x1 − y1)2 + . . . (xn − yn)2 < ε}.

We also say that B(x, ε) is the open r-ball at x. The closed ball B(x, ε] with center
x and radius ε is defined by

B(x, ε] := {y ∈ Rn | d(x, y) ≤ ε}.
If U ⊆ Rn, we say that U is an open subset of Rn, if

∀x∈U∃ε>0

(
B(x, ε) ⊆ U

)
.

If F ⊆ Rn, we say that F is a closed subset of Rn, if its complement

F c := {y ∈ Rn | x /∈ F}
is open.

The open ε-ball B(0, ε) at the origin (0, 0) is the open ε-disc around (0, 0)

B(0, ε) ε

and the closed ε-ball B(0, ε] at the origin (0, 0) is the ε-disc around (0, 0) with the
ε-circle around the origin. It is easy to see that the open ε-ball B(0, ε), as any open
ball, is an open set, since if we take any point in the disc, we can find a small disc
around it that is included in the larger one. Note that the closed ε-ball B(0, ε] is
not open, since any disc around a point at the ε-circle is not included in B(0, ε]. It
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is clear though, that B(0, ε] is closed. Using a similar argument we can show that
the interior U of the following curve in R2 is open in R2.

U

Note that the open ε-ball B(0, ε) in R at the origin 0 is the open interval (−ε, ε).

Proposition 2.2.2. Let n ≥ 1.

(i) Rn and ∅ are both open and closed.

(ii) If U ⊆ Rn, then U is open if and only if its complement U c is closed.

(iii) If U, V are open in Rn, then U ∩ V and U ∪ V are open in Rn.

(iv) If F,K are closed in Rn, then F ∩K and F ∪K are closed in Rn.

(v) If (Ui)i∈I is a family of open sets in Rn i.e., Ui is open for every i ∈ I, then
their union ⋃

i∈I
Ui :=

{
x ∈ Rn | ∃i∈I

(
x ∈ Ui

)}
is open.

(vi) If (Fi)i∈I is a family of closed sets in Rn i.e., Ui is closed for every i ∈ I, then
their intersection ⋂

i∈I
Fi :=

{
x ∈ Rn | ∀i∈I

(
x ∈ Fi

)}
is closed.

Proof. (i) If x ∈ Rn, then B(x, 1) ⊆ Rn, and hence Rn is open. Consequently,
∅ is closed, since ∅c = Rn. The implication x ∈ ∅ ⇒ B(x, 1) ⊆ ∅ is trivially
true, since its premise is false. Hence ∅ is also open, and Rn is also closed, since
(Rn)c = ∅.
(ii) If U is open, then U c is closed, since (U c)c = U is open. If U c is closed, then
by definition (U c)c = U is open.
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(iii) First we show that U ∩ V is open. If x ∈ U ∩ V , then x ∈ U and x ∈ V . Since
U is open, there is some ε1 > 0 such that B(x, ε1) ⊆ U . Since V is open, there is
some ε2 > 0 such that B(x, ε2) ⊆ Y . If

ε := min{ε1, ε2},
then

B(x, ε) ⊆ V ∩ U.
To show this, let y ∈ Rn such that |y − x| < ε ≤ ε1. Hence y ∈ U . Similarly,
|y − x| < ε ≤ ε2, and hence y ∈ Y . Consequently, y ∈ V ∩ U .

Next we show that U ∪ V is open. If x ∈ U ∪ V , then x ∈ U , or x ∈ V . In
the first case we have that B(x, ε1) ⊆ U ⊆ U ∪ V , and in the second we have that
B(x, ε2) ⊆ V ⊆ U ∪ V .
(iv) We use the case (iii) and the equalities

(F ∩K)c = F c ∪Kc & (F ∪K)c = F c ∩Kc.

(v) and (vi) is an exercise. �

The intersection of a countable family of open sets is not generally open. E.g.,

(0, 1] =
⋂
n≥1

(
0, 1 +

1

n

)
,

and (0, 1] is not open, as any non-trivial interval around 1 intersects (1,+∞). The
union of a countable family of closed sets is not generally closed. E.g.,

(0, 1) =
⋃
n≥2

[
1

n
, 1− 1

n

]
,

and (0, 1) is not closed, since its complement (−∞, 0] ∪ [1,+∞) is not open. It is
not hard to see that the cartesian product of open sets in R is an open set in the
corresponding Rn. E.g., the set

(0, 1)× (−1, 1) := {(x, y) ∈ R2 | x ∈ (0, 1) & y ∈ (−1, 1)}
is open in R2. Similarly the set

(0, 1)× (−1, 1)× R := {(x, y, z) ∈ R3 | x ∈ (0, 1) & y ∈ (−1, 1)}
is open in R3.

2.3. Partial derivatives

If U is an open subset of Rn, and x = (x1, . . . , xn) ∈ U , then for every i ∈
{1, . . . , n}, there are appropriately small values of h ∈ R such that the point

(x1, . . . , xi + h, . . . , xn) ∈ U,
and the following concept is well-defined.
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Definition 2.3.1. Let U be an open subset of Rn, x = (x1, . . . , xn) ∈ U , and
f : U → R. If the following limit exists

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
,

we let

Dif(x) :=
∂f

∂xi
(x) := lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
,

and we call Dif(x), or ∂f
∂xi

(x), the i-th partial derivative of f at x.

If Bn := {e1, . . . , ei, . . . , en} is the standard basis of Rn, we have that

Dif(x) = lim
h→0

f(x+ hei)− f(x)

h
.

If for example f : R2 → R is defined by

f(x, y) := x2y3,

then

D1f(x) :=
∂f

∂x
(x)

:= lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y3 − x2y3

h

= y3 lim
h→0

(x+ h)2 − x2

h

= y32x

= 2xy3,

since the term in the right is the derivative of the function g(x) = x2. I.e., to
calculate D1f(x) we treat y as a constant and we differentiate with respect to x.
Similarly we have that

D2f(x) :=
∂f

∂y
(x)

:= lim
h→0

f(x, y + h)− f(x, y)

h

= lim
h→0

x2(y + h)3 − x2y3

h

= x2 lim
h→0

(y + h)3 − y3

h

= x23y2

= 3x2y2,
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since the term in the right is the derivative of the function h(y) = y3. I.e., to
calculate D2f(x) we treat x as a constant and we differentiate with respect to y.

If f, g : U → R, and x ∈ U such that Dif(x) and Dig(x) exist, then by
the properties of the derivative of real-valued functions on intervals of R we get
immediately

Di(f + g)(x) = Dif(x) +Dig(x),

Di(λf)(x) = λDif(x),

for every λ ∈ R.

Definition 2.3.2. Let U be an open subset of Rn, x; = (x1, . . . , xn) ∈ U , and
f : U → R. If the partial derivatives at x

D1f(x) :=
∂f

∂x1
(x), . . . , Dnf(x) :=

∂f

∂xn
(x)

exist, the gradient (gradf)(x) of f at x is the vector

(gradf)(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
:=

(
D1f(x), . . . , Dnf(x)

)
.

E.g., if f : R2 → R is defined as above by f(x, y) := x2y3, then

(gradf)(x) := (2xy3, 3x2y2).

Because of the above linearity of Di, we get immediately that if f, g : U → R, and
x ∈ U such that Dif(x) and Dig(x) exist, then

(grad(f + g))(x) = (gradf)(x) + (gradg)(x),

(grad(λf))(x) = λ(gradf)(x),

for every λ ∈ R. If Dif(x) and Dig(x) exist, for every x ∈ U , we get

grad(f + g) = gradf + gradg,

grad(λf) = λgradf,

for every λ ∈ R. If f : R2 → R is defined by f(x, y) := x2y3, we showed that

D1f(x) :=
∂f

∂x
(x) = 2xy3 & D2f(x) :=

∂f

∂y
(x) = 3x2y2.

Since D1f,D2f : R2 → R, we can determine the repeated partial derivatives

D1D1f(x, y) := D2
1f(x, y) :=

∂2f

∂x2
(x, y) := (D1(D1f))(x, y) =

=
∂(2xy3)

∂x
(x, y) = 2y3,

D1D2f(x, y) :=
∂

∂x

(
∂f

∂y

)
(x, y) :=

∂2f

∂x∂y
(x, y) := (D1(D2f))(x, y) =
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=
∂(3x2y2)

∂x
(x, y) = 6xy2,

D2D1f(x, y) :=
∂

∂y

(
∂f

∂x

)
(x, y) :=

∂2f

∂y∂x
(x, y) := (D2(D1f))(x, y) =

∂(2xy3)

∂y
(x, y) = 6xy2,

D2D2f(x, y) := D2
2f(x, y) :=

∂2f

∂y2
(x, y) := (D2(D2f))(x, y) =

=
∂(3x2y2)

∂y
(x, y) = 6x2y.

Notice that

2y3 =
∂2f

∂x2
(x, y) 6=

(
∂f

∂x
(x)

)2

= (2xy3)2 = 4x2y6.

But we have that

∂

∂x

(
∂f

∂y

)
(x, y) = 6xy2 =

∂

∂y

(
∂f

∂x

)
(x, y).

This is not accident. One can show that if U ⊆ R2 is open and f : U → R such
that the partial derivatives

D1f(x, y), D2f(x, y), D1D2f(x, y), D2D1f(x, y)

exist and are continuous, then for every (x, y) ∈ U we have that

D1D2f(x, y) = D2D1f(x, y).

We can have repeated partial derivatives for n > 2. If f : R3 → R is defined by

f(x, y, z) = x2yz3,

then

D1f(x, y, z) = 2xyz3 D2D1f(x, y, z) = 2xz3 D3D2D1f(x, y, z) = 6xz2,

and

D3f(x, y, z) = 3x2yz2 D2D3f(x, y, z) = 3x2z2 D1D2D3f(x, y, z) = 6xz2

i.e.,

D3D2D1f(x, y, z) = 6xz2 = D1D2D3f(x, y, z).

By our previous remark on the equality D1D2f(x, y) = D2D1f(x, y), if all the
related partial derivatives exist and are continuous we get

D3D2D1f(x, y, z) = D3D1D2f(x, y, z)

= D1D3D2f(x, y, z)

= D1D2D3f(x, y, z).
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2.4. The chain rule

In this section we define when a function f : U → R, where U is an open subset
of Rn, is differentiable at some point x0 ∈ U . To motivate this definition we notice
the following fact.

Remark 2.4.1. Let U be an open subset of R, x0 ∈ U and f : U → R. The
following are equivalent:

(i) f is differentiable at x0.

(ii) There are ε > 0, a ∈ R, and a function g : (−ε, ε)→ R such that

f(x0 + h)− f(x0) = ah+ |h|g(h),

for every h ∈ (−ε, ε), and

lim
h→0

g(h) = 0.

Proof. If f is differentiable at x0, then

a := f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h
∈ R,

and if h 6= 0, we define

φ(h) =
f(x0 + h)− f(x0)

h
− f ′(x0),

while if h = 0, we define φ(0) := 0. Clearly,

lim
h→0

φ(h) = 0,

and for every h in some ε-interval around 0 we have that

f(x0 + h)− f(x0) = f ′(x0)h+ hφ(h).

If we define g(h) := φ(h), if h ≥ 0, and g(h) := −φ(h), if h < 0, we have that

|h|g(h) = hφ(h),

and we get the required equality

f(x0 + h)− f(x0) = ah+ |h|g(h).

Of course,

lim
h→0

g(h) = 0.

For the converse, if h 6= 0, then

f(x0 + h)− f(x0)

h
=
ah+ |h|g(h)

h
= a+

|h|
h
g(h),

which converges to a, as h converges to 0 i.e., a = f ′(x0). �
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Definition 2.4.2. Let U be an open subset of Rn, x0 ∈ U and f : U → R. We
say that f is differentiable at x0, if

(a) The gradient of f at x0

gradf(x0) :=
(
D1f(x0), . . . , Dnf(x0)

)
=

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
exists, and

(b) there is a function g defined on a small open ball around the origin 0 such that

lim
|h|→0

g(h) = 0,

and

f(x0 + h)− f(x0) =
∂f

∂x1
(x0)h1 + . . .+

∂f

∂xn
(x0)hn + |h|g(h)

:=
〈
(gradf)(x0), h

〉
+ |h|g(h).

We say that f is differentiable on U , if it is differentiable at every point of U .

To show that a function f as above is differentiable on U , it suffices to show
that the gradient of f at every point of U exists, and that the partial derivatives
on U are continuous functions (the proof is omitted).

Proposition 2.4.3. If U is an open subset of Rn, x0 ∈ U and f : U → R, then
f is differentiable at x0, if all partial derivatives of f at x0 exist in U and for each
i ∈ {1, . . . , n} the function

U 3 x 7→ ∂f

∂xi
(x)

is continuous at x0.

Proof. See [4], p. 322. �

In the one dimensional case the chain rule takes the form

(f ◦ g)′(t) = f ′(g(t))g′(t),

where f and g are as indicated in the following diagram

I U ⊆ R

R.

g

f ◦ g f

Next we prove the generalisation of this rule.

Proposition 2.4.4 (Chain rule). Let I be an interval of R, and x : I → Rn
differentiable curve on I such that x(I) ⊆ U ,
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U

x(t)

where U is an open subset of Rn. If f : U → R is differentiable on U , then the
function

I U ⊆ Rn

R.

x

f ◦ x f

f ◦ x : I → R is differentiable, and for every t ∈ I we have that

(f ◦ x)′(t) =
〈
(gradf)(x(t)),x′(t)

〉
.

Proof. Let the quotient

f(x(t+ h))− f(x(t))

h
,

which, if we define

K := K(t, h) := x(t+ h)− x(t),

and hence x(t+ h) = K + x(t), it becomes

f(x(t) +K)− f(x(t))

h
.

Since f is differentiable on U , and x(t) is included in U , f is differentiable at x(t),
for every t ∈ I. By the Definition 2.4.2 there is a function g such that

f(x(t) +K)− f(x(t)) =
〈
(gradf)(x(t)),K

〉
+ |K|g(K),

and

lim
|K|→0

g(K) = 0.

Hence,

f(x(t+ h))− f(x(t))

h
=

〈
(gradf)(x(t)),

x(t+ h)− x(t)

h

〉
+
|x(t+ h)− x(t)|

h
g(K)
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=

〈
(gradf)(x(t)),

x(t+ h)− x(t)

h

〉
±
∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣g(K).

If h→ 0, then〈
(gradf)(x(t)),

x(t+ h)− x(t)

h

〉
→
〈
(gradf)(x(t)),x′(t)

〉
,

and

±
∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣g(K)→ ±|x′(t)|0 = 0,

since if h → 0, then K := x(t + h) − x(t) → 0, and we use the fact that
lim|K|→0 g(K) = 0. �

Unfolding the chain rule we get

(f ◦ x)′(t) =

〈(
∂f

∂x1
(x(t)), . . . ,

∂f

∂xn
(x(t))

)
,x′(t)

〉
=

n∑
i=1

∂f

∂x1
(x(t))xi

′(t)

=:
∑
i

∂f

∂xi
(x(t))

dxi
dt

(t)

:=
∂f

∂x1
(x(t))

dx1
dt

(t) + . . .+
∂f

∂xn
(x(t))

dxn
dt

(t),

where x(t) =
(
x1(t), . . . , xn(t)

)
. For simplicity we also write

df(x(t))

dt
=

∂f

∂x1

dx1
dt

+ . . .+
∂f

∂xn

dxn
dt

.

For example, let the following functions

R R3

R

x

f ◦ x f

defined by x(t) :=
(
et, t, t2

)
=
(
x(t), y(t), z(t)

)
and f(x, y, z) := x2yz. Then f is

differentiable on R3 by the Proposition 2.4.3, and by the chain rule we have that

df(x(t))

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

= 2xyzet + x2z + x2y2t.
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As a simple example of applying the chain rule, let f : R3 → R differentiable,
and let g : R→ R, defined by

g(t) = f(P + tQ),

for every t ∈ R, and some P,Q ∈ R3. In order to find g′(t), let x : R→ R3

R R3

R

x

g f

such that g = f ◦ x. Let

x(t) = P + tQ = (p1 + tq1, p2 + tq2, p3 + tq3),

for every t ∈ R. Since x′(t) = (q1, q2, q3) = Q, we get

g′(t) = (f ◦ x)′(t) =
〈
(gradf)(x(t)),x′(t)

〉
=
〈
(gradf)(P + tQ), Q

〉
.

Corollary 2.4.5. Let U be an open subset of Rn such that for every two points
x0, x1 ∈ U there is a differentiable curve x : [0, 1] → U such that x(0) = x0 and
x(0) = x1.

U

x(t)

x(0)

x(1)

If f : U → R is differentiable on U , such that

(gradf)(x) = 0,

for every x ∈ U , then f is constant on U .

Proof. Exercise. �
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2.5. Curve integrals

A vector field is a function F : U → Rn that can be interpreted as a field of
forces. If x : I → U is a cure in U , the vector x(t) is interpreted as the position
of the particle at time t ∈ I, and F (x(t)) is the force acted upon the particle at
position x(t). We may also say that the particle is moving in the force field F .

U

x(t)

F (x(t))

Definition 2.5.1. Let U be an open subset of Rn. A vector field on U is a
function F : U → Rn. If F is represented by its coordinate functions i.e.,

F = (f1, . . . , fn),

F is differentiable on U , if each fi : U → R is differentiable on U . F is called
conservative, if there is a differentiable function V : U → R such that1

F = −gradV.

In this case V is called a potential energy function for F .

If V is a potential energy function for F and c ∈ R is some constant, then

V + c

is also a potential energy function for F . If f is a differentiable function on U , then,
by the Definition 2.4.2, we get the vector field on U defined by

U 3 x 7→ (gradf)(x).

Let F : U → Rn be a differentiable vector field on U and x : I → U a differentiable
curve in U . Then the function F ◦ x : I → Rn is well-defined

1The negative sign is only traditional, and it can be avoided.
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I U ⊆ Rn

Rn,

x

F ◦ x F

and let the function on I defined by

t 7→
〈
F (x(t)),x′(t)

〉
,

for every t ∈ I. E.g., let F : R2 → R2 defined by

F (x, y) := (exy, y2),

for every (x, y) ∈ R2, and let x : R→ R2 be defined by

x(t) := (t, sin t),

for every t ∈ R. Then
x′(t) = (1, cos t),

F (x(t)) =
(
et sin t, sin2 t

)
,

and 〈
F (x(t)),x′(t)

〉
= et sin t + (sin2 t)(cos t),

for every t ∈ R.

Definition 2.5.2. Let U ⊆ Rn be open, x : [a, b] → U a differentiable curve
with a differentiable derivative curve x′, and let F : U → Rn be a differentiable
vector field. The curve integral of F along x is defined by∫

x

F :=

∫ b

a

〈
F (x(t)),x′(t)

〉
dt.

By the continuity of the inner product and our hypotheses on x and F the
function on [a, b] defined by

t 7→
〈
F (x(t)),x′(t)

〉
is continuous, hence Riemann-integrable. The above curve integral is a generalisa-
tion of the substitution method of the integral of functions in one variable:∫ u(b)

u(a)

f(u)du =

∫ b

a

f(u(t))
du

dt
dt.

We use the following parametrisations of a linear, parabolic or circular segment:

(I) If P,Q ∈ Rn, the linear segment “from P to Q” is parametrised by the curve
x : [0, 1]→ Rn, defined by

x(t) := P + t(Q− P ),

for every t ∈ [0, 1]. Clearly, x(0) = P and x(1) = Q.

(II) A parabolic segment of the parabola y = t2



52 2. FUNCTIONS OF SEVERAL VARIABLES

t
−3 −2 −1 1 2 3

1

2

3

x(t) := (t, t2)

is parametrised by the curve x(t) := (t, t2), where t is in a closed interval determined
by the specifications of the respected problem.

(III) A parabolic segment of the parabola x = t2

t

t21 2 3

−1

1

is parametrised by the curve x(t) := (t2, t), where t is in a closed interval determined
by the specifications of the respected problem.

(IV) A circular segment of the circle of radius r > 0 centered at (0, 0) in R2
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r

is parametrised by the curve x(t) := (r cos t, r sin t), where t is in a closed interval
determined by the specifications of the respected problem.

Let the vector filed F : R2 → R2, defined by

F (x, y) := (x2, xy),

for every (x, y) ∈ R2. To determine the integral of F over the parabolic segment

t
−1 1

1
P Q

from P := (−1, 1) to Q := (1, 1) we have that x(t) = (t, t2) and x′(t) = (1, 2t), and

F (x(t)) = F (t, t2) = (t2, t3),〈
F (x(t)),x′(t)

〉
= t2 + 2t4,

hence, since −1 ≤ t ≤ 1, ∫
x

F =

∫ 1

−1
(t2 + 2t4)dt

=

∫ 1

−1
t2dt+

∫ 1

−1
2t4dt

=
2

3
+

4

5
.
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To determine the curve integral of the vector field F : R2 → R2, defined by

F (x, y) := (x2y, y3),

for every (x, y) ∈ R2, over the line segment from P := (0, 0) to Q := (1, 1) we use
the parametrisation of the segment

x(t) = P + t(Q− P ) = (0, 0) + t((1, 1)− (0, 0)) = t(1, 1) = (t, t),

where t ∈ [0, 1], and hence F (x(t)) = F (t, t) = (t3, t3), x′(t) = (1, 1),〈
F (x(t)),x′(t)

〉
= t3 + t3 = 2t3,

and ∫
x

F =

∫ 1

0

2t3 = 2

∫ 1

0

t3 = 2
1

4
=

1

2
.

Let the vector field F : R2 \ {(0, 0)} → R2, defined by

F (x, y) :=

(
−y

x2 + y2
,

x

x2 + y2

)
,

for every (x, y) in the open subset R2 \{(0, 0)} of R2. To determine its integral over
the circular segment of the circle of radius 3 around (0, 0) from P := (3, 0) to

Q :=

(
3
√

3

2
,

3

3

)
we consider the curve

x(t) = (3 cos t, 3 sin t), x′(t) = (−3 sin t, 3 cos t), t ∈
[
0,
π

6

]
,

since x(0) = P and x(π6 ) = Q. Since

F (x(t)) = F (3 cos t, 3 sin t)

=

(
−3 sin t

(3 cos t)2 + (−3 sin t)2
,

3 cos t

(3 cos t)2 + (−3 sin t)2

)
=

(
−3 sin t

9
,

3 cos t

9

)
=

1

3
(− sin t, cos t),

and 〈
F (x(t)),x′(t)

〉
= sin2 t+ cos2 t = 1,

we get ∫
x

F =

∫ π
6

0

dt =
π

6
.
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Definition 2.5.3. A path in an open subset U of Rn is a finite sequence

p := (x1, . . . ,xm),

where m ≥ 1, x1 : [a1, b1]→ U, . . . ,xm : [am, bm]→ U are curves in U such that

x1(b1) = x2(a2) & . . . & xm(am) = xm−1(bm−1).

A path p is called differentiable on U , if x1, . . . ,xm are differentiable curves on U
with differentiable derivative curves on U . We also say that p is closed, if

x1(a1) = xm(bm).

If F : U → Rn is a differentiable vector field on U , and p is a differentiable path on
U , the path integral of F over p is defined by∫

p

F :=

∫
x1

F + . . .+

∫
xm

F.

Clearly, a curve in U is a special case of a path in U .

2.6. Conservative vector fields

Theorem 2.6.1. Let U ⊆ Rn be open, and F : U → Rn be a differentiable
vector field on U .

(I) Let F = gradV , for some differentiable function V : U → R.

(a) If x : [a, b] → U is a differentiable curve in U with x(a) = P and x(b) = Q,
then ∫

x

F = V (Q)− V (P ).

(b) If y : [a, b] → U is a differentiable curve in U with y(a) = P and y(b) = Q,
then ∫

y

F =

∫
x

F.

(c) If z : [a, b]→ U is a closed differentiable curve in U i.e., z(a) = P = z(b), then∫
z

F = 0.

(II) Let F = −gradV , for some differentiable function V : U → R.

(a) If x : [a, b] → U is a differentiable curve in U with x(a) = P and x(b) = Q,
then ∫

x

F = V (P )− V (Q).

(b) If y : [a, b] → U is a differentiable curve in U with y(a) = P and y(b) = Q,
then ∫

y

F =

∫
x

F.
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(c) If z : [a, b]→ U is a closed differentiable curve in U i.e., z(a) = P = z(b), then∫
z

F = 0.

Proof. We prove only the first part of (i) and the rest is an exercise. By the
definition of the curve integral of f and the chain rule on V ◦ x

[a, b] U ⊆ Rn

R,

x

V ◦ x V

we have that ∫
x

F :=

∫ b

a

〈F (x(t)),x′(t)〉dt

=

∫ b

a

〈(gradV )(x(t)),x′(t)〉dt

=

∫ b

a

(V ◦ x)′(t)dt

=
[
V ◦ x

]b
a

= V (x(b))− V (x(a))

= V (Q)− V (P ).

�

Because of the above independence of the integral
∫
x
F of a conservative vector

field from the curve connecting the points P and Q in U , we write∫ Q

P

F :=

∫
x

F = V (Q)− V (P ),

where x is any curve in U from P to Q. Let F : R3 → R3 a vector field defined by

F (x, y, z) :=
(
2xy3z, 3x2y2z, x2y3

)
,

for every (x, y, z) ∈ R3. If V : R3 → R is defined by

V (x, y, z) := x2y3z,

it is easy to see that F = gradV. If P := (1,−1, 2) and Q := (−3, 2, 5), then∫ Q

P

F = V (Q)− V (P ) = V (−3, 2, 5)− V (1,−1, 2) = 360− (−2) = 362.
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Let G : R3 \ {(0, 0, 0)} → R3 be defined by

G(x, y, z) :=
k(x, y, z)

|(x, y, z)|3
,

for every (x, y, z) ∈ R3 \ {(0, 0, 0)} and some k ∈ R. If V : R3 \ {(0, 0, 0)} → R is
defined by

V (x, y, z) := − k

|(x, y, z)|
,

for every (x, y, z) ∈ R3 \ {(0, 0, 0)}, then one can show (exercise) that

gradV = G

i.e., (
∂V

∂x
(x, y, z),

∂V

∂y
(x, y, z),

∂V

∂z
(x, y, z)

)
=

k

|(x, y, z)|3
(x, y, z).

If P := (1, 1, 1) and Q := (1, 2,−1), then∫ Q

P

G = V (Q)− V (P )

= − k

|Q|
−
(
− k

|P |

)
= −k

(
1

|Q|
− 1

|P |

)
= −k

(
1√
6
− 1√

3

)
.

2.7. Green’s theorem on rectangles

Definition 2.7.1. An rectangle R in R2 is a set of the form

R := [a, b]× [c, d] := {(x, y) ∈ R2 | a ≤ x ≤ b & c ≤ y ≤ d},

and an open rectangle is a set of the form

Ro := (a, b)× (c, d) := {(x, y) ∈ R2 | a < x < b & c < y < d},

If f : R → R is a continuous function2, the double integral of f on R is defined by∫∫
R
f :=

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

2All functions defined on a rectangle that we are going to study here are going to be

continuous.
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Let R := [1, 2]× [−3, 4] and f : R → R, defined by

f(x, y) := x2y,

for every (x, y) ∈ R2. Then∫∫
R
f =

∫ 2

1

(∫ 4

−3
x2ydy

)
dx

=

∫ 2

1

x2
(∫ 4

−3
ydy

)
dx

=

∫ 2

1

x2
1

2
(16− 9)dx

=
7

2

∫ 2

1

x2dx

=
7

2

1

3
(23 − 13)

=
49

6
.

If U ⊆ R2 is open, and let F : U → R2 be a differentiable vector field on U
such that

F (x, y) :=
(
p(x, y), q(x, y)

)
,

where p, q : U → R are the components of F . If x : [a, b] → U is a differentiable
curve in U , then ∫

x

F :=

∫ b

a

〈F (x(t)),x′(t)〉dt

=

∫ b

a

(
p(x, y)

dx

dt
+ q(x, y)

dy

dt

)
dt

=

∫ b

a

p(x, y)dx+ q(x, y)dy.

According to the next theorem, if we want to find the path-integral∫
(x1,x2,x3,x4)

F

of a differentiable vector field F = (p, q) defined on an open rectangle, where the
path

(x1,x2,x3,x4)

parametrises counterclockwise the rectangle R, it suffices to calculate the double
integral ∫∫

R

(
∂q

∂x
− ∂p

∂y

)
.
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Hence we do not need to calculate the curve integrals separately i.e., to use the
equality ∫

(x1,x2,x3,x4)

F =

∫
x1

F +

∫
x2

F +

∫
x3

F +

∫
x4

F.

If e.g., we consider the rectangle [−1, 1]× [−1, 1]

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

a path that parametrises it counterclockwise is the following sequence of linear
segments(

(−1,−1)→ (1,−1), (1,−1)→ (1, 1), (1, 1)→ (−1, 1), (−1, 1)→ (−1,−1)
)
.

The proof of the next theorem is omitted.

Theorem 2.7.2 (Green’s theorem on rectangles). Let F : (a, b) × (c, d) → R2

be a differentiable vector field on the open rectangle (a, b)× (c, d) such that

F (x, y) :=
(
p(x, y), q(x, y)

)
,

for every (x, y) ∈ (a, b)× (c, d). Then∫
(x1,x2,x3,x4)

p(x, y)dx+ q(x, y)dy =

∫∫
R

(
∂q

∂x
− ∂p

∂y

)
.

Let the vector field F : R2 → R2, defined by

F (x, y) =
(
3xy, x2

)
,

for every (x, y) ∈ R2. Hence,

p(x, y) = 3xy, q(x, y) = x2,

∂q

∂x
= 2x &

∂p

∂y
= 3x.

The integral of F around the following rectangle
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

is calculated with the use of Green’s theorem as follows∫
(x1,x2,x3,x4)

p(x, y)dx+ q(x, y)dy =

∫∫
R

(
∂q

∂x
− ∂p

∂y

)
=

∫ 3

−1

(∫ 2

0

(2x− 3x)dy

)
dx

=

∫ 3

−1

(∫ 2

0

(−x)dy

)
dx

=

∫ 3

−1
(−x)

(∫ 2

0

dy

)
dx

=

∫ 3

−1
(−x)2dx

= −2

∫ 3

−1
xdx

= −8.
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Appendix

3.1. Solution to Exercise 2(ii), Sheet 1

If f : R → R, we say that f is differentiable at x0 ∈ R, if there is some l ∈ R
such that

l = lim
h→0

f(x0 + h)− f(x0)

h
,

where using the (ε-δ)-definition of the notion of limit, this means that

∀ε>0∃δf (ε)>0∀h6=0

(
|h| < δf (ε)⇒

∣∣∣∣f(x0 + h)− f(x0)

h
− l
∣∣∣∣ ≤ ε).

This necessarily unique limit l is called the derivative of f at x0, and it is denoted
by f ′(x0). The function f is called continuous at x0, if

lim
h→0

f(x0 + h) = f(x0)⇔ lim
h→0

[
f(x0 + h)− f(x0)

]
= 0,

where using the (ε-δ)-definition of the notion of limit, this means that

∀ε>0∃δf (ε)>0∀h∈R
(
|h| < δf (ε)⇒

∣∣f(x0 + h)− f(x0)
∣∣ ≤ ε).

If f is differentiable at x0, then f is continuous at x0. To show this we remark that
the function

φ(h) :=

{
f(x0+h)−f(x0)

h , h 6= 0
f ′(x0) , h = 0

is continuous at 0. Since for h 6= 0 we have that

f(x0 + h)− f(x0) = hφ(h)⇒ f(x0 + h) = hφ(h) + f(x0),

we get

lim
h→0

f(x0 + h) = lim
h→0

[
hφ(h) + f(x0)

]
= 0f ′(x0) + f(x0) = f(x0).

The function f is called differentiable, if it is differentiable at every x0 ∈ R, and it
is called continuous, if it is continuous at every x0 ∈ R. If

C(R) := {f : R→ R | f is continuous},

D(R) := {f : R→ R | f is differentiable},

61
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the previous remark implies that

D(R) ⊆ C(R).

Next we show that D(R) is a linear space, and for C(R) we work similarly. Clearly,
the constant function 0 is differentiable and its derivative is at every x0 ∈ R again
0. Next we show that if f, g ∈ D(R), then f + g ∈ D(R). Let x0 ∈ R. Suppose that

l = lim
h→0

f(x0 + h)− f(x0)

h
& lim

h→0

g(x0 + h)− g(x0)

h
= m.

Using the triangle inequality

|a+ b| ≤ |a|+ |b|,

where a, b ∈ R, we have that∣∣∣∣ (f + g)(x0 + h)− (f + g)(x0)

h
− (l +m)

∣∣∣∣ =

∣∣∣∣f(x0 + h) + g(x0 + h)− f(x0)− g(x0)

h
− l −m

∣∣∣∣ =

∣∣∣∣f(x0 + h)− f(x0)

h
− l +

g(x0 + h)− g(x0)

h
−m

∣∣∣∣ ≤∣∣∣∣f(x0 + h)− f(x0)

h
− l
∣∣∣∣+

∣∣∣∣g(x0 + h)− g(x0)

h
−m

∣∣∣∣,
and since these two terms become arbitrarily small, for appropriate h, we get that

(f + g)′(x0) = l +m = f ′(x0) + g′(x0),

and since x0 is an arbitrary real number, we conclude that f + g ∈ D(R). Finally,
we show that if a ∈ R and f ∈ D(R), then a · f ∈ D(R). Since |ab| = |a||b|, for
every a, b ∈ R, we have that∣∣∣∣ (a · f)(x0 + h)− (a · f)(x0)

h
− al

∣∣∣∣ =

∣∣∣∣a(f(x0 + h)− f(x0)

h
− l
)∣∣∣∣

= |a|
∣∣∣∣f(x0 + h)− f(x0)

h
− l
∣∣∣∣,

and since the right term becomes arbitrarily small for appropriate h, we get

(a · f)′(x0) = al = af ′(x0).

Since x0 ∈ R is arbitrary, we conclude that a · f ∈ D(R).
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3.2. On the solution of the Exercise 4(i), Sheet 3

The fact that
∫
f ∈ D(R) is explained by the following fundamental result.

Theorem 3.2.1. Let a, b, c, d ∈ R such that a ≤ b ≤ c ≤ d, and f : [a, d] → R
continuous. The function φ : [a, d]→ R, defined by

φ(x) :=

∫ x

a

f(t)dt,

for every x ∈ [a, d] is differentiable in [a, d] and φ′(x) = f(x).

Proof. We will use the following two basic properties of the Riemann integral.

(1) If m ≤ f(t) ≤M , for every t ∈ [b, c], then

m(c− b) ≤
∫ c

b

f(t)dt ≤M(c− b).

(2)

∫ c

a

f(t)dt =

∫ b

a

f(t)dt+

∫ c

b

f(t)dt.

If x0 ∈ [a, d], then by (2) we have that

φ(x0 + h)− φ(x0)

h
:=

∫ x0+h

a
f(t)dt−

∫ x0

a
f(t)dt

h

=

∫ x0

a
f(t)dt+

∫ x0+h

x0
f(t)dt−

∫ x0

a
f(t)dt

h

=

∫ x0+h

x0
f(t)dt

h
.

Since f is continuous on the compact interval [x0, x0 + h], let s, s′ ∈ [x0, x0 + h]
such that

f(s) := min{f(t) | t ∈ [x0, x0 + h]} := m,

f(s′) := max{f(t) | t ∈ [x0, x0 + h]} := M.

By (1) we have that

m(x0 + h− x0) ≤
∫ x0+h

x0

f(t)dt ≤M(x0 + h− x0)⇔

f(s)h ≤
∫ x0+h

x0

f(t)dt ≤ f(s′)h
h6=0⇒

f(s) ≤
∫ x0+h

x0
f(t)dt

h
≤ f(s′).
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If h → 0, then s, s′ → x0, and by the continuity of f we get f(s) → f(x0) and
f(s′)→ f(x0). By the sandwich lemma we get

φ′(x0) := lim
h→0

φ(x0 + h)− φ(x0)

h
= lim
h→0

∫ x0+h

x0
f(t)dt

h
= f(x0).

�

3.3. Solution to Exercise 4(iv)-(v), Sheet 4

Let A := [aij ] ∈Mm,n(R), B := [bjk] ∈Mn,l(R) and D := [dkr] ∈Ml,s(R).
(iv) By the definition of the multiplication of matrices we have that

AB := [aij ][bjk] :=

[ n∑
j=1

aijbjk

]
,

BD := [bjk][dkr] :=

[ l∑
k=1

bjkdkr

]
,

(AB)D :=

[ n∑
j=1

aijbjk

]
[dkr] :=

[ l∑
k=1

( n∑
j=1

aijbjk

)
dkr

]
,

A(BD) := [aij ]

[ l∑
k=1

bjkdkr

]
:=

[ n∑
j=1

aij

( l∑
k=1

bjkdkr

)]
.

Since
l∑

k=1

( n∑
j=1

aijbjk

)
dkr =

n∑
j=1

aij

( l∑
k=1

bjkdkr

)
=

l∑
k=1

n∑
j=1

aijbjkdkr,

we get that (AB)D = A(BD).

(v) Since

At := [αji] ∈Mn,m(R), αji := aij ,

Bt := [βkj ] ∈Ml,n(R), βkj := bjk,

the product BtAt ∈Ml,m(R) is well-defined. Moreover, we have that

(AB)t :=

[ n∑
j=1

aijbjk

]t
:= [γki],

where

γki :=

n∑
j=1

aijbjk.
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Since

BtAt := [βkj ][αji] :=

[ n∑
j=1

βkjαji

]
=

[ n∑
j=1

bjkaij

]
=

[ n∑
j=1

aijbjk

]
,

we get BtAt = (AB)t.
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