Mathematics for Natural Scientists II

Iosif Petrakis

Contents

Chapter 1. Linear spaces and linear maps 1
1.1. Linear spaces 1
1.2. Finite-dimensional linear spaces 4
1.3. Linear maps 10
1.4. The space of matrices 17
1.5. Matrices and linear maps 20
1.6. Determinants 23
1.7. The inner product on \mathbb{R}^{n} 27
Chapter 2. Functions of several variables 33
2.1. Curves in \mathbb{R}^{n} 33
2.2. Open sets in \mathbb{R}^{n} 39
2.3. Partial derivatives 41
2.4. The chain rule 45
2.5. Curve integrals 50
2.6. Conservative vector fields 55
2.7. Green's theorem on rectangles 57
Chapter 3. Appendix 61
3.1. Solution to Exercise 2(ii), Sheet 1 61
3.2. On the solution of the Exercise 4(i), Sheet 3 63
3.3. Solution to Exercise 4(iv)-(v), Sheet 4 64
Bibliography 67

CHAPTER 1

Linear spaces and linear maps

In this chapter we study the basic properties of the linear spaces-also called vector spaces-and of the linear maps between them. A linear space is a set endowed with a linear structure, and a linear map between linear spaces is a function between their corresponding sets that preserves their linear structure.

1.1. Linear spaces

Definition 1.1.1. A linear space, or a vector space, over \mathbb{R} is a structure $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$, where X is a set, $\mathbf{0} \in X$, and,$+ \cdot$ are functions

$$
\begin{array}{r}
+: X \times X \rightarrow X, \quad .: \mathbb{R} \times X \rightarrow X \\
(x, y) \mapsto x+y, \quad(a, x) \mapsto a \cdot x
\end{array}
$$

such that the following conditions are satisfied:

$$
\begin{aligned}
& \left(\mathrm{LS}_{1}\right) \forall_{x, y, z \in X}((x+y)+z=x+(y+z)) . \\
& \left(\mathrm{LS}_{2}\right) \forall_{x \in X}(x+\mathbf{0}=\mathbf{0}+x=x) . \\
& \left(\mathrm{LS}_{3}\right) \forall_{x \in X} \exists_{y \in X}(x+y=\mathbf{0}) . \\
& \left(\mathrm{LS}_{4}\right) \forall_{x, y \in X}(x+y=y+x) . \\
& \left(\mathrm{LS}_{5}\right) \forall_{x, y \in X} \forall_{a \in \mathbb{R}}(a \cdot(x+y)=a \cdot x+a \cdot y) . \\
& \left(\mathrm{LS}_{6}\right) \forall_{x \in X} \forall_{a, b \in \mathbb{R}}((a+b) \cdot x=a \cdot x+b \cdot x) . \\
& \left(\mathrm{LS}_{7}\right) \forall_{x \in X} \forall_{a, b \in \mathbb{R}}((a b) \cdot x=a \cdot(b \cdot x)) . \\
& \left(\mathrm{LS}_{8}\right) \forall_{x \in X}(1 \cdot x=x) .
\end{aligned}
$$

For simplicity, we may write $a x$ instead of $a \cdot x$. The triple $(+, \mathbf{0}, \cdot)$ is called the signature of the linear space \mathcal{V}. If, instead of \mathbb{R}, we consider any field ${ }^{1} \mathbb{F}$, the

[^0]corresponding structure is called a linear space over \mathbb{F}. A linear space over \mathbb{R} is also called a real linear space, and a linear space over the field of complex numbers \mathbb{C} is called a complex linear space. If \mathcal{V} is a linear space, the elements of X are traditionally called vectors. A linear space is called non-trivial, if it contains a vector x such that $x \neq \mathbf{0}$. Unless stated otherwise, the linear spaces considered here are going to be real. When the linear structure on X is clear from the context, we use for simplicity X to denote the vector space \mathcal{V}.

Recall that if X, Y are sets, then

$$
X \times Y:=\{(x, y) \mid x \in X \& y \in Y\}
$$

and if $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$, then

$$
(x, y)=\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow\left(x=x^{\prime} \& y=y^{\prime} .\right.
$$

Example 1.1.2. Let the structure $\mathcal{R}^{n}:=\left(\mathbb{R}^{n} ;+, \mathbf{0}, \cdot\right)$, where

$$
\begin{gathered}
\mathbb{R}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in \mathbb{R} \& \ldots \& x_{n} \in \mathbb{R}\right\}, \\
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow x_{1}=y_{1} \& \ldots \& x_{n}=y_{n}, \\
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right), \\
0:=(0, \ldots, 0), \\
a \cdot\left(x_{1}, \ldots, x_{n}\right):=\left(a x_{1}, \ldots, a x_{n}\right) .
\end{gathered}
$$

Clearly, \mathcal{R}^{n} a linear space over \mathbb{R}, and, similarly, $\mathcal{Q}^{n}:=\left(\mathbb{Q}^{n} ;+, \mathbf{0}, \cdot\right)$ is linear space over \mathbb{Q}, and $\mathcal{C}^{n}:=\left(\mathbb{C}^{n} ;+, \mathbf{0}, \cdot\right)$ is a linear space over \mathbb{C}.

If $\mathbb{F}(X, Y)$ is the set of all functions from X to Y, and $f, g \in \mathbb{F}(X, Y)$, then

$$
f=g \Leftrightarrow \forall_{x \in X}(f(x)=g(x)) .
$$

Example 1.1.3. If X is a set, $\mathbb{F}(X)$ is the set of all functions $f: X \rightarrow \mathbb{R}$, and if we define the functions $f+g, \overline{0}^{X}$ and $a \cdot f$, where $a \in \mathbb{R}$, by

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x), \\
\overline{0}^{X}(x) & :=0, \\
(a \cdot f)(x) & :=a f(x),
\end{aligned}
$$

for every $x \in X$, then $\mathcal{F}(X):=\left(\mathbb{F}(X) ;+\overline{0}^{X}, \cdot\right)$ is a linear space over \mathbb{R}.
$\forall_{x \in \mathbb{F}}\left(x \neq \mathbf{0} \Rightarrow \exists_{y \in \mathbb{F}}(x \cdot y=\mathbf{1})\right)$.
It is immediate to see that the rational numbers \mathbb{Q}, the real numbers \mathbb{R} and the complex numbers \mathbb{C} have a field structure. Actually, \mathbb{Q} is a subfield of \mathbb{R} and \mathbb{R} is a subfield of \mathbb{C} i.e., the field-signature $(+, \mathbf{0}, \cdot, \mathbf{1})$ of \mathbb{Q} is inherited from the field-signature of \mathbb{R}, which, in turn, can be inherited from the field-signature of \mathbb{C}.

The Example 1.1.3 shows that a mathematical object can be viewed as a vector, although no immediate geometric intuition is associated with it. If

$$
\boldsymbol{n}:=\{0,1, \ldots, n-1\}
$$

though, an element of \mathbb{R}^{n} can be identified with a function $f: \boldsymbol{n} \rightarrow \mathbb{R}$, and then the Example 1.1.2 is a special case of the Example 1.1.3. If $f, g \in \mathbb{F}(X)$ and $a \in \mathbb{R}$,

$$
\begin{gathered}
f \leq g \Leftrightarrow \forall_{x \in X}(f(x) \leq g(x)) \\
\left.f \leq a: \Leftrightarrow f \leq \bar{a}^{X} \Leftrightarrow \forall_{x \in X}(f(x) \leq a)\right)
\end{gathered}
$$

where $\bar{a}^{X}(x):=a$, for every $x \in X$.
Remark 1.1.4. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $a, b \in \mathbb{R}$, and $x, y, z, w \in$ X. The following hold:
(i) If $z=w$ and $x=y$, then $z+x=w+y$.
(ii) If $x=y$ and $a=b$, then $a \cdot x=b \cdot y$.
(iii) If $x+y=x+z=\mathbf{0}$, then $y=z$.
(iv) $0 \cdot x=\mathbf{0}$.
$(v)(-1) \cdot x=-x$, where, because of case $(i i i),-x$ is the unique element y of X in condition $\left(\mathrm{LS}_{3}\right)$ such that $x+y=\mathbf{0}$.
(vi) If $x \neq \mathbf{0}$ and $a \cdot x=\mathbf{0}$, then $a=0$.

Proof. Exercise.
Definition 1.1.5. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, and $Y \subseteq X$ such that the following conditions are satisfied:
(i) $\forall_{y, y^{\prime} \in Y}\left(y+y^{\prime} \in Y\right)$,
(ii) $\mathbf{0} \in Y$,
(iii) $\forall_{y \in Y} \forall_{a \in \mathbb{R}}(a \cdot y \in Y)$.

Then the structure

$$
\mathcal{V}_{\mid Y}:=\left(Y,+_{\mid Y \times Y}, \mathbf{0}, \cdot_{\mathbb{R} \times Y}\right),
$$

where $+_{\mid Y \times Y}$ is the restriction of + to $Y \times Y$ and ${ }_{\mid \mathbb{R} \times Y}$ is the restrictions of \cdot to $\mathbb{R} \times Y$, is called a linear subspace of \mathcal{V}, or, simpler, a subspace of \mathcal{V}. We write $\mathcal{V}_{\mid Y} \preceq \mathcal{V}$ to denote that $\mathcal{V}_{\mid Y}$ is a linear subspace of \mathcal{V}, although, for simplicity, we refer to a linear subspace $\mathcal{V}_{\mid Y}$ mentioning only the set Y, and we write $Y \preceq X$. We denote by $\operatorname{Sub}(\mathcal{V})$ the set of all subspaces of \mathcal{V}.

Clearly, $\{0\}$ and X are linear subspaces of X.
Example 1.1.6. If $\mathbb{F}^{*}(X)$ is the set of all bounded functions in $\mathbb{F}(X)$ i.e.,

$$
\mathbb{F}^{*}(X)=\left\{f \in \mathbb{F}(X) \mid \exists_{M>0} \forall_{x \in X}(|f(x)| \leq M)\right\},
$$

then $\mathbb{F}^{*}(X)$ is a linear subspace of $\mathbb{F}(X)$ (see Example 1.1.3). To see this let $f, g \in \mathbb{F}(X)$ and $M_{f}>0, M_{g}>0$, such that $|f| \leq M_{f}$ and $|g| \leq M_{g}$. Then
$|f+g| \leq M_{f}+M_{g}$ and $|a f| \leq(1+|a|) M_{f}$, where $M_{f}+M_{g}>0$ and $(1+|a|) M_{f}>0$. Recall that $|f| \in \mathbb{F}(X)$ is defined by $|f|(x):=|f(x)|$, for every $x \in X$.

Example 1.1.7. If $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ is a linear space, $n \geq 1$, and $x_{1}, \ldots, x_{n} \in$ X, the set

$$
\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle:=\left\{a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n} \mid a_{1} \in \mathbb{R} \& \ldots \& a_{n} \in \mathbb{R}\right\}
$$

is a linear subspace of \mathcal{V}. We call an element

$$
\sum_{i=1}^{n} a_{i} x_{i}:=a_{1} \cdot x_{1}+\ldots+a_{n} x_{n}
$$

of $\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$ a linear combination of x_{1}, \ldots, x_{n}, and the space $\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$ the linear span of x_{1}, \ldots, x_{n}. We may write $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ instead of $\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$.

If $e_{1}:=(1,0), e_{2}:=(0,1),(x, y) \in \mathbb{R}^{2}$, we get $\mathbb{R}^{2}=\left\langle e_{1}, e_{2}\right\rangle$, since

$$
(x . y):=x(1,0)+(0,1) y:=x e_{1}+y e_{2} .
$$

Proposition 1.1.8. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $Y \subseteq X$, and let $U, V \preceq X$.
(i) If $U+V:=\{u+v \mid u \in U \& v \in V\}$, then $U+V \preceq X$.
(ii) If $U \cap V:=\{x \in X \mid x \in U \& x \in V\}$, then $U \cap V \preceq X$.
(iii) If we define

$$
\langle Y\rangle:=\bigcap\{U \preceq X \mid Y \subseteq U\}:=\left\{x \in X \mid \forall_{U \preceq X}(Y \subseteq U \Rightarrow x \in U)\right\}
$$

then $\langle Y\rangle$ is well-defined (i.e., the set $\{U \preceq X \mid Y \subseteq Y\}$ is non-empty) and it is the least linear subspace of X that includes Y.
(iv) If $Y \neq \emptyset$, then

$$
\langle Y\rangle=\left\{\sum_{i=1}^{n} a_{i} y_{i} \mid n \geq 1 \& \forall_{i \in\{1, \ldots, n\}}\left(a_{i} \in \mathbb{R} \& y_{i} \in Y\right)\right\}
$$

Proof. Exercise.
Since $\emptyset \subseteq\{\mathbf{0}\}$, we have that $\langle\emptyset\rangle=\{\mathbf{0}\}$. The subspace $U+V$ of \mathcal{X} is called the sum of U and V. By Proposition 1.1.8 the linear span $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of $x_{1}, \ldots, x_{n} \in X$ is the least linear space containing x_{1}, \ldots, x_{n}. If $X=\langle Y\rangle$, we say that Y generates the linear space \mathcal{V} (or $X)$, and the elements of Y are called generators of \mathcal{V}.

1.2. Finite-dimensional linear spaces

Definition 1.2.1. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $n \geq 1$, and let $x_{1}, \ldots, x_{n} \in X$. We say that the vectors x_{1}, \ldots, x_{n} are linearly dependent, or that
their set $\left\{y_{1}, \ldots, y_{n}\right\}$ is a linearly dependent subset of X, if

$$
\exists_{a_{1}, \ldots, a_{n} \in \mathbb{R}}\left(\exists_{i \in\{1, \ldots, n\}}\left(a_{i} \neq 0\right) \& \sum_{i=1}^{n} a_{i} x_{i}=\mathbf{0}\right) .
$$

We say that x_{1}, \ldots, x_{n} are linearly independent, if they are not linearly dependent. A subset Y of X is called linearly dependent, if

$$
\exists_{n \geq 1} \exists_{y_{1}, \ldots, y_{n} \in Y}\left(\left\{y_{1}, \ldots, y_{n}\right\} \text { is linearly dependent }\right)
$$

while it is called linearly independent, if it is not a linearly dependent subset of X.
If x_{1}, \ldots, x_{n} are linearly dependent, $a_{1} x_{1}+\ldots+a_{n} x_{n}=\mathbf{0}$, and $a_{i} \neq 0$, then

$$
x_{i}=\left(\frac{-a_{1}}{a_{i}}\right) x_{1}+\ldots+\left(\frac{-a_{i-1}}{a_{i}}\right) x_{i-1}+\left(\frac{-a_{i+1}}{a_{i}}\right) x_{i+1}+\ldots+\left(\frac{-a_{n}}{a_{i}}\right) x_{n}
$$

i.e., x_{i} is a linear combination of $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}$.

Remark 1.2.2. Let X be a linear space and $Y, Z \subseteq X$.
(i) If $x_{1}, \ldots, x_{n} \in X$, then x_{1}, \ldots, x_{n} are linearly independent if and only if

$$
\forall_{a_{1}, \ldots, a_{n} \in \mathbb{R}}\left(\sum_{i=1}^{n} a_{i} x_{i}=\mathbf{0} \Rightarrow \forall_{i \in\{1, \ldots, n\}}\left(a_{i}=0\right)\right)
$$

(ii) Y is linearly independent if and only if

$$
\forall_{n \geq 1} \forall_{y_{1}, \ldots, y_{n} \in Y}\left(\left\{y_{1}, \ldots, y_{n}\right\} \text { is linearly independent }\right) .
$$

(iii) $\{\mathbf{0}\}$ and X are linearly dependent subsets of X.
(iv) If $x \neq \mathbf{0}$, then $\{x\}$ is a linearly independent subset of X.
(v) The empty set \emptyset is a linearly independent subset of X.
(vi) If Y is linearly dependent and $Y \subseteq Z$, then Z is linearly dependent.
(vii) If Y is linearly independent and $Z \subseteq Y$, then Z is linearly independent.

Proof. (i) and (ii) By negating the corresponding defining formulas.
(iii) $1 \cdot \mathbf{0}=\mathbf{0}$, and $\{\mathbf{0}\}$ is a linearly dependent subset of X.
(iv) It follows immediately by Remark 1.1.4(vi).
(v) If we suppose that \emptyset is a linearly dependent subset of X i.e.,

$$
\exists_{n \geq 1} \exists_{y_{1}, \ldots, y_{n}}\left(y_{1} \in \emptyset \& \ldots \& y_{n} \in \emptyset \&\left\{y_{1}, \ldots, y_{n}\right\} \text { is linearly dependent }\right)
$$

it is immediate that we get a contradiction from it.
(vi) and (vii) are immediate to show.

Example 1.2.3. The following n-vectors in \mathbb{R}^{n}

$$
e_{1}:=(1,0, \ldots, 0), \quad e_{2}:=(0,1,0, \ldots, 0), \ldots, e_{n}:=(0, \ldots, 0,1)
$$

are linearly independent, since for every $a_{1}, \ldots, a_{n} \in \mathbb{R}$ we have that

$$
\sum_{i=1}^{n} a_{i} e_{i}=0 \Leftrightarrow\left(a_{1}, \ldots, a_{n}\right)=\mathbf{0} \Leftrightarrow a_{1}=\ldots=a_{n}=0
$$

Example 1.2.4. For every $n \geq 1$, the following n-vectors in $\mathbb{F}(\mathbb{R})$

$$
f_{1}(t):=e^{t}, \ldots, f_{n}(t):=e^{n t}
$$

are linearly independent (Exercise).
Remark 1.2.5. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $n \geq 1$, and $x_{1}, \ldots, x_{n} \in$ X linearly independent. If $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, then

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} b_{i} x_{i} \Rightarrow\left(a_{1}=b_{1} \& \ldots \& a_{n}=b_{n}\right)
$$

Moreover, $x_{i} \neq \mathbf{0}$, for every $i \in\{1, \ldots, n\}$.
Proof. It follows from the Definition 1.2.1 and the equivalence

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} b_{i} x_{i} \Leftrightarrow \sum_{i=1}^{n}\left(a_{i}-b_{i}\right) x_{i}=\mathbf{0}
$$

If there is $i \in\{1, \ldots, n\}$ such that $x_{i}=0$, then $0 x_{1}+0 x_{i-1}+1 x_{i}+0 x_{i+1}+\ldots+$ $0 x_{n}=\mathbf{0}$, which is impossible.

Definition 1.2.6. If $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ is linear space, a subset B of X is called a basis of \mathcal{V} (or, for simplicity a basis of X), if B is linearly independent, and $\langle B\rangle=X$. If \mathcal{V} has a finite basis B, it is called a finite-dimensional linear space, while if it has an infinite basis, it is called infinite-dimensional.

Consequently, the subspace $\{\mathbf{0}\}$ has as a basis the empty set.
Example 1.2.7. The set $E_{n}:=\left\{e_{1}, \ldots, e_{n}\right\}$ of the linearly independent elements in \mathbb{R}^{n} that were defined in the Example 1.2 .3 is the standard basis of \mathbb{R}^{n}. Hence, \mathcal{R}^{n} is finite-dimensional. It is easy to see that \mathbb{R}^{n} has more than one bases. E.g., $B:=\{(1,1),(-1,2)\}$ is another basis of \mathbb{R}^{2}.

Example 1.2.8. Since the set $E:=\left\{e^{n t} \mid n \geq 1\right\}$ is a linearly independent subset of $\mathbb{F}(\mathbb{R})$, the set E is a basis of the linear subspace $\langle E\rangle$ of $\mathbb{F}(\mathbb{R})$, and $\langle E\rangle$ is infinite-dimensional.

Corollary 1.2.9. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, and $x \in X$. If $B:=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of \mathcal{V}, there are unique $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
x=\sum_{i=1}^{n} a_{i} v_{i} .
$$

Proof. It follows by the definition of a basis and the Remark 1.2.5.
These unique $a_{1}, \ldots, a_{n} \in \mathbb{R}$ are called the coordinates of x with respect to B.
Definition 1.2.10. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq$ X and $m \leq n$. The set $\left\{v_{1}, \ldots v_{m}\right\}$ is a maximal subset of linearly independent elements of X, if it is a linearly independent subset of X, and for every $k \in \mathbb{N}$, such that $m<k \leq n$, the set $\left\{v_{1}, \ldots, v_{m}, v_{k}\right\}$ is a linearly dependent subset of X.

Theorem 1.2.11 (Finite basis-criterion I). Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space, $n \geq 1$, and $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq X$ such that $X=\left\langle\left\{v_{1}, \ldots, v_{n}\right\}\right\rangle$. If $\left\{v_{1}, \ldots, v_{r}\right\}$ is a maximal subset of linearly independent elements of X, where $1 \leq r \leq n$, then $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V}.

Proof. If $r=n$, then $\left\{v_{1}, \ldots, v_{r}\right\}$ is a linearly independent subset generating X i.e., it is a basis of \mathcal{V}. If $r<n$, by the maximality of $\left\{v_{1}, \ldots, v_{r}\right\}$ the sets

$$
\left\{v_{1}, \ldots, v_{r}, v_{r+1}\right\},\left\{v_{1}, \ldots, v_{r}, v_{r+2}\right\}, \ldots,\left\{v_{1}, \ldots, v_{r}, v_{n}\right\}
$$

are linearly dependent subsets of X. We show that

$$
v_{r+1} \in\left\langle\left\{v_{1}, \ldots, v_{r}\right\}\right\rangle \& v_{r+2} \in\left\langle\left\{v_{1}, \ldots, v_{r}\right\}\right\rangle \& \ldots \& v_{n} \in\left\langle\left\{v_{1}, \ldots, v_{r}\right\}\right\rangle
$$

We show this only for v_{r+1}, and for v_{r+2}, \ldots, v_{n} we proceed similarly. Since $\left\{v_{1}, \ldots, v_{n}, v_{r+1}\right\}$ is linearly dependent, there are $a_{1}, \ldots, a_{r}, a_{r+1} \in \mathbb{R}$ such that

$$
a_{1} v_{1}+\ldots+a_{r} v_{r}+a_{r+1} v_{r+1}=\mathbf{0}
$$

and not all of them are equal to 0 . If $a_{r+1}=0$, then $a_{1} v_{1}+\ldots+a_{r} v_{r}=\mathbf{0}$, hence $a_{1}=\ldots=a_{r}=a_{r+1}=0$, which is a contradiction. Hence $a_{r+1} \neq 0$, and hence v_{r+1} can be written as a linear combination of v_{1}, \ldots, v_{r}. Since an element x of X is a linear combination of $v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ and v_{r+1}, \ldots, v_{n} are linear combinations of v_{1}, \ldots, v_{r}, then x is a linear combination of v_{1}, \ldots, v_{r}.

Next we show that we can replace any number of elements of a finite basis by an equal number of any linearly independent vectors.

Lemma 1.2.12 (Exchange lemma (Steinitz)). Let $n, m \geq 1,\left\{v_{1}, \ldots v_{n}\right\}$ a basis of the linear space $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$, and let $w_{1}, \ldots, w_{m} \in X$ be linearly independent.
(i) If $m<n$, there are $u_{m+1}, \ldots, u_{n} \in\left\{v_{1}, \ldots v_{n}\right\}$ such that

$$
\left\langle\left\{w_{1}, \ldots, w_{m}, u_{m+1}, \ldots, u_{n}\right\}\right\rangle=X
$$

(ii) If $m=n$, then $\left\langle\left\{w_{1}, \ldots, w_{n}\right\}\right\rangle=X$.

Proof. (i) By the definition of a basis there are $a_{1}, \ldots a_{n} \in \mathbb{R}$ such that

$$
w_{1}=a_{1} v_{1}+\ldots+a_{n} v_{n}
$$

Since by Remark 1.2.5 $w_{1} \neq \mathbf{0}$, there is some $a_{i} \neq 0$, where $i \in\{1, \ldots, n\}$. Without loss of generality we can take $i=1$ (if $a_{1}=0$, we can re-enumerate the elements
of the set $\left\{v_{1}, \ldots v_{n}\right\}$ so that the first coefficient in the writing of w_{1} as a linear combination of the elements of the set $\left\{v_{1}, \ldots v_{n}\right\}$ is non-zero). Hence

$$
a_{1} v_{1}=w_{1}-\sum_{i=2}^{n} a_{i} v_{i} \Leftrightarrow v_{1}=\frac{1}{a_{1}} w_{1}-\sum_{i=2}^{n} \frac{a_{i}}{a_{1}} v_{i}
$$

and consequently

$$
v_{1} \in\left\langle\left\{w_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle
$$

and

$$
\left\langle\left\{w_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle=X
$$

By the inductive hypothesis, if $1 \leq r<m$ we get (possibly after a re-enumeration of the set $\left\{v_{1}, \ldots v_{n}\right\}$)

$$
\left\langle\left\{w_{1}, \ldots, w_{r}, v_{r+1}, \ldots, v_{n}\right\}\right\rangle=X
$$

Hence,

$$
w_{r+1}=b_{1} w_{1}+\ldots+b_{r} w_{r}+c_{r+1} v_{r+1}+\ldots+c_{n} v_{n}
$$

Not all the terms c_{r+1}, \ldots, c_{n} are equal to 0 , since then w_{r+1} would be a linear combination of w_{1}, \ldots, w_{r}, something that contradicts the hypothesis of linear independence of the vectors w_{1}, \ldots, w_{m}. Without loss of generality, let $c_{r+1} \neq 0$, hence

$$
\begin{aligned}
& c_{r+1} v_{r+1}=w_{r+1}-\left[\sum_{i=1}^{r} b_{i} w_{i}+\sum_{j=r+2}^{n} c_{j} v_{j}\right] \Leftrightarrow \\
& v_{r+1}=\frac{1}{c_{r+1}} w_{r+1}-\sum_{i=1}^{r} \frac{b_{i}}{c_{r+1}} w_{i}-\sum_{j=r+2}^{n} \frac{c_{j}}{c_{r+1}} v_{j}
\end{aligned}
$$

and consequently

$$
v_{r+1} \in\left\langle\left\{w_{1}, \ldots, w_{r}, w_{r+1}, v_{r+2}, \ldots, v_{n}\right\}\right\rangle,
$$

and

$$
\left\langle\left\{w_{1}, \ldots, w_{r}, w_{r+1}, v_{r+2}, \ldots, v_{n}\right\}\right\rangle=X
$$

After m-number of steps, we get $\left\langle\left\{w_{1}, \ldots, w_{m}, u_{m+1}, \ldots, u_{n}\right\}\right\rangle=X$.
(ii) It follows immediately by (i).

Theorem 1.2.13. Let $0<n<m$, and let $\left\{v_{1}, \ldots v_{n}\right\}$ be a basis of the linear space $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$. If $w_{1}, \ldots, w_{m} \in X$, then w_{1}, \ldots, w_{m} are linearly dependent.

Proof. Suppose that the vectors w_{1}, \ldots, w_{m} are linearly independent. Since then the vectors w_{1}, \ldots, w_{n} are also linearly independent, by the Lemma 1.2.12(ii) we have that w_{1}, \ldots, w_{n} is a basis of X. By the hypothesis of linear independence we have that $w_{n+1} \neq \mathbf{0}$, hence it is also a non-trivial linear combination of w_{1}, \ldots, w_{n}. By this contradiction we conclude that the vectors w_{1}, \ldots, w_{m} are linearly dependent.

Corollary 1.2.14. If B_{1}, B_{2} are finite bases of a linear space \mathcal{V}, then B_{1} and B_{2} have the same number of elements.

Proof. If \mathcal{V} is a trivial linear space, then the two bases are equal to the empty set, and $\left|B_{1}\right|=\left|B_{2}\right|=0$, where $|I|$ denotes the number of elements, or the cardinality, of a set I. Let \mathcal{V} be non-trivial, and let $n, m \geq 1$ such that $\left|B_{1}\right|=n$ and $\left|B_{2}\right|=m$. If $n<m$, then by the Theorem 1.2 .13 we have that B_{2} is linearly dependent, which is a contradiction. Hence $n \geq m$. Similarly we get $m \geq n$.

Because of the Corollary 1.2.14 the following concept is well-defined.
Definition 1.2.15. If $n \geq 1$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of a linear space $\mathcal{V}:=$ $(X ;+, \mathbf{0}, \cdot)$, we call \mathcal{V} an n-dimensional space, and we write $\operatorname{dim}(X):=n$. A trivial linear space has dimension 0 .

Clearly, $\operatorname{dim}\left(\mathbb{R}^{n}\right):=n$.
Corollary 1.2.16. Let $n \geq 1$, and let v_{1}, \ldots, v_{n} be linearly independent elements of a linear space X.
(i) (Finite basis-criterion II) If their set $M:=\left\{v_{1}, \ldots, v_{n}\right\}$ is a maximal set of linearly independent elements of X i.e., for every $x \in X$ we have that

$$
x, v_{1}, \ldots, v_{n}
$$

are linearly dependent elements of X, then M is a basis of X.
(ii) If $\operatorname{dim}(X)=n$, and w_{1}, \ldots, w_{n} are linearly independent elements of X, then $B:=\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of X.
(iii) If Y is a subspace of X with $\operatorname{dim}(Y)=\operatorname{dim}(X)=n$, then $Y=X$.
(iv) If $\operatorname{dim}(X)=n, 1 \leq r<n$, and w_{1}, \ldots, w_{r} are linearly independent elements of X, then there are elements v_{r+1}, \ldots, v_{n} of X such that the set

$$
\left\{w_{1}, \ldots, w_{r}, v_{r+1}, \ldots, v_{n}\right\}
$$

is a basis of X.
Proof. Exercise.
Next we show that the existence of a basis of a linear space X implies the existence of a basis of any subspace of X.

Corollary 1.2.17. Let $\mathcal{V}:=(X ;+, \mathbf{0}, \cdot)$ be a linear space with $\operatorname{dim}(X)=n$. If $Y \preceq X$, then Y has a basis and $\operatorname{dim}(Y) \leq \operatorname{dim}(X)$.

Proof. If $Y:=\{\boldsymbol{0}\}$, then \emptyset is a basis of Y and $\operatorname{dim}(Y)=0 \leq \operatorname{dim}(X)$. If Y is non-trivial, then either $Y=X$, or Y is a proper subspace of X. In the first case what we want to show follows trivially. If Y is a proper, non-trivial subspace of X, then there is some $y_{1} \in Y$ such that $y_{1} \neq \mathbf{0}$, and by the Remark 1.1.4(vi) $M_{1}:=\left\{y_{1}\right\}$ is linearly independent. By the principle of the excluded middle ${ }^{2}$

[^1](PEM), we have that M_{1} is either a maximal set of linearly dependent elements of Y, hence by the Corollary 1.2.16(i) it is also a basis of Y, and hence $\operatorname{dim}(Y)=1$, or there is $y_{2} \in Y$ such that $M_{2}:=\left\{y_{1}, y_{2}\right\}$ is linearly independent. Proceeding similarly, we can repeat the same argument at most $(n-1)$ number of times, in order to reach the required conclusion.

Next we write the expression that abbreviates the unique existence of an element of a set X satisfying a formula $\phi(x)$:

$$
\exists_{!x \in X}(\phi(x)): \Leftrightarrow \exists_{x \in X}\left(\phi(x) \& \forall_{y \in X}(\phi(y) \Rightarrow y=x)\right) .
$$

Proposition 1.2.18. If X is a linear space, and $Y, Z \preceq X$, such that

$$
\forall_{x \in X} \exists!y \in Y \exists!z \in Z ~(x=y+z),
$$

we write $X:=Y \oplus Z$. The following are equivalent:
(i) $X=Y \oplus Z$.
(ii) $X=Y+Z$ and $Y \cap Z=\{\mathbf{0}\}$.

Proof. Exercise.
Proposition 1.2.19. Let X be a linear space, $n \in \mathbb{N}$, and $\operatorname{dim}(X)=n$.
(i) If $Y \preceq X$, there is some $Z \preceq X$ such that $X=Y \oplus Z$.
(ii) If $Y, Z \preceq X$ such that $X=Y \oplus Z$, then $\operatorname{dim}(X)=\operatorname{dim}(Y)+\operatorname{dim}(Z)$.

Proof. Exercise.
Next we give a condition under which, a linearly independent subset of a linear space X can be extended to a larger linearly independent subset of X.

Lemma 1.2.20. Let Y be a linearly independent subset of a linear space X, and $x_{0} \in X$. If $x_{0} \notin\langle Y\rangle$, then $Y \cup\left\{x_{0}\right\}$ is a linearly independent subset of X.

Proof. Exercise.

1.3. Linear maps

Definition 1.3.1. If X and Y are linear spaces, a function $f: X \rightarrow Y$ is called linear, or a linear map, if it satisfies the following conditions:
(i) $\forall_{x, x^{\prime} \in X}\left(f\left(x+x^{\prime}\right)=f(x)+f\left(x^{\prime}\right)\right)$.
(ii) $\forall_{x \in X} \forall_{a \in \mathbb{R}}(f(a \cdot x)=a \cdot f(x))$.

Moreover, we define the following sets:

$$
\begin{aligned}
& \mathcal{L}(X, Y):=\{f: X \rightarrow Y \mid f \text { is linear }\} \\
& \mathcal{L}(X):=\mathcal{L}(X, X):=\{f: X \rightarrow X \mid f \text { is linear }\}
\end{aligned}
$$

$$
X^{*}:=\mathcal{L}(X, \mathbb{R}):=\{f: X \rightarrow \mathbb{R} \mid f \text { is linear }\} .
$$

The elements of $\mathcal{L}(X)$ are called operators on X, or linear transformations on X, while X^{*} is called the dual space of X.

Example 1.3.2. If X is a linear space with $\operatorname{dim}(X)=n$, for some $n \geq 1$, and $B:=\left\{v_{1}, \ldots, v_{n}\right\}$ is a fixed basis of X, then the function $f_{B}: X \rightarrow \mathbb{R}^{n}$, defined by

$$
f_{B}(x):=\left(a_{1}, \ldots, a_{n}\right), \quad x=\sum_{i=1}^{n} a_{i} v_{i}
$$

is a linear map. Moreover, if $i \in\{1, \ldots, n\}$, the function $\operatorname{pr}_{i}^{B}: X \rightarrow \mathbb{R}$, defined by

$$
\begin{gathered}
\operatorname{pr}_{i}^{B}(x):=a_{i}, \quad x=\sum_{i=1}^{n} a_{i} v_{i}, \\
\left.X \xrightarrow{f_{B}} \underset{\substack{\mathbb{R}^{n}}}{\operatorname{pr}_{i}^{B}}\right|_{\substack{n}} ^{\operatorname{pr}_{i}}
\end{gathered}
$$

is a linear map. If $n>m \geq 1$, the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, where

$$
g\left(a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{n}\right):=\left(a_{1}, \ldots, a_{m}\right)
$$

Remark 1.3.3. The set $\mathcal{L}(X, Y)$ is equipped with the following linear structure

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x), \quad x \in X, \\
(a \cdot f)(x) & :=a \cdot f(x), \quad a \in \mathbb{R}, \quad x \in X, \\
\mathbf{0}(x) & :=\mathbf{0}, \quad x \in X .
\end{aligned}
$$

Proof. Exercise.
Definition 1.3.4. If $m, n \geq 1$, an array of real numbers

$$
A:=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{i 1} & \ldots & a_{i n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]=:\left[a_{i j}\right] .
$$

is called a matrix of m-rows and n-columns. If $1 \leq i \leq m$, the i-th row of A is the array

$$
A_{i}:=\left[\begin{array}{lll}
a_{i 1} & \ldots & a_{i n}
\end{array}\right]:=\left[a_{i j}\right]_{i},
$$

and if $1 \leq j \leq n$, the j-th column of A is the array

$$
A^{j}:=\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right]:=\left[a_{i j}\right]^{j}
$$

The set of $m \times n$-matrices is denoted by $M_{m, n}(\mathbb{R})$, while the set of square matrices $M_{n, n}(\mathbb{R})$ is also denoted by $M_{n}(\mathbb{R})$. If $\left[a_{i j}\right],\left[b_{i j}\right] \in M_{m, n}(\mathbb{R})$, and $a \in \mathbb{R}$, we define

$$
\begin{aligned}
& {\left[a_{i j}\right]=\left[b_{i j}\right]: \Leftrightarrow \forall_{i \in\{1, \ldots, m\}} \forall_{j \in\{1, \ldots, n\}}\left(a_{i j}=b_{i j}\right) } \\
& {\left[a_{i j}\right]+\left[b_{i j}\right] }:=\left[a_{i j}+b_{i j}\right], \\
& a \cdot\left[b_{i j}\right]:=\left[a b_{i j}\right], \\
& \mathbf{0}_{m n}:=[0],
\end{aligned}
$$

and if $m=n$, we denote $\mathbf{0}_{n n}$ by $\mathbf{0}_{n}$, or, if n is clear from the context, by $\mathbf{0}$.
If $m=n=2$, the above definitions take the form

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right] \Leftrightarrow a=a^{\prime} \& b=b^{\prime} \& c=c^{\prime} \& d=d^{\prime},} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right],} \\
\lambda\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\lambda a & \lambda b \\
\lambda c & \lambda d
\end{array}\right], \quad \lambda \in \mathbb{R}, \\
\mathbf{0}_{2}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

It is easy to see that $M_{m, n}(\mathbb{R})$, and as a special case $M_{2}(\mathbb{R})$, equipped with the above operations, is a linear space.

Example 1.3.5. If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

let $f_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f_{A}(x, y):=A\left[\begin{array}{l}
x \\
y
\end{array}\right]:=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]:=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] .
$$

Since

$$
\begin{aligned}
f_{A}\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right) & :=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x+x^{\prime} \\
y+y^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{l}
a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right) \\
c\left(x+x^{\prime}\right)+d\left(y+y^{\prime}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]+\left[\begin{array}{l}
a x^{\prime}+b y^{\prime} \\
c x^{\prime}+d y^{\prime}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =A\left[\begin{array}{l}
x \\
y
\end{array}\right]+A\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
& =f_{A}((x, y))+f_{A}\left(\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

Similarly we show that $f_{A}(\lambda(x, y))=\lambda f_{A}((x, y))$, for every $\lambda \in \mathbb{R}$.
Remark 1.3.6. Let X, Y, Z be linear spaces, $f \in \mathcal{L}(X, Y)$ and $g \in \mathcal{L}(Y, Z)$.
(i) The composite function $g \circ f$ is in $\mathcal{L}(X, Z)$, where $g \circ f: X \rightarrow Z$ is defined by

$$
(g \circ f)(x):=g(f(x)), \quad x \in X
$$

(ii) $\operatorname{id}_{X} \in \mathcal{L}(X)$.
(iii) $f(\mathbf{0})=\mathbf{0}$.
(iv) if $x \in X$, then $f(-x)=-f(x)$.
(v) If $n \geq 1, a_{1}, \ldots a_{n} \in \mathbb{R}$, and $x_{1}, \ldots x_{n} \in X$, then

$$
f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right) .
$$

Proof. Exercise. For the inductive proof of the case (vi), use the following recursive definition of $\sum_{i=1}^{n} x_{i}$, where $x_{1}, \ldots, x_{n} \in X$ and $n \geq 1$:

$$
\sum_{i=1}^{n} x_{i}:=\left\{\begin{array}{cl}
x_{1} & , n=1 \\
\left(\sum_{i=1}^{n-1} x_{i}\right)+x_{n} & , n>1
\end{array}\right.
$$

A linear map preserves linear dependence, but not necessarily linear independence. The latter holds if a linear map is injective. If it is a bijection i.e., an injection and a surjection, it sends a basis of its domain to a basis of its codomain.

Proposition 1.3.7. If X, Z are linear spaces, $Y \subseteq X, f \in \mathcal{L}(X, Z)$, and $x_{1}, \ldots, x_{n} \in X$, the following hold.
(i) If $x_{1}, \ldots x_{n}$ are linearly dependent in X, then $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are linearly dependent in Z.
(ii) If Y is a linearly dependent subset of X, then $f(Y):=\{f(y) \mid y \in Y\}$ is a linearly dependent subset of Z.
(iii) If $x_{1}, \ldots x_{n}$ are linearly independent in X, then there is a linear map $g: X \rightarrow Z$ such that $g\left(x_{1}\right), \ldots, g\left(x_{n}\right)$ are linearly dependent in Z.
(iv) If $x_{1}, \ldots x_{n}$ are linearly independent in X, and if f is an injection, then $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are linearly independent in Z.
(v) If Y is a linearly independent subset of X, and if f is an injection, then $f(Y)$ is a linearly independent subset of Z.
(vi) If $X=\langle Y\rangle$, and if f is a surjection, then $Z=\langle f(Y)\rangle$.
(vii) If Y is a basis of X, and if f is a bijection, then $f(Y)$ is a basis of Z.

Proof. (i) Let $a_{1}, \ldots a_{n} \in \mathbb{R}$, where $a_{i} \neq 0$, for some $i \in\{1, \ldots, n\}$ such that $\sum_{i=1}^{n} a_{i} x_{i}=\mathbf{0}$. Then what we want follows from the equalities

$$
\mathbf{0}=f(\mathbf{0})=f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right) .
$$

(ii) It follows immediately from the case (i).
(iii) For example, we can take g to be the zero map.
(iv) By the injectivity of f, if $a_{1}, \ldots, a_{n} \in \mathbb{R}$, we have that

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)=\mathbf{0} & \Leftrightarrow f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=f(\mathbf{0}) \\
& \Leftrightarrow \sum_{i=1}^{n} a_{i} x_{i}=\mathbf{0} \\
& \Leftrightarrow a_{1}=\ldots=a_{n}=0
\end{aligned}
$$

(v) It follows immediately from the case (iv).
(vi) If X is trivial, then $Y=\emptyset$ or $Y=X$. In both cases what we want follows immediately. Let X be non-trivial, and let $z \in Z$. Then there is $x \in X$ such that $f(x)=z$. If $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $y_{1}, \ldots, y_{n} \in Y$ such that $x=\sum_{i=1}^{n} a_{i} y_{i}$, then

$$
z=f(x)=f\left(\sum_{i=1}^{n} a_{i} y_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(y_{i}\right) \in\langle f(Y)\rangle
$$

(vii) By the case (v) we have that $f(Y)$ is a linearly independent subset of Z, and by the case (vi) we have that $Z=\langle f(Y)\rangle$.

A linear map $f: X \rightarrow Y$, which is is a linear isomorphism guarantees that the two linear spaces X and Y are the "same" from the linear-structure point of view.

Definition 1.3.8. If X, Y are linear spaces, an $f \in \mathcal{L}(X, Y)$ is a linear isomorphism between X, Y, if there is $g: Y \rightarrow X$ with $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\operatorname{id}_{X}$

In this case, we write $f: X \simeq Y$, and we say that the linear spaces X and Y are (linearly) isomorphic.

Next we see that two isomorphic finite-dimensional linear spaces have the same dimension.

Proposition 1.3.9. Let X, Y be linear spaces, and $f \in \mathcal{L}(X, Y)$ a linear isomorphism.
(i) f is a bijection (i.e., an injection and a surjection).
(ii) If $g: Y \rightarrow X$ such that $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\operatorname{id}_{X}$, then $g \in \mathcal{L}(Y, X)$.
(iii) If $n \in \mathbb{N}$, and $\operatorname{dim}(X)=n$, then $\operatorname{dim}(Y)=n$.
(iv) If $h: X \rightarrow Y$ is a linear map, which is a bijection, then h is a linear isomorphism.

Proof. Exercise.
The condition (iv) above could be taken as the definition of a linear isomorphism. If $n \geq 1$, an n-dimensional linear space is isomorphic to \mathbb{R}^{n}.

Corollary 1.3.10. If X is a linear space, and $n \geq 1$, then $\operatorname{dim}(X)=n$ if and only if X is isomorphic to \mathbb{R}^{n}.

Proof. Exercise.
The set of operators $\mathcal{L}(X)$ of a linear space X is algebraically more interesting than $\mathcal{L}(X, Y)$, since a "multiplication", the composition of functions, is defined between its elements.

Definition 1.3.11. If X is a linear space, and $T \in \mathcal{L}(X)$, we define

$$
T^{n}:= \begin{cases}\operatorname{id}_{X} & , n=0 \\ T \circ T^{n-1} & , n>0\end{cases}
$$

E.g., $T^{3}=T \circ T \circ T$

Remark 1.3.12. If X is a linear space, and $P \in \mathcal{L}(X)$, such that $P^{2}=P$, then

$$
X=\operatorname{Ker}(P) \oplus \operatorname{Im}(P)
$$

Proof. Exercise.
Remark 1.3.13. Let X be a linear space, $T \in \mathcal{L}(X)$, with $T^{2}=\operatorname{id}_{X}$, and let

$$
P:=\frac{1}{2}\left(\mathrm{id}_{X}+T\right) \quad \& \quad Q:=\frac{1}{2}\left(\mathrm{id}_{X}-T\right) .
$$

(i) $P+Q=\operatorname{id}_{X}$.
(ii) $P^{2}=P$, and $Q^{2}=Q$.
(iii) $P Q=Q P=\mathbf{0}$.

Proof. Exercise.

Proposition 1.3.14. Let $n \geq 1, X, Z$ be linear spaces, $Y \subseteq X$, and let the function $f_{0}: Y \rightarrow Z$.
(i) If $X=\langle Y\rangle$, there is at most one linear map $f: X \rightarrow Z$ that extends f_{0} i.e., $f(y)=f_{0}(y)$, for every $y \in Y$, or, in other words, the following diagram commutes

(ii) If $Y=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of X, there is a unique linear map $f: X \rightarrow Z$ that extends f_{0}, and hence, if $g, h: X \rightarrow Z$ are linear maps, we have that ${ }^{3}$

$$
g_{\mid Y}=h_{\mid Y} \Rightarrow g=h .
$$

Proof. (i) If X is a trivial linear space, then $Y=\emptyset$ or $Y=X$. In the first case, f_{0} is the empty set (as a set of pairs), and the only linear map that extends f_{0} is the constant zero linear map. If $Y=X$, the only extension of f_{0} is f_{0} itself. If X is non-trivial, let $f, g: X \rightarrow Z$ be linear maps such that their restrictions $f_{\mid Y}, g_{\mid Y}$ to Y are equal to f_{0}, i.e.,

$$
\forall_{y \in Y}\left(f(y)=f_{0}(y)=g(y)\right) .
$$

If $x \in X$, let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $y_{1}, \ldots y_{n} \in Y$ such that $x=\sum_{i=1}^{n} a_{i} y_{i}$. By the Remark 1.3.6(v) we have that

$$
f(x)=f\left(\sum_{i=1}^{n} a_{i} y_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(y_{i}\right)=\sum_{i=1}^{n} a_{i} g\left(y_{i}\right)=g\left(\sum_{i=1}^{n} a_{i} y_{i}\right)=g(x)
$$

(ii) If $x \in X$, then x has a unique writing as $x=\sum_{=1}^{n} a_{i} v_{i}$, for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$. We define $f: X \rightarrow Z$ by

$$
f\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\sum_{i=1}^{n} a_{i} f_{0}\left(v_{i}\right) .
$$

It is easy to check that f is a linear map that extends f_{0}. Since Y generates X, by the case (i) we get that f is the unique extension of f_{0}. Moreover, if g and h are equal on the basis Y, then they are equal as functions from X to Z, since there is a unique extension of the restriction $g_{\mid Y}$ of g to Y.

[^2]
1.4. The space of matrices

The set of $m \times n$-matrices $M_{m, n}(\mathbb{R})$, and the set of square matrices $M_{n}(\mathbb{R}):=$ $M_{n, n}(\mathbb{R})$ was defined in the Definition 1.3.4.

Remark 1.4.1. $M_{m, n}(\mathbb{R})$ is a linear space of dimension $m n$.
Proof. The fact that $M_{m, n}(\mathbb{R})$ is a linear space is immediate from the Definition 1.3.4. To determine the dimension of $M_{m, n}(\mathbb{R})$, we associate to an $m \times n$-matrix

$$
A:=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{i 1} & \ldots & a_{i n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

the following element of $\mathbb{R}^{m n}$

$$
\left(a_{11}, \ldots, a_{1 n}, \ldots, a_{i 1}, \ldots, a_{i n}, \ldots, a_{m 1}, \ldots, a_{m n}\right)
$$

E.g., to the 2×2-matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

we associate the 4-tuple

$$
(a, b, c, d) .
$$

It is easy to see that this mapping $e: M_{m, n}(\mathbb{R}) \rightarrow \mathbb{R}^{m n}$ is a linear isomorphism, hence by the Proposition 1.3.9(iii) we get $\operatorname{dim}\left(M_{m, n}(\mathbb{R})\right)=\operatorname{dim}\left(\mathbb{R}^{m n}\right)=m n$.

Definition 1.4.2. Let the mapping ${ }^{t}: M_{m, n}(\mathbb{R}) \rightarrow M_{n, m}(\mathbb{R})$, defined by

$$
\left[a_{i j}\right] \mapsto\left[a_{i j}\right]^{t},
$$

where

$$
\left[a_{i j}\right]^{t}:=\left[b_{j i}\right], \quad b_{j i}:=a_{i j} .
$$

The matrix $\left[a_{i j}\right]^{t}$ is called the transpose of $\left[a_{i j}\right]$, and it has columns the rows of $\left[a_{i j}\right]$ and rows the columns of $\left[a_{i j}\right]$. If $A \in M_{n}(\mathbb{R})$ with $A^{t}=A$, we say that A is symmetric, and we denote their set by $\operatorname{Sym}_{n}(\mathbb{R})$. A diagonal matrix in $M_{n}(\mathbb{R})$ has the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]:=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]=: \operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

We denote by I_{n} the unit matrix in $M_{n}(\mathbb{R})$, defined by

$$
I_{n}:=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]=:\left[\delta_{i j}\right]
$$

where ${ }^{4}$

$$
\delta_{i j}:= \begin{cases}1 & , \text { if } i=j \\ 0 & , \text { if } i \neq j\end{cases}
$$

E.g., if we consider the 2×3-matrix

$$
A:=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 5
\end{array}\right]
$$

then its transpose A^{t} is the following 3×2-matrix

$$
A^{t}:=\left[\begin{array}{ll}
2 & 1 \\
1 & 3 \\
0 & 5
\end{array}\right]
$$

An example of a symmetric matrix is the following:

$$
A=\left[\begin{array}{rrr}
3 & 1 & -2 \\
1 & 5 & 4 \\
-2 & 4 & -8
\end{array}\right]=A^{t}
$$

Remark 1.4.3. Let $A, B \in M_{m, n}(\mathbb{R}), C \in M_{n}(\mathbb{R})$, and $a \in \mathbb{R}$.
(i) $(A+B)^{t}=A^{t}+B^{t}$.
(ii) $(a \cdot B)^{t}=a \cdot B^{t}$.
(iii) $\left(A^{t}\right)^{t}=A$.
(iii) $C+C^{t}$ is symmetric.

Proof. Exercise.
Next we define the multiplication between matrices, an operation which, as we shall see later, is related to the composition of linear maps. To define the multiplication $A B$ the number of columns of A has to be the number of rows of B !

Definition 1.4.4. If $A:=\left[a_{i j}\right] \in M_{m, n}(\mathbb{R})$ and $B:=\left[b_{j k}\right] \in M_{n, l}(\mathbb{R})$, their product $A B \in M_{m, l}(\mathbb{R})$ is defined by

$$
\begin{gathered}
A B:=\left[a_{i j}\right]\left[b_{j k}\right]:=\left[c_{i k}\right], \\
c_{i k}:=\sum_{j=1}^{n} a_{i j} b_{j k}
\end{gathered}
$$

[^3]for every $1 \leq i \leq m$ and $1 \leq k \leq l$. If $A \in M_{n}(\mathbb{R})$, let
\[

A^{n}:= $$
\begin{cases}I_{n} & , n=0 \\ A A^{n-1} & , n>0\end{cases}
$$
\]

A matrix $A \in M_{n}(\mathbb{R})$ is invertible, if there is $B \in M_{n}(\mathbb{R})$ such that $A B=B A=I_{n}$. We denote by $\operatorname{Inv}_{n}(\mathbb{R})$ the set of invertible matrices in $M_{n}(\mathbb{R})$.
E.g., if

$$
A:=\left[\begin{array}{lll}
2 & 1 & 5 \\
1 & 3 & 2
\end{array}\right] \quad \& \quad B:=\left[\begin{array}{rr}
3 & 4 \\
-1 & 2 \\
2 & 1
\end{array}\right]
$$

then

$$
A B:=\left[\begin{array}{lll}
2 & 1 & 5 \\
1 & 3 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 4 \\
-1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
15 & 15 \\
4 & 12
\end{array}\right]
$$

It is not always true that $A B=B A$. E.g.,

$$
\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
0 & 5
\end{array}\right]=\left[\begin{array}{ll}
6 & 7 \\
0 & 5
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
2 & -1 \\
0 & 5
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
6 & -3 \\
0 & 5
\end{array}\right]
$$

If $a, b \in \mathbb{R}$, and

$$
A:=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \quad \& \quad B:=\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

then

$$
A B:=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$

Hence

$$
\left[\begin{array}{rr}
1 & -a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]=I_{2}
$$

Notice that, in contrast to what happens in \mathbb{R}, there are non-zero square matrices that are not invertible, like the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Proposition 1.4.5. Let $A \in M_{m, n}(\mathbb{R}), B, C \in M_{n, l}(\mathbb{R})$, and $D \in M_{l, s}(\mathbb{R})$.
(i) $A I_{n}=A$ and $I_{m} A=A$.
(ii) $A(B+C)=A B+A C$.
(iii) If $a \in \mathbb{R}$, then $A(a \cdot B)=a \cdot(A B)$.
(iv) $A(B D)=(A B) D$.
(v) The multiplication $B^{t} A^{t}$ is well-defined, and $(A B)^{t}=B^{t} A^{t}$.

Proof. Exercise.
Corollary 1.4.6. Let $A, B, C \in M_{n}(\mathbb{R})$.
(i) If $A B=B A=I_{n}=A C=C A$, then $B=C$. We denote the unique matrix B such that $A B=B A=I_{n}$ by A^{-1}, and we call it the inverse of A.
(ii) $I_{n}^{t}=I_{n}$.
(ii) If A is invertible, then $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$.

Proof. (i) $C=I_{n} C=(A B) C=(B A) C=B(A C)=B I_{n}=B$.
(ii) $\left[\delta_{i j}\right]^{t}:=\left[d_{i j}\right]$, where $d_{i j}:=\delta_{i j}$, and what we want follows from the obvious equality $\delta_{i j}=\delta_{j i}$.
(iii) By the Proposition 1.4.5(v) and the case (ii) we have that $I_{n}=I_{n}^{t}=\left(A A^{-1}\right)^{t}=$ $\left(A^{-1}\right)^{t} A^{t}$, and $I_{n}=I_{n}^{t}=\left(A^{-1} A\right)^{t}=A^{t}\left(A^{-1}\right)^{t}$. Since $I_{n}=\left(A^{t}\right)^{-1} A^{t}=A^{t}\left(A^{t}\right)^{-1}$, by the case (i) we get $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$.

One can show that if $A, B \in M_{n}(\mathbb{R})$, then

$$
A B=I_{n} \Rightarrow B A=I_{n}
$$

hence we do not need to check both equalities in order to show that a matrix A is invertible. Note that this is the case only when the product $A B$ is equal to I_{n}. If $A, B \in M_{n}(\mathbb{R})$ are invertible, then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$, since

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left[B\left(B^{-1} A^{-1}\right)\right]=A\left[\left(B B^{-1}\right) A^{-1}\right]=A\left[I_{n} A^{-1}\right]=A A^{-1}=I_{n}
$$

1.5. Matrices and linear maps

Matrices can be used to represent linear maps. Let's see the following important example. If $\theta \in \mathbb{R}$, let the matrix

$$
R(\theta):=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Let the $\operatorname{map} R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\begin{aligned}
R_{\theta}(x, y) & :=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{r}
r \cos \phi \\
r \sin \phi
\end{array}\right] \\
& =r\left[\begin{array}{l}
\cos \theta \cos \phi-\sin \theta \sin \phi \\
\sin \theta \cos \phi+\cos \theta \cos \phi
\end{array}\right] \\
& =r\left[\begin{array}{l}
\cos (\theta+\phi) \\
\sin (\theta+\phi)
\end{array}\right]
\end{aligned}
$$

where $r:=\sqrt{x^{2}+y^{2}}$. Hence, R_{θ} is the anti-clockwise θ-rotation of the vector (x, y). If $\theta_{1}, \theta_{2} \in \mathbb{R}$, it is easy to see that

$$
R\left(\theta_{1}\right) R\left(\theta_{2}\right)=R\left(\theta_{1}+\theta_{2}\right)
$$

From that we can infer that the matrix $R(\theta)$ has an inverse.
Definition 1.5.1. If $A:=\left[a_{i j}\right] \in M_{m, n}(\mathbb{R})$, the linear map of A is the mapping

$$
\begin{aligned}
& T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& T_{A}(X):=A X
\end{aligned}
$$

where we view an arbitrary element $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as an $n \times 1$-matrix X and the output $m \times 1$-matrix represents a vector in \mathbb{R}^{m}. I.e., we have

$$
\left[\begin{array}{c}
T_{A}(X)_{1} \\
\vdots \\
T_{A}(X)_{m}
\end{array}\right]:=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

In a non-matrix form we write

$$
T_{A}(x):=\left(\sum_{j=1}^{n} a_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} a_{i j} x_{j}, \ldots, \sum_{j=1}^{n} a_{m j} x_{j}\right) .
$$

If $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{R}^{n}, and $l \in\{1, \ldots, n\}$, then

$$
T_{A}\left(e_{l}\right):=\left(a_{1 l}, \ldots, a_{m l}\right)=A^{l}
$$

where A^{l} is the l-column of the matrix A. and hence

$$
T_{A}\left(e_{l}\right)_{i}=a_{i l}
$$

for every $i \in\{1, \ldots, m\}$. Using the Proposition 1.4.5 we can show the following.

Proposition 1.5.2. If $A, B \in M_{m, n}(\mathbb{R})$, and $a \in \mathbb{R}$, the following hold:
(i) $T_{A} \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.
(ii) If $T_{A}=\mathbf{0}$, then $A=\mathbf{0}_{m n}$, and if $T_{A}=T_{B}$, then $A=B$.
(iii) $T_{A+B}=T_{A}+T_{B}$.
(iv) $T_{a \cdot A}=a T_{A}$.
(v) $T_{I_{n}}=\mathrm{id}_{\mathbb{R}_{n}}$ and $T_{\mathbf{0}_{m n}}=\mathbf{0}$.
(vi) If $C \in M_{n, l}(\mathbb{R})$, then $T_{A C}=T_{A} \circ T_{C}$

(vii) If A is invertible, then T_{A} is invertible and $T_{A}^{-1}=T_{A^{-1}}$.
(viii) The function $\mathcal{T}: M_{m, n}(\mathbb{R}) \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, defined by $A \mapsto T_{A}$, is a linear map.

Proof. Exercise.
So far we defined a a linear map $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, given a matrix $A \in M_{m, n}(\mathbb{R})$. Next we define a matrix $A_{T} \in M_{m, n}(\mathbb{R})$, given a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The two constructions are inverse to each other.

THEOREM 1.5.3. Let $n, m \geq 1$. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, there is a matrix $A_{T} \in M_{m, n}(\mathbb{R})$ such that $T=T_{A_{T}}$ i.e., for every $x \in \mathbb{R}^{n}$ we have that

$$
T(x)=T_{A_{T}}(x):=A_{T} x
$$

The matrix A_{T} is called the matrix of the linear map T.
Proof. If $B:=\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{R}^{n}, then for every $i \in$ $\{1, \ldots, n\}$ we write $T\left(e_{1}\right)$ a linear combination of the standard basis of \mathbb{R}^{m} i.e.,

$$
T\left(e_{i}\right):=\left(T\left(e_{i}\right)_{1}, \ldots, T\left(e_{i}\right)_{m}\right)
$$

The matrix A_{T} is formed by taking these m-tuples as its columns i.e., we define

$$
A_{T}:=\left[\begin{array}{ccc}
T\left(e_{1}\right)_{1} & \ldots & T\left(e_{n}\right)_{1} \\
\vdots & \vdots & \vdots \\
T\left(e_{1}\right)_{j} & \ldots & T\left(e_{n}\right)_{j} \\
\vdots & \vdots & \vdots \\
T\left(e_{1}\right)_{m} & \ldots & T\left(e_{n}\right)_{m}
\end{array}\right]=:\left[a_{j i}\right]=\left[T\left(e_{i}\right)_{j}\right]
$$

By the Proposition 1.3.14, to show that the linear maps T and $T_{A_{T}}$ are equal, it suffices to show that they are equal on the elements of B. Since

$$
T_{A_{T}}\left(e_{i}\right):=A_{T} e_{i}:=\left[T\left(e_{i}\right)_{j}\right] e_{i}=\left[a_{j i}\right] e_{i}=\left[c_{j 1}\right],
$$

where

$$
c_{j 1}=\sum_{i=1}^{n} a_{j i} b_{i 1}=a_{j i}:=T\left(e_{i}\right)_{j},
$$

we get ${ }^{5}$ the required equality with the vector $T\left(e_{i}\right):=\left(T\left(e_{i}\right)_{1}, \ldots, T\left(e_{i}\right)_{m}\right)$.
For example, if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map such that

$$
T(0,1):=(a, c) \quad \& \quad T(1,0):=(b, d)
$$

then we have that

$$
A_{T}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Proposition 1.5.4. Let the function $\mathcal{A}: L\left(\mathbb{R}^{n}\right) \rightarrow M_{n}(\mathbb{R})$

$$
T \mapsto A_{T}:=\mathcal{A}(T) .
$$

(i) The mappings \mathcal{T} and \mathcal{A} satisfy the following conditions:
(i) $\mathcal{A} \circ \mathcal{T}=\mathrm{id}_{M_{n}(\mathbb{R})}$ and $\mathcal{T} \circ \mathcal{A}=\mathrm{id}_{L\left(\mathbb{R}^{n}\right)}$

(ii) $A_{S \circ T}=A_{S} A_{T}$.
(iii) $A_{I_{n}}=I_{n}$ and $A_{O_{n}}=O_{n}$.
(ix) $A_{S+T}=A_{S}+A_{T}$.
(x) $A_{\lambda T}=\lambda A_{T}$.
(xi) If T is invertible, then A_{T} is invertible and $A_{T}^{-1}=A_{T^{-1}}$.

Proof. Exercise.

1.6. Determinants

Definition 1.6.1. If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

[^4]is a 2×2-matrix, its determinant $\operatorname{Det}(A)$ is defined by
\[

\operatorname{Det}(A):=\left|$$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right|:=a d-b c
\]

If

$$
A^{1}:=\left[\begin{array}{l}
a \\
c
\end{array}\right] \quad \& \quad A^{2}:=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

are the columns of A, we use the notation

$$
\operatorname{Det}(A)=\operatorname{Det}\left(A^{1}, A^{2}\right)
$$

We have that

$$
\operatorname{Det}\left(I_{2}\right):=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|:=1-0=1
$$

It is also clear that

$$
\operatorname{Det}(A):=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|:=a d-b c=:\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|=: \operatorname{Det}\left(A^{t}\right)
$$

REmARK 1.6.2. Let the following 2×1 matrices:

$$
A^{1}:=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \quad C^{1}:=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad B^{2}:=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \quad D^{2}:=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

The following hold.
(i) $\operatorname{Det}\left(A^{1}+C^{1}, B^{2}\right)=\operatorname{Det}\left(A^{1}, B^{2}\right)+\operatorname{Det}\left(C^{1}, B^{2}\right)$.
(ii) $\operatorname{Det}\left(A^{1}, B^{2}+D^{2}\right)=\operatorname{Det}\left(A^{1}, B^{2}\right)+\operatorname{Det}\left(A^{1}, D^{2}\right)$.
(iii) If $\lambda \in \mathbb{R}$, then $\operatorname{Det}\left(\lambda A^{1}, B^{2}\right)=\lambda \operatorname{Det}\left(A^{1}, B^{2}\right)=\operatorname{Det}\left(A^{1}, \lambda B^{2}\right)$.
(iv) If $A^{1}=B^{2}$, then $\operatorname{Det}\left(A^{1}, B^{2}\right)=0$.

Proof. We prove only (i), and the rest is an exercise.

$$
\begin{aligned}
\operatorname{Det}\left(A^{1}+C^{1}, B^{2}\right) & :=\left|\begin{array}{ll}
a_{1}+c_{1} & b_{1} \\
a_{2}+c_{2} & b_{2}
\end{array}\right| \\
& :=\left(a_{1}+c_{1}\right) b_{2}-b_{1}\left(a_{2}+c_{2}\right) \\
& =\left(a_{1} b_{2}-b_{1} a_{2}\right)+\left(c_{1} b_{2}-b_{1} c_{2}\right) \\
& :=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|+\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right| \\
& :=\operatorname{Det}\left(A^{1}, B^{2}\right)+\operatorname{Det}\left(C^{1}, B^{2}\right)
\end{aligned}
$$

Although one can use the definition of $\operatorname{Det}(A)$ to show the following corollary, its proof is simpler, if we use the fundamental properties of the Remark 1.6.2.

Corollary 1.6.3. Let the following 2×1 matrices:

$$
A^{1}:=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \quad B^{2}:=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

The following hold.
(i) If $\lambda \in \mathbb{R}$, then $\operatorname{Det}\left(A^{1}+\lambda B^{2}, B^{2}\right)=\operatorname{Det}\left(A^{1}, B^{2}\right)$.
(ii) If $\lambda \in \mathbb{R}$, then $\operatorname{Det}\left(A^{1}, B^{2}+\lambda A^{1}\right)=\operatorname{Det}\left(A^{1}, B^{2}\right)$.
(iii) $\operatorname{Det}\left(A^{1}, B^{2}\right)=-\operatorname{Det}\left(B^{2}, A^{1}\right)$.

Proof. Exercise.
The determinant of a matrix A provides non-trivial information on vectors related to A. We have seen that $\operatorname{Det}\left(I_{2}\right)=1 \neq 0$, and we know that the columns $e_{1}:=(1,0)$ and $e_{2}:=(0,1)$ of the matrix I_{2} are linearly independent elements. This is a special case of the following general fact.

Proposition 1.6.4. Let the following 2×1 matrices:

$$
A:=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \quad B:=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

The vectors $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are linearly independent in \mathbb{R}^{2} if and only if

$$
\operatorname{Det}(A, B) \neq 0
$$

Proof. (\Rightarrow) Suppose that $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are linearly independent in \mathbb{R}^{2}, and suppose that

$$
\operatorname{Det}(A, B):=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|:=a_{1} b_{2}-b_{1} a_{2}=0
$$

Since then we have that

$$
b_{2}\left(a_{1}, a_{2}\right)+\left(-a_{2}\right)\left(b_{1}, b_{2}\right)=\left(b_{2} a_{1}-a_{2} b_{1}, b_{2} a_{2}-a_{2} b_{2}\right)=(0,0)
$$

by the hypothesis of linear independence of $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ we get

$$
b_{2}=0=-a_{2}=a_{2} .
$$

Hence the two vectors take the form $\left(a_{1}, 0\right)$ and $\left(b_{1}, 0\right)$. Since they are linearly independent, these are non-zero vectors, hence $a_{1} \neq 0$ and $b_{1} \neq 0$. Consequently, we have that $\left(a_{1}, 0\right)=\frac{a_{1}}{b_{1}}\left(b_{1}, 0\right)$ i.e., the vectors $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ are linearly dependent, which is a contradiction. Hence, $\operatorname{Det}(A, B) \neq 0$.
(\Leftarrow) Suppose that $\operatorname{Det}(A, B) \neq 0$, and let $\lambda, \mu \in \mathbb{R}$ such that

$$
\lambda\left(a_{1}, a_{2}\right)+\mu\left(b_{1}, b_{2}\right)=(0,0) \Leftrightarrow\left(\lambda a_{1}+\mu b_{1}, \lambda a_{2}+\mu b_{2}\right)=(0,0)
$$

hence

$$
\lambda a_{1}=-\mu b_{1} \quad \& \quad \lambda a_{2}=-\mu b_{2}
$$

Suppose that $\lambda \neq 0$ (if we suppose that $\mu \neq 0$. we proceed similarly). By the Remark 1.6.2 we have that

$$
\begin{aligned}
\operatorname{Det}(A, B) & =\left|\begin{array}{cc}
\left(\frac{-\mu}{\lambda}\right) b_{1} & b_{1} \\
\left(\frac{-\mu}{\lambda}\right) b_{2} & b_{2}
\end{array}\right| \\
& =\left(\frac{-\mu}{\lambda}\right)\left|\begin{array}{ll}
b_{1} & b_{1} \\
b_{2} & b_{2}
\end{array}\right| \\
& =\left(\frac{-\mu}{\lambda}\right) 0 \\
& =0
\end{aligned}
$$

which is a contradiction. Hence $\lambda=0=\mu$, and the vectors $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ are linearly independent.

Proposition 1.6.5. Let $A, B \in M_{2}(\mathbb{R})$.
(i) $\operatorname{Det}(A B)=\operatorname{Det}(A) \operatorname{Det}(B)$.
(ii) A is invertible if and only if $\operatorname{Det}(A) \neq 0$.

Proof. (i) Exercise.
(ii) If $A A^{-1}=I_{2}$, then by the case (i) we have that

$$
1=\operatorname{Det}\left(I_{2}\right)=\operatorname{Det}\left(A A^{-1}\right)=\operatorname{Det}(A) \operatorname{Det}\left(A^{-1}\right),
$$

hence $\operatorname{Det}(A) \neq 0, \operatorname{Det}\left(A^{-1}\right) \neq 0$, and

$$
\operatorname{Det}\left(A^{-1}\right)=\frac{1}{\operatorname{Det}(A)}
$$

For the converse let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

and suppose that

$$
\operatorname{Det}(A):=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|:=a d-b c \neq 0
$$

We show that the system

$$
\begin{gathered}
{\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Leftrightarrow} \\
{\left[\begin{array}{cc}
a x+b z & a y+b w \\
c x+d z & c y+d w
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Leftrightarrow} \\
a x+b z=1 \quad \& \quad c x+d z=0,
\end{gathered}
$$

and

$$
a y+b w=0 \quad \& \quad c y+d w=1
$$

has a solution. If we multiply the equation $a x+b z=1$ by d and the equation $c x+d z=0$ by b, and we subtract them we get

$$
d a x+d b z-b c x-b d z=d \Leftrightarrow x=\frac{d}{a d-b c}
$$

Working similarly, we get

$$
A^{-1}:=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\frac{1}{\operatorname{Det}(A)}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Definition 1.6.6. If

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

is a 3×3-matrix, its determinant $\operatorname{Det}(A)$ is defined by

$$
\operatorname{Det}(A):=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|:=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

As expected, we have that

$$
\operatorname{Det}\left(I_{3}\right):=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|:=1\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|+0\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|=1
$$

More generally, if we consider a matrix in diagonal form, then for the corresponding determinant we have that

$$
\left|\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right|:=\lambda_{1}\left|\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{3}
\end{array}\right|-0\left|\begin{array}{cc}
0 & 0 \\
0 & \lambda_{3}
\end{array}\right|+0\left|\begin{array}{cc}
0 & \lambda_{2} \\
0 & 0
\end{array}\right|=\lambda_{1} \lambda_{2} \lambda_{3} .
$$

All results we showed for the determinant of a matrix in $M_{2}(\mathbb{R})$ hold also for the determinant of a matrix in $M_{3}(\mathbb{R})$.

1.7. The inner product on \mathbb{R}^{n}

Definition 1.7.1. Let X be a linear space. An inner product on X is a mapping $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}$ such that for every $x, y, z \in X$ and $\lambda \in \mathbb{R}$ the following conditions hold:
(i) $\langle x, x\rangle \geq 0$ (positivity).
(ii) $\langle x, x\rangle=0 \Rightarrow x=\mathbf{0}$ (definiteness).
(iii) $\langle x, y\rangle=\langle y, x\rangle$ (symmetry).
(iv) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ (left additivity).
(v) $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ (left homogeneous).

If $\langle\cdot, \cdot\rangle$ is an inner product on X, the pair $(X,\langle\cdot, \cdot\rangle)$ is called an inner product space. A norm on X is a mapping $\|\|:. X \rightarrow \mathbb{R}$ such that for every $x, y \in X$ and $\lambda \in \mathbb{R}$ the following hold:
(i) $\|x\| \geq 0$ (positivity).
(ii) $\|x\|=0 \Rightarrow x=\mathbf{0}$ (definiteness).
(iii) $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).
(iv) $\|\lambda x\|=|\lambda|\|x\|$.

If $\|$.$\| is a norm on X$, the pair $(X,\|\cdot\|)$ is called a normed space.
Because of symmetry an inner product is bilinear i.e., it is also right additive and right homogeneous:
(iv') $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ (right additivity).
$\left(v^{\prime}\right)\langle x, \lambda y\rangle=\lambda\langle x, y\rangle$ (right homogeneous).
Notice also that

$$
\|-x\|=\|(-1) x\|=|-1\|\mid x\|=1\|x\|=\|x\| .
$$

Definition 1.7.2. If $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are in \mathbb{R}^{n}, their Euclidean inner product is defined by

$$
\langle x, y\rangle:=\sum_{i=1}^{n} x_{i} y_{i}
$$

If $n=1$, then the Euclidean inner product on \mathbb{R} is the standard product on \mathbb{R}. By definition we have that

$$
\langle x, x\rangle:=\sum_{i=1}^{n} x_{i} x_{i}=\sum_{i=1}^{n} x_{i}^{2}=x_{1}^{2}+\ldots+x_{n}^{2}
$$

It is easy to see that the Euclidean inner product is an inner product on \mathbb{R}^{n}. Next we show that an inner product is determined by its diagonal entries.

Proposition 1.7.3. Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space and $x, y \in X$.
(i) (Polarization identity) $\langle x, y\rangle=\frac{1}{4}(\langle x+y, x+y\rangle-\langle x-y, x-y\rangle)$.
(ii) $x=\mathbf{0} \Leftrightarrow \forall_{z \in X}(\langle x, z\rangle=0)$.
(iii) $\forall_{z \in X}(\langle x, z\rangle=\langle y, z\rangle) \Rightarrow x=y$.

Proof. Exercise.
If $x=\mathbf{0}$, then $\|x\|=0$, since

$$
\|\mathbf{0}\|=\|0 \cdot \mathbf{0}\|=|0|\|\mathbf{0}\|=0\|\mathbf{0}\|=0
$$

Moreover, if $x=\mathbf{0}$, or $y=\mathbf{0}$, or $y=\lambda x$, for some $\lambda>0$, then the equality holds in the triangle inequality $\|x+y\| \leq\|x\|+\|y\|$.

Definition 1.7.4. If $x \in \mathbb{R}^{n}$, the Euclidean norm $|x|$ of x is defined by

$$
|x|:=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}=\sqrt{\langle x, x\rangle} .
$$

Geometrically, if $x \in \mathbb{R}^{n}$, then $|x|$ is the length of the vector x. To show that the Euclidean norm is a norm we need the following inequality.

Proposition 1.7.5 (Inequality of Cauchy). If $x, y \in \mathbb{R}^{n}$, then

$$
|\langle x, y\rangle| \leq|x||y| .
$$

Proof. By definition we need to show

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}
$$

which is equivalent to

$$
A:=\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)=: B
$$

This we get as follows:

$$
\begin{aligned}
B-A & =\sum_{i=1}^{n} x_{i}^{2} \sum_{j=1}^{n} y_{j}^{2}-\sum_{i=1}^{n} x_{i} y_{i} \sum_{j=1}^{n} x_{j} y_{j} \\
& =\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} \sum_{j=1}^{n} y_{j}^{2}+\frac{1}{2} \sum_{j=1}^{n} x_{j}^{2} \sum_{i=1}^{n} y_{i}^{2}-\sum_{i=1}^{n} x_{i} y_{i} \sum_{j=1}^{n} x_{j} y_{j} \\
& =\sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}^{2} y_{j}^{2}+x_{j}^{2} y_{i}^{2}-2 x_{i} y_{i} x_{j} y_{j}\right) \\
& =\sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

An inner product on X always induces a norm on X, which is defined by

$$
\|x\|=\langle x, x\rangle^{\frac{1}{2}}
$$

for every $x \in X$. To show that $\|$.$\| is a norm on X$ we need the inequality

$$
|\langle x, y\rangle| \leq\|x\|\|y\|,
$$

which generalizes the inequality of Cauchy.

Definition 1.7.6. A metric d on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ such that for every $x, y, z \in X$ the following hold:
(i) $d(x, y) \geq 0$.
(ii) $d(x, y)=0 \Leftrightarrow x=y$.
(iii) $d(x, y)=d(y, x)$.
(iv) $d(x, y) \leq d(x, z)+d(z, y)$.

If d is a metric on X, the pair (X, d) is called a metric space.
A norm $\|$.$\| on a linear space X$ induces a metric on X defined by

$$
d(x, y):=\|x-y\| .
$$

Definition 1.7.7. The Euclidean metric d on \mathbb{R}^{n} is the metric induced by the Euclidean norm on \mathbb{R}^{n} i.e.,

$$
\begin{gathered}
d(x, y):=|x-y|:=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}= \\
=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}=\sqrt{\langle x-y, x-y\rangle},
\end{gathered}
$$

for every $x, y \in \mathbb{R}^{n}$.
The Euclidean norm is the norm induced by the Euclidean inner product. To understand the geometric meaning of the Euclidean inner product we first see that a vector $x \in \mathbb{R}^{n}$ is orthogonal to a vector $y \in \mathbb{R}^{n}$, in symbols $x \perp y$, if and only if $\langle x, y\rangle=0$. To explain this we work as follows. It is easy to see geometrically ${ }^{6}$ that

$$
x \perp y \Leftrightarrow|x-y|=|x+y|
$$

since the diagonals of the parallelogram are equal only if x is perpendicular to y.

[^5]We show that

$$
|x-y|=|x+y| \Leftrightarrow\langle x, y\rangle=0 .
$$

Since $|x| \geq 0$, we have that

$$
\begin{aligned}
|x-y|=|x+y| & \Leftrightarrow|x-y|^{2}=|x+y|^{2} \\
& : \Leftrightarrow\langle x-y, x-y\rangle=\langle x+y, x+y\rangle \\
& \Leftrightarrow\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle=\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle \\
& \Leftrightarrow 4\langle x, y\rangle=0 \\
& \Leftrightarrow\langle x, y\rangle=0 .
\end{aligned}
$$

By the last two equivalences we get the required equivalence

$$
x \perp y \Leftrightarrow\langle x, y\rangle=0
$$

Corollary 1.7.8 (Pythagoras theorem). If $x, y \in \mathbb{R}^{n}$, such that $x \perp y$, then

$$
|x+y|^{2}=|x|^{2}+|y|^{2}
$$

Proof. Exercise.
By the inequality of Cauchy we have that

$$
\left|\frac{|\langle x, y\rangle|}{|x||y|}\right|=\frac{|\langle x, y\rangle|}{|x||y|} \leq 1 \Leftrightarrow-1 \leq \frac{\langle x, y\rangle}{|x||y|} \leq 1
$$

hence, there exists a unique angle $\theta \in[0, \pi]$ such that

$$
\cos \theta=\frac{\langle x, y\rangle}{|x||y|}
$$

and we call θ the angle between x and y. Clearly, if $\langle x, y\rangle=0$, then $\theta=\frac{\pi}{2}$.
Proposition 1.7.9. If $x, y \in \mathbb{R}^{n}$, and $y \neq \mathbf{0}$, then the projection $\operatorname{pr}_{y}(x)$ of x on y is given by

$$
\operatorname{pr}_{y}(x):=\lambda y \quad \& \quad \lambda:=\frac{\langle x, y\rangle}{\langle y, y\rangle} .
$$

Proof. Since $(x-\lambda y) \perp y$, and $y \neq \mathbf{0}$, we have that

$$
\begin{aligned}
\langle(x-\lambda y), y\rangle=0 & \Leftrightarrow\langle x, y\rangle-\langle\lambda y, y\rangle=0 \\
& \Leftrightarrow\langle x, y\rangle-\lambda\langle y, y\rangle=0 \\
& \Leftrightarrow \lambda=\frac{\langle x, y\rangle}{\langle y, y\rangle} .
\end{aligned}
$$

CHAPTER 2

Functions of several variables

2.1. Curves in \mathbb{R}^{n}

Definition 2.1.1. Let I be an interval of \mathbb{R} of the form

$$
(-\infty, a),(-\infty, a],(a,+\infty),[a,+\infty), \mathbb{R},(a, b),(a, b],[a, b),[a, b]
$$

where $a, b \in \mathbb{R}$ such that $a \leq b$. A curve in \mathbb{R}^{n} is a function

$$
\boldsymbol{x}: I \rightarrow \mathbb{R}^{n} \quad I \ni t \mapsto \boldsymbol{x}(t) \in \mathbb{R}^{n}, \quad t \in I .
$$

We also write

$$
\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right), \quad t \in I
$$

where $x_{i}: I \rightarrow \mathbb{R}$ is the i-coordinate function of \boldsymbol{x}, for every $i \in\{1, \ldots, n\}$. We also call $\boldsymbol{x}(t)$ the position vector of \boldsymbol{x} at time t. We call \boldsymbol{x} differentiable on (every element of) I, if the coordinate functions $x_{1}(t), \ldots, x_{n}(t)$ of \boldsymbol{x} are differentiable on (every element of) I. A point $P \in \mathbb{R}^{n}$ belongs to \boldsymbol{x}, if there is some $t \in I$ such that $P=\boldsymbol{x}(t)$.

Next we draw the image of a differentiable curve $\boldsymbol{x}:[a, b] \rightarrow \mathbb{R}^{2}$

and the image of a differentiable curve $\boldsymbol{x}:(a, b) \rightarrow \mathbb{R}^{2}$.

Let also the curve $\boldsymbol{c}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$, defined by $\theta \mapsto(\cos \theta, \sin \theta)$, for every $\theta \in[0,2 \pi]$, the image of which is the unit circle in \mathbb{R}^{2}.

This is a differentiable curve, since $\boldsymbol{c}(\theta):=\left(c_{1}(\theta), c_{2}(\theta)\right)$, and its coordinate functions $c_{1}(\theta):=\cos \theta$, and $c_{2}(\theta):=\sin \theta$ are differentiable on $[0,2 \pi]$, since $\cos ^{\prime} \theta=$ $-\sin \theta$, and $\sin ^{\prime} \theta=\cos \theta$, for every $\theta \in[0,2 \pi]$. Moreover, \boldsymbol{c} is a closed curve, since $\boldsymbol{c}(0)=\boldsymbol{c}(2 \pi)$.

If $\boldsymbol{x}(t): I \rightarrow \mathbb{R}^{n}$ is a differentiable curve in $\mathbb{R}^{n}, t_{0} \in I$, and $h \in \mathbb{R}$, then

$$
\begin{aligned}
\frac{\boldsymbol{x}\left(t_{0}+h\right)-\boldsymbol{x}\left(t_{0}\right)}{h} & =\frac{1}{h}\left[\left(x_{1}\left(t_{0}+h\right), \ldots, x_{n}\left(t_{0}+h\right)\right)-\left(x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}\right)\right)\right] \\
& =\frac{1}{h}\left(x_{1}\left(t_{0}+h\right)-x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}+h\right)-x_{n}\left(t_{0}\right)\right) \\
& =\left(\frac{x_{1}\left(t_{0}+h\right)-x_{1}\left(t_{0}\right)}{h}, \ldots, \frac{x_{n}\left(t_{0}+h\right)-x_{n}\left(t_{0}\right)}{h}\right)
\end{aligned}
$$

and hence

$$
\lim _{h \rightarrow 0} \frac{\boldsymbol{x}\left(t_{0}+h\right)-\boldsymbol{x}\left(t_{0}\right)}{h}=\left(x_{1}^{\prime}\left(t_{0}\right), \ldots, x_{n}^{\prime}\left(t_{0}\right)\right) .
$$

Definition 2.1.2. If $\boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$ is a differentiable curve, its derivative is the curve $\boldsymbol{x}^{\prime}: I \rightarrow \mathbb{R}^{n}$ defined, for every $t_{0} \in I$, by

$$
\boldsymbol{x}^{\prime}\left(t_{0}\right):=\frac{d \boldsymbol{x}}{d t}\left(t_{0}\right):=\left(x_{1}^{\prime}\left(t_{0}\right), \ldots, x_{n}^{\prime}\left(t_{0}\right)\right):=\left(\frac{d x_{1}}{d t}\left(t_{0}\right), \ldots, \frac{d x_{n}}{d t}\left(t_{0}\right)\right)
$$

We call $\boldsymbol{x}^{\prime}\left(t_{0}\right)$ the velocity vector of $\boldsymbol{x}(t)$ at time t_{0}.
The velocity vector $\boldsymbol{x}^{\prime}\left(t_{0}\right)$ is located at the origin of the Euclidean plane, but we view it as a vector tangent to the curve at t_{0} and parallel to it.

Definition 2.1.3. Let $\boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$ be a differentiable curve. Its speed $v_{\boldsymbol{x}}: I \rightarrow$ $[0,+\infty)$ is defined, for every $t \in I$, by

$$
v_{\boldsymbol{x}}(t):=\left|\boldsymbol{x}^{\prime}(t)\right|,
$$

where $\left|\boldsymbol{x}^{\prime}(t)\right|$ is the Euclidean norm of the vector $\boldsymbol{x}^{\prime}(t)$. If the derivative $\boldsymbol{x}^{\prime}: I \rightarrow \mathbb{R}^{n}$ of \boldsymbol{x} is differentiable, the acceleration vector of $\boldsymbol{x}(t)$ at time $t_{0} \in I$ is defined by

$$
\boldsymbol{x}^{\prime \prime}\left(t_{0}\right):=\frac{d \boldsymbol{x}^{\prime}}{d t}\left(t_{0}\right):=\frac{d^{2} \boldsymbol{x}}{d t}\left(t_{0}\right) .
$$

Notice that by the definition of the Euclidean norm |.| we have that

$$
v_{\boldsymbol{x}}(t)^{2}:=\left|\boldsymbol{x}^{\prime}(t)\right|^{2}=\left\langle x^{\prime}(t), x^{\prime}(t)\right\rangle .
$$

Proposition 2.1.4. Let $\boldsymbol{x}, \boldsymbol{y}: I \rightarrow \mathbb{R}^{n}$ be differentiable curves, $\lambda \in \mathbb{R}$, and $f: I \rightarrow \mathbb{R}$ a differentiable function.
(i) The sum $\boldsymbol{x}+\boldsymbol{y}: I \rightarrow \mathbb{R}^{n}$, defined by

$$
(\boldsymbol{x}+\boldsymbol{y})(t):=\boldsymbol{x}(t)+\boldsymbol{y}(t)
$$

for every $t \in I$, is a differentiable curve, and, for every $t_{0} \in I$, we have that

$$
(\boldsymbol{x}+\boldsymbol{y})^{\prime}\left(t_{0}\right)=\boldsymbol{x}^{\prime}\left(t_{0}\right)+\boldsymbol{y}^{\prime}\left(t_{0}\right)
$$

(ii) The product $\lambda \boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$, defined by

$$
(\lambda \boldsymbol{x})(t):=\lambda \boldsymbol{x}(t),
$$

for every $t \in I$, is a differentiable curve, and, for every $t_{0} \in I$, we have that

$$
(\lambda \boldsymbol{x})^{\prime}\left(t_{0}\right)=\lambda \boldsymbol{x}^{\prime}\left(t_{0}\right) .
$$

(iii) The product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle: I \rightarrow \mathbb{R}$, defined by

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle(t):=\langle\boldsymbol{x}(t), \boldsymbol{y}(t)\rangle,
$$

for every $t \in I$, where $\langle\boldsymbol{x}(t), \boldsymbol{y}(t)\rangle$ is the Euclidean inner product of $\boldsymbol{x}(t), \boldsymbol{y}(t)$, is a differentiable function, and, for every $t_{0} \in I$, we have that

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle^{\prime}\left(t_{0}\right)=\left\langle\boldsymbol{x}^{\prime}\left(t_{0}\right), \boldsymbol{y}\left(t_{0}\right)\right\rangle+\left\langle\boldsymbol{x}\left(t_{0}\right), \boldsymbol{y}^{\prime}\left(t_{0}\right)\right\rangle .
$$

(iv) The product $\boldsymbol{x}^{2}: I \rightarrow \mathbb{R}$, defined by

$$
\left(\boldsymbol{x}^{2}\right)(t):=\langle\boldsymbol{x}(t), \boldsymbol{x}(t)\rangle,
$$

for every $t \in I$, is a differentiable function, and, for every $t_{0} \in I$, we have that

$$
\left(\boldsymbol{x}^{2}\right)^{\prime}\left(t_{0}\right)=2\left\langle\boldsymbol{x}\left(t_{0}\right), \boldsymbol{x}^{\prime}\left(t_{0}\right)\right\rangle
$$

(v) The product $f \boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$, defined by

$$
(f \boldsymbol{x})(t):=f(t) \boldsymbol{x}(t),
$$

for every $t \in I$, is a differentiable curve, and, for every $t_{0} \in I$, we have that

$$
(f \boldsymbol{x})^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{0}\right) \boldsymbol{x}\left(t_{0}\right)+f\left(t_{0}\right) \boldsymbol{x}^{\prime}\left(t_{0}\right)
$$

Proof. We prove only the case (iii), and the rest is an exercise. By the definition of the Euclidean inner product we have that

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle(t):=\langle\boldsymbol{x}(t), \boldsymbol{y}(t)\rangle:=\sum_{i=1}^{n} x_{i}(t) y_{i}(t)=x_{1}(t) y_{1}(t)+\ldots+x_{n}(t) y_{n}(t),
$$

hence we have that

$$
\begin{aligned}
& \langle\boldsymbol{x}, \boldsymbol{y}\rangle^{\prime}\left(t_{0}\right)= \\
& =\left[x_{1}(t) y_{1}(t)\right]^{\prime}\left(t_{0}\right)+\ldots+\left[x_{n}(t) y_{n}(t)\right]^{\prime}\left(t_{0}\right) \\
& =\left[x_{1}^{\prime}\left(t_{0}\right) y_{1}\left(t_{0}\right)+x_{1}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)\right]+\ldots+\left[x_{n}^{\prime}\left(t_{0}\right) y_{n}\left(t_{0}\right)+x_{n}\left(t_{0}\right) y_{n}^{\prime}\left(t_{0}\right)\right] \\
& =\left[x_{1}^{\prime}\left(t_{0}\right) y_{1}\left(t_{0}\right)+\ldots+x_{n}^{\prime}\left(t_{0}\right) y_{n}\left(t_{0}\right)\right]+\left[x_{1}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)+\ldots+x_{n}\left(t_{0}\right) y_{n}^{\prime}\left(t_{0}\right)\right] \\
& =\sum_{i=1}^{n} x_{i}^{\prime}\left(t_{0}\right) y_{i}\left(t_{0}\right)+\sum_{i=1}^{n} x\left(t_{0}\right) y_{i}^{\prime}\left(t_{0}\right) \\
& :=\left\langle\boldsymbol{x}^{\prime}\left(t_{0}\right), \boldsymbol{y}\left(t_{0}\right)\right\rangle+\left\langle\boldsymbol{x}\left(t_{0}\right), \boldsymbol{y}^{\prime}\left(t_{0}\right)\right\rangle .
\end{aligned}
$$

Corollary 2.1.5. Let $\boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$ be a differentiable curve such that for every $t \in I$ the distance of $\boldsymbol{x}(t)$ from the origin remains constant i.e.,

$$
|\boldsymbol{x}(t)|=r>0
$$

for every $t \in I$. Then for every $t_{0} \in I$ the position vector $\boldsymbol{x}\left(t_{0}\right)$ of \boldsymbol{x} at t_{0} is orthogonal to the velocity vector $\boldsymbol{x}^{\prime}\left(t_{0}\right)$ of \boldsymbol{x} at t_{0}.

Proof. If $|\boldsymbol{x}(t)|=r>0$, for every $t \in I$, then $\boldsymbol{x}(t)$ lies on the sphere of radius r. Moreover,

$$
r^{2}=|\boldsymbol{x}(t)|^{2}=\langle\boldsymbol{x}(t), \boldsymbol{x}(t)\rangle:=\langle\boldsymbol{x}, \boldsymbol{x}\rangle(t),
$$

hence by the Proposition 2.1.4(iv), and since $\langle\boldsymbol{x}, \boldsymbol{x}\rangle$ is a constant function on I, we have that

$$
0=\langle\boldsymbol{x}, \boldsymbol{x}\rangle^{\prime}\left(t_{0}\right)=2\left\langle\boldsymbol{x}\left(t_{0}\right), \boldsymbol{x}^{\prime}\left(t_{0}\right)\right\rangle \Leftrightarrow 0=\left\langle\boldsymbol{x}\left(t_{0}\right), \boldsymbol{x}^{\prime}\left(t_{0}\right)\right\rangle \Leftrightarrow \boldsymbol{x}\left(t_{0}\right) \perp \boldsymbol{x}^{\prime}\left(t_{0}\right) .
$$

Definition 2.1.6. If $\boldsymbol{x}: I \rightarrow \mathbb{R}$ is a differentiable curve with continuous derivative \boldsymbol{x}^{\prime}, its length $L_{a b}(\boldsymbol{x})$ between two values $a, b \in I$, where $a \leq b$, is defined by the corresponding integral of its speed i.e.,

$$
L_{a, b}(\boldsymbol{x}):=\int_{a}^{b} v_{\boldsymbol{x}}(t) d t:=\int_{a}^{b}\left|\boldsymbol{x}^{\prime}(t)\right| d t
$$

By the definition of the Euclidean norm we have that

$$
L_{a, b}(\boldsymbol{x})=\int_{a}^{b} \sqrt{\left(\frac{d x_{1}}{d t}(t)\right)^{2}+\left(\frac{d x_{2}}{d t}(t)\right)^{2}} d t
$$

if $\boldsymbol{x}(t):=\left(x_{1}(t), x_{2}(t)\right)$, and

$$
L_{a, b}(\boldsymbol{x})=\int_{a}^{b} \sqrt{\left(\frac{d x_{1}}{d t}(t)\right)^{2}+\left(\frac{d x_{2}}{d t}(t)\right)^{2}+\left(\frac{d x_{3}}{d t}(t)\right)^{2}} d t
$$

if $\boldsymbol{x}(t):=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$. In the general case, where $\boldsymbol{x}(t):=\left(x_{1}(t), \ldots, x_{n}(t)\right)$, we have that

$$
L_{a, b}(\boldsymbol{x})=\int_{a}^{b} \sqrt{\left(\frac{d x_{1}}{d t}(t)\right)^{2}+\ldots+\left(\frac{d x_{3}}{d t}(t)\right)^{2}} d t
$$

If for example, we consider the unit circle $\boldsymbol{c}(\theta):=(\cos \theta, \sin \theta)$, where $\theta \in[0,2 \pi]$, then we have that

$$
\begin{aligned}
v_{\boldsymbol{c}}(\theta) & :=\left|\boldsymbol{c}^{\prime}(\theta)\right| \\
& :=\sqrt{c_{1}^{\prime}(\theta)^{2}+c_{2}^{\prime}(\theta)^{2}} \\
& =\sqrt{(-\sin \theta)^{2}+(\cos \theta)^{2}} \\
& =\sqrt{\sin ^{2} \theta+\cos ^{2} \theta} \\
& =\sqrt{1} \\
& =1
\end{aligned}
$$

and hence we get the expected value for the length of \boldsymbol{c} between 0 and 2π :

$$
L_{0,2 \pi}(\boldsymbol{c}):=\int_{0}^{2 \pi} v_{\boldsymbol{c}}(\theta) d \theta:=\int_{0}^{2 \pi} 1 d \theta=\int_{0}^{2 \pi} d \theta=2 \pi-0=2 \pi .
$$

Let the differentiable curve $\boldsymbol{x}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
\boldsymbol{x}(t):=\left(e^{t} \cos t, e^{t} \sin t\right),
$$

for every $t \in \mathbb{R}$. Its derivative \boldsymbol{x}^{\prime} is given by

$$
\boldsymbol{x}^{\prime}(t):=\left(e^{t} \cos t-e^{t} \sin t, e^{t} \sin t+e^{t} \cos t\right)
$$

for every $t \in \mathbb{R}$. After some calculations we get

$$
|\boldsymbol{x}(t)|=e^{t} \quad \& \quad\left|\boldsymbol{x}^{\prime}(t)\right|=\sqrt{2} e^{t} \quad \& \quad\left\langle\boldsymbol{x}^{\prime}(t), \boldsymbol{x}(t)\right\rangle=e^{2 t}
$$

for every $t \in \mathbb{R}$. Hence,

$$
\frac{\left\langle\boldsymbol{x}^{\prime}(t), \boldsymbol{x}(t)\right\rangle}{\left|\boldsymbol{x}^{\prime}(t)\right||\boldsymbol{x}(t)|}=\frac{e^{2 t}}{\sqrt{2} e^{t} e^{t}}=\frac{1}{\sqrt{2}},
$$

for every $t \in \mathbb{R}$ i.e., the angle between $\boldsymbol{x}^{\prime}(t)$ and $\boldsymbol{x}(t)$ is constant $\frac{\pi}{4}$, for every $t \in \mathbb{R}$. Moreover,

$$
L_{0,1}(\boldsymbol{x})=\int_{0}^{1} \sqrt{2} e^{t} d t=\sqrt{2}(e-1)
$$

2.2. Open sets in \mathbb{R}^{n}

We consider vector-valued functions defined on appropriate subsets of \mathbb{R}^{n} that we call open.

Definition 2.2.1. Let $x \in \mathbb{R}^{n}$ and $\epsilon>0$. The open ball $\mathcal{B}(x, \epsilon)$ with center x and radius ϵ is defined by

$$
\begin{aligned}
\mathcal{B}(x, \epsilon) & :=\left\{y \in \mathbb{R}^{n} \mid d(x, y)<\epsilon\right\} \\
& :=\left\{y \in \mathbb{R}^{n}| | x-y \mid<\epsilon\right\} \\
& :=\left\{y \in \mathbb{R}^{n} \mid \sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots\left(x_{n}-y_{n}\right)^{2}}<\epsilon\right\} .
\end{aligned}
$$

We also say that $\mathcal{B}(x, \epsilon)$ is the open r-ball at x. The closed ball $\mathcal{B}(x, \epsilon]$ with center x and radius ϵ is defined by

$$
\mathcal{B}(x, \epsilon]:=\left\{y \in \mathbb{R}^{n} \mid d(x, y) \leq \epsilon\right\} .
$$

If $U \subseteq \mathbb{R}^{n}$, we say that U is an open subset of \mathbb{R}^{n}, if

$$
\forall_{x \in U} \exists_{\epsilon>0}(\mathcal{B}(x, \epsilon) \subseteq U)
$$

If $F \subseteq \mathbb{R}^{n}$, we say that F is a closed subset of \mathbb{R}^{n}, if its complement

$$
F^{c}:=\left\{y \in \mathbb{R}^{n} \mid x \notin F\right\}
$$

is open.
The open ϵ-ball $\mathcal{B}(\mathbf{0}, \epsilon)$ at the origin $(0,0)$ is the open ϵ-disc around $(0,0)$

and the closed ϵ-ball $\mathcal{B}(\mathbf{0}, \epsilon]$ at the origin $(0,0)$ is the ϵ-disc around $(0,0)$ with the ϵ-circle around the origin. It is easy to see that the open ϵ-ball $\mathcal{B}(\mathbf{0}, \epsilon)$, as any open ball, is an open set, since if we take any point in the disc, we can find a small disc around it that is included in the larger one. Note that the closed ϵ-ball $\mathcal{B}(\mathbf{0}, \epsilon]$ is not open, since any disc around a point at the ϵ-circle is not included in $\mathcal{B}(\mathbf{0}, \epsilon]$. It
is clear though, that $\mathcal{B}(\mathbf{0}, \epsilon]$ is closed. Using a similar argument we can show that the interior U of the following curve in \mathbb{R}^{2} is open in \mathbb{R}^{2}.

Note that the open ϵ-ball $\mathcal{B}(\mathbf{0}, \epsilon)$ in \mathbb{R} at the origin 0 is the open interval $(-\epsilon, \epsilon)$.
Proposition 2.2.2. Let $n \geq 1$.
(i) \mathbb{R}^{n} and \emptyset are both open and closed.
(ii) If $U \subseteq \mathbb{R}^{n}$, then U is open if and only if its complement U^{c} is closed.
(iii) If U, V are open in \mathbb{R}^{n}, then $U \cap V$ and $U \cup V$ are open in \mathbb{R}^{n}.
(iv) If F, K are closed in \mathbb{R}^{n}, then $F \cap K$ and $F \cup K$ are closed in \mathbb{R}^{n}.
(v) If $\left(U_{i}\right)_{i \in I}$ is a family of open sets in \mathbb{R}^{n} i.e., U_{i} is open for every $i \in I$, then their union

$$
\bigcup_{i \in I} U_{i}:=\left\{x \in \mathbb{R}^{n} \mid \exists_{i \in I}\left(x \in U_{i}\right)\right\}
$$

is open.
(vi) If $\left(F_{i}\right)_{i \in I}$ is a family of closed sets in \mathbb{R}^{n} i.e., U_{i} is closed for every $i \in I$, then their intersection

$$
\bigcap_{i \in I} F_{i}:=\left\{x \in \mathbb{R}^{n} \mid \forall_{i \in I}\left(x \in F_{i}\right)\right\}
$$

is closed.

Proof. (i) If $x \in \mathbb{R}^{n}$, then $\mathcal{B}(x, 1) \subseteq \mathbb{R}^{n}$, and hence \mathbb{R}^{n} is open. Consequently, \emptyset is closed, since $\emptyset^{c}=\mathbb{R}^{n}$. The implication $x \in \emptyset \Rightarrow \mathcal{B}(x, 1) \subseteq \emptyset$ is trivially true, since its premise is false. Hence \emptyset is also open, and \mathbb{R}^{n} is also closed, since $\left(\mathbb{R}^{n}\right)^{c}=\emptyset$.
(ii) If U is open, then U^{c} is closed, since $\left(U^{c}\right)^{c}=U$ is open. If U^{c} is closed, then by definition $\left(U^{c}\right)^{c}=U$ is open.
(iii) First we show that $U \cap V$ is open. If $x \in U \cap V$, then $x \in U$ and $x \in V$. Since U is open, there is some $\epsilon_{1}>0$ such that $\mathcal{B}\left(x, \epsilon_{1}\right) \subseteq U$. Since V is open, there is some $\epsilon_{2}>0$ such that $\mathcal{B}\left(x, \epsilon_{2}\right) \subseteq Y$. If

$$
\epsilon:=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}
$$

then

$$
\mathcal{B}(x, \epsilon) \subseteq V \cap U
$$

To show this, let $y \in \mathbb{R}^{n}$ such that $|y-x|<\epsilon \leq \epsilon_{1}$. Hence $y \in U$. Similarly, $|y-x|<\epsilon \leq \epsilon_{2}$, and hence $y \in Y$. Consequently, $y \in V \cap U$.

Next we show that $U \cup V$ is open. If $x \in U \cup V$, then $x \in U$, or $x \in V$. In the first case we have that $\mathcal{B}\left(x, \epsilon_{1}\right) \subseteq U \subseteq U \cup V$, and in the second we have that $\mathcal{B}\left(x, \epsilon_{2}\right) \subseteq V \subseteq U \cup V$.
(iv) We use the case (iii) and the equalities

$$
(F \cap K)^{c}=F^{c} \cup K^{c} \quad \& \quad(F \cup K)^{c}=F^{c} \cap K^{c} .
$$

(v) and (vi) is an exercise.

The intersection of a countable family of open sets is not generally open. E.g.,

$$
(0,1]=\bigcap_{n \geq 1}\left(0,1+\frac{1}{n}\right)
$$

and $(0,1]$ is not open, as any non-trivial interval around 1 intersects $(1,+\infty)$. The union of a countable family of closed sets is not generally closed. E.g.,

$$
(0,1)=\bigcup_{n \geq 2}\left[\frac{1}{n}, 1-\frac{1}{n}\right]
$$

and $(0,1)$ is not closed, since its complement $(-\infty, 0] \cup[1,+\infty)$ is not open. It is not hard to see that the cartesian product of open sets in \mathbb{R} is an open set in the corresponding \mathbb{R}^{n}. E.g., the set

$$
(0,1) \times(-1,1):=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in(0,1) \& y \in(-1,1)\right\}
$$

is open in \mathbb{R}^{2}. Similarly the set

$$
(0,1) \times(-1,1) \times \mathbb{R}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \in(0,1) \& y \in(-1,1)\right\}
$$

is open in \mathbb{R}^{3}.

2.3. Partial derivatives

If U is an open subset of \mathbb{R}^{n}, and $x=\left(x_{1}, \ldots, x_{n}\right) \in U$, then for every $i \in$ $\{1, \ldots, n\}$, there are appropriately small values of $h \in \mathbb{R}$ such that the point

$$
\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right) \in U
$$

and the following concept is well-defined.

Definition 2.3.1. Let U be an open subset of $\mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right) \in U$, and $f: U \rightarrow \mathbb{R}$. If the following limit exists

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

we let

$$
D_{i} f(x):=\frac{\partial f}{\partial x_{i}}(x):=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

and we call $D_{i} f(x)$, or $\frac{\partial f}{\partial x_{i}}(x)$, the i-th partial derivative of f at x.
If $B_{n}:=\left\{e_{1}, \ldots, e_{i}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{R}^{n}, we have that

$$
D_{i} f(x)=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h}
$$

If for example $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y):=x^{2} y^{3}
$$

then

$$
\begin{aligned}
D_{1} f(x) & :=\frac{\partial f}{\partial x}(x) \\
& :=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2} y^{3}-x^{2} y^{3}}{h} \\
& =y^{3} \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =y^{3} 2 x \\
& =2 x y^{3}
\end{aligned}
$$

since the term in the right is the derivative of the function $g(x)=x^{2}$. I.e., to calculate $D_{1} f(x)$ we treat y as a constant and we differentiate with respect to x. Similarly we have that

$$
\begin{aligned}
D_{2} f(x) & :=\frac{\partial f}{\partial y}(x) \\
& :=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}(y+h)^{3}-x^{2} y^{3}}{h} \\
& =x^{2} \lim _{h \rightarrow 0} \frac{(y+h)^{3}-y^{3}}{h} \\
& =x^{2} 3 y^{2} \\
& =3 x^{2} y^{2}
\end{aligned}
$$

since the term in the right is the derivative of the function $h(y)=y^{3}$. I.e., to calculate $D_{2} f(x)$ we treat x as a constant and we differentiate with respect to y.

If $f, g: U \rightarrow \mathbb{R}$, and $x \in U$ such that $D_{i} f(x)$ and $D_{i} g(x)$ exist, then by the properties of the derivative of real-valued functions on intervals of \mathbb{R} we get immediately

$$
\begin{gathered}
D_{i}(f+g)(x)=D_{i} f(x)+D_{i} g(x) \\
D_{i}(\lambda f)(x)=\lambda D_{i} f(x)
\end{gathered}
$$

for every $\lambda \in \mathbb{R}$.
Definition 2.3.2. Let U be an open subset of $\mathbb{R}^{n}, x ;=\left(x_{1}, \ldots, x_{n}\right) \in U$, and $f: U \rightarrow \mathbb{R}$. If the partial derivatives at x

$$
D_{1} f(x):=\frac{\partial f}{\partial x_{1}}(x), \ldots, D_{n} f(x):=\frac{\partial f}{\partial x_{n}}(x)
$$

exist, the gradient $(\operatorname{grad} f)(x)$ of f at x is the vector

$$
\begin{aligned}
(\operatorname{grad} f)(x) & :=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right) \\
& :=\left(D_{1} f(x), \ldots, D_{n} f(x)\right)
\end{aligned}
$$

E.g., if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as above by $f(x, y):=x^{2} y^{3}$, then

$$
(\operatorname{grad} f)(x):=\left(2 x y^{3}, 3 x^{2} y^{2}\right)
$$

Because of the above linearity of D_{i}, we get immediately that if $f, g: U \rightarrow \mathbb{R}$, and $x \in U$ such that $D_{i} f(x)$ and $D_{i} g(x)$ exist, then

$$
\begin{gathered}
(\operatorname{grad}(f+g))(x)=(\operatorname{grad} f)(x)+(\operatorname{grad} g)(x), \\
(\operatorname{grad}(\lambda f))(x)=\lambda(\operatorname{grad} f)(x),
\end{gathered}
$$

for every $\lambda \in \mathbb{R}$. If $D_{i} f(x)$ and $D_{i} g(x)$ exist, for every $x \in U$, we get

$$
\begin{gathered}
\operatorname{grad}(f+g)=\operatorname{grad} f+\operatorname{grad} g \\
\operatorname{grad}(\lambda f)=\lambda \operatorname{grad} f
\end{gathered}
$$

for every $\lambda \in \mathbb{R}$. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y):=x^{2} y^{3}$, we showed that

$$
D_{1} f(x):=\frac{\partial f}{\partial x}(x)=2 x y^{3} \quad \& \quad D_{2} f(x):=\frac{\partial f}{\partial y}(x)=3 x^{2} y^{2} .
$$

Since $D_{1} f, D_{2} f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we can determine the repeated partial derivatives

$$
\begin{gathered}
D_{1} D_{1} f(x, y):=D_{1}^{2} f(x, y):=\frac{\partial^{2} f}{\partial x^{2}}(x, y):=\left(D_{1}\left(D_{1} f\right)\right)(x, y)= \\
=\frac{\partial\left(2 x y^{3}\right)}{\partial x}(x, y)=2 y^{3}, \\
D_{1} D_{2} f(x, y):=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x, y):=\frac{\partial^{2} f}{\partial x \partial y}(x, y):=\left(D_{1}\left(D_{2} f\right)\right)(x, y)=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{\partial\left(3 x^{2} y^{2}\right)}{\partial x}(x, y)=6 x y^{2} \\
D_{2} D_{1} f(x, y):=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)(x, y):=\frac{\partial^{2} f}{\partial y \partial x}(x, y):=\left(D_{2}\left(D_{1} f\right)\right)(x, y)= \\
\frac{\partial\left(2 x y^{3}\right)}{\partial y}(x, y)=6 x y^{2} \\
D_{2} D_{2} f(x, y):=D_{2}^{2} f(x, y):=\frac{\partial^{2} f}{\partial y^{2}}(x, y):=\left(D_{2}\left(D_{2} f\right)\right)(x, y)= \\
=\frac{\partial\left(3 x^{2} y^{2}\right)}{\partial y}(x, y)=6 x^{2} y .
\end{gathered}
$$

Notice that

$$
2 y^{3}=\frac{\partial^{2} f}{\partial x^{2}}(x, y) \neq\left(\frac{\partial f}{\partial x}(x)\right)^{2}=\left(2 x y^{3}\right)^{2}=4 x^{2} y^{6}
$$

But we have that

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x, y)=6 x y^{2}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)(x, y) .
$$

This is not accident. One can show that if $U \subseteq \mathbb{R}^{2}$ is open and $f: U \rightarrow \mathbb{R}$ such that the partial derivatives

$$
D_{1} f(x, y), D_{2} f(x, y), D_{1} D_{2} f(x, y), D_{2} D_{1} f(x, y)
$$

exist and are continuous, then for every $(x, y) \in U$ we have that

$$
D_{1} D_{2} f(x, y)=D_{2} D_{1} f(x, y)
$$

We can have repeated partial derivatives for $n>2$. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y, z)=x^{2} y z^{3}
$$

then

$$
D_{1} f(x, y, z)=2 x y z^{3} \quad D_{2} D_{1} f(x, y, z)=2 x z^{3} \quad D_{3} D_{2} D_{1} f(x, y, z)=6 x z^{2}
$$

and

$$
D_{3} f(x, y, z)=3 x^{2} y z^{2} \quad D_{2} D_{3} f(x, y, z)=3 x^{2} z^{2} \quad D_{1} D_{2} D_{3} f(x, y, z)=6 x z^{2}
$$

i.e.,

$$
D_{3} D_{2} D_{1} f(x, y, z)=6 x z^{2}=D_{1} D_{2} D_{3} f(x, y, z)
$$

By our previous remark on the equality $D_{1} D_{2} f(x, y)=D_{2} D_{1} f(x, y)$, if all the related partial derivatives exist and are continuous we get

$$
\begin{aligned}
D_{3} D_{2} D_{1} f(x, y, z) & =D_{3} D_{1} D_{2} f(x, y, z) \\
& =D_{1} D_{3} D_{2} f(x, y, z) \\
& =D_{1} D_{2} D_{3} f(x, y, z) .
\end{aligned}
$$

2.4. The chain rule

In this section we define when a function $f: U \rightarrow \mathbb{R}$, where U is an open subset of \mathbb{R}^{n}, is differentiable at some point $x_{0} \in U$. To motivate this definition we notice the following fact.

Remark 2.4.1. Let U be an open subset of $\mathbb{R}, x_{0} \in U$ and $f: U \rightarrow \mathbb{R}$. The following are equivalent:
(i) f is differentiable at x_{0}.
(ii) There are $\epsilon>0, a \in \mathbb{R}$, and a function $g:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ such that

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=a h+|h| g(h),
$$

for every $h \in(-\epsilon, \epsilon)$, and

$$
\lim _{h \rightarrow 0} g(h)=0
$$

Proof. If f is differentiable at x_{0}, then

$$
a:=f^{\prime}\left(x_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \in \mathbb{R}
$$

and if $h \neq 0$, we define

$$
\phi(h)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-f^{\prime}\left(x_{0}\right),
$$

while if $h=0$, we define $\phi(0):=0$. Clearly,

$$
\lim _{h \rightarrow 0} \phi(h)=0
$$

and for every h in some ϵ-interval around 0 we have that

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) h+h \phi(h) .
$$

If we define $g(h):=\phi(h)$, if $h \geq 0$, and $g(h):=-\phi(h)$, if $h<0$, we have that

$$
|h| g(h)=h \phi(h)
$$

and we get the required equality

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=a h+|h| g(h) .
$$

Of course,

$$
\lim _{h \rightarrow 0} g(h)=0
$$

For the converse, if $h \neq 0$, then

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{a h+|h| g(h)}{h}=a+\frac{|h|}{h} g(h),
$$

which converges to a, as h converges to 0 i.e., $a=f^{\prime}\left(x_{0}\right)$.

Definition 2.4.2. Let U be an open subset of $\mathbb{R}^{n}, x_{0} \in U$ and $f: U \rightarrow \mathbb{R}$. We say that f is differentiable at x_{0}, if
(a) The gradient of f at x_{0}

$$
\operatorname{grad} f\left(x_{0}\right):=\left(D_{1} f\left(x_{0}\right), \ldots, D_{n} f\left(x_{0}\right)\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x_{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x_{0}\right)\right)
$$

exists, and
(b) there is a function g defined on a small open ball around the origin $\mathbf{0}$ such that

$$
\lim _{|h| \rightarrow 0} g(h)=0
$$

and

$$
\begin{aligned}
f\left(x_{0}+h\right)-f\left(x_{0}\right) & =\frac{\partial f}{\partial x_{1}}\left(x_{0}\right) h_{1}+\ldots+\frac{\partial f}{\partial x_{n}}\left(x_{0}\right) h_{n}+|h| g(h) \\
& :=\left\langle(\operatorname{grad} f)\left(x_{0}\right), h\right\rangle+|h| g(h) .
\end{aligned}
$$

We say that f is differentiable on U, if it is differentiable at every point of U.
To show that a function f as above is differentiable on U, it suffices to show that the gradient of f at every point of U exists, and that the partial derivatives on U are continuous functions (the proof is omitted).

Proposition 2.4.3. If U is an open subset of $\mathbb{R}^{n}, x_{0} \in U$ and $f: U \rightarrow \mathbb{R}$, then f is differentiable at x_{0}, if all partial derivatives of f at x_{0} exist in U and for each $i \in\{1, \ldots, n\}$ the function

$$
U \ni x \mapsto \frac{\partial f}{\partial x_{i}}(x)
$$

is continuous at x_{0}.
Proof. See [4], p. 322.
In the one dimensional case the chain rule takes the form

$$
(f \circ g)^{\prime}(t)=f^{\prime}(g(t)) g^{\prime}(t)
$$

where f and g are as indicated in the following diagram

Next we prove the generalisation of this rule.
Proposition 2.4.4 (Chain rule). Let I be an interval of \mathbb{R}, and $\boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$ differentiable curve on I such that $\boldsymbol{x}(I) \subseteq U$,

where U is an open subset of \mathbb{R}^{n}. If $f: U \rightarrow \mathbb{R}$ is differentiable on U, then the function

$f \circ \boldsymbol{x}: I \rightarrow \mathbb{R}$ is differentiable, and for every $t \in I$ we have that

$$
(f \circ \boldsymbol{x})^{\prime}(t)=\left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle .
$$

Proof. Let the quotient

$$
\frac{f(\boldsymbol{x}(t+h))-f(\boldsymbol{x}(t))}{h},
$$

which, if we define

$$
K:=K(t, h):=\boldsymbol{x}(t+h)-\boldsymbol{x}(t),
$$

and hence $\boldsymbol{x}(t+h)=K+\boldsymbol{x}(t)$, it becomes

$$
\frac{f(\boldsymbol{x}(t)+K)-f(\boldsymbol{x}(t))}{h}
$$

Since f is differentiable on U, and $\boldsymbol{x}(t)$ is included in U, f is differentiable at $\boldsymbol{x}(t)$, for every $t \in I$. By the Definition 2.4.2 there is a function g such that

$$
f(\boldsymbol{x}(t)+K)-f(\boldsymbol{x}(t))=\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), K\rangle+|K| g(K)
$$

and

$$
\lim _{|K| \rightarrow 0} g(K)=0
$$

Hence,

$$
\begin{aligned}
\frac{f(\boldsymbol{x}(t+h))-f(\boldsymbol{x}(t))}{h}= & \left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \frac{\boldsymbol{x}(t+h)-\boldsymbol{x}(t)}{h}\right\rangle \\
& +\frac{|\boldsymbol{x}(t+h)-\boldsymbol{x}(t)|}{h} g(K)
\end{aligned}
$$

$$
\begin{aligned}
= & \left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \frac{\boldsymbol{x}(t+h)-\boldsymbol{x}(t)}{h}\right\rangle \\
& \pm\left|\frac{\boldsymbol{x}(t+h)-\boldsymbol{x}(t)}{h}\right| g(K)
\end{aligned}
$$

If $h \rightarrow 0$, then

$$
\left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \frac{\boldsymbol{x}(t+h)-\boldsymbol{x}(t)}{h}\right\rangle \rightarrow\left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle,
$$

and

$$
\pm\left|\frac{\boldsymbol{x}(t+h)-\boldsymbol{x}(t)}{h}\right| g(K) \rightarrow \pm\left|\boldsymbol{x}^{\prime}(t)\right| 0=0
$$

since if $h \rightarrow 0$, then $K:=\boldsymbol{x}(t+h)-\boldsymbol{x}(t) \rightarrow 0$, and we use the fact that $\lim _{|K| \rightarrow 0} g(K)=0$.

Unfolding the chain rule we get

$$
\begin{aligned}
(f \circ \boldsymbol{x})^{\prime}(t) & =\left\langle\left(\frac{\partial f}{\partial x_{1}}(\boldsymbol{x}(t)), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{x}(t))\right), \boldsymbol{x}^{\prime}(t)\right\rangle \\
& =\sum_{i=1}^{n} \frac{\partial f}{\partial x_{1}}(\boldsymbol{x}(t)) x_{i}{ }^{\prime}(t) \\
& =: \sum_{i} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x}(t)) \frac{d x_{i}}{d t}(t) \\
& :=\frac{\partial f}{\partial x_{1}}(\boldsymbol{x}(t)) \frac{d x_{1}}{d t}(t)+\ldots+\frac{\partial f}{\partial x_{n}}(\boldsymbol{x}(t)) \frac{d x_{n}}{d t}(t),
\end{aligned}
$$

where $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$. For simplicity we also write

$$
\frac{d f(\boldsymbol{x}(t))}{d t}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t} .
$$

For example, let the following functions

defined by $\boldsymbol{x}(t):=\left(e^{t}, t, t^{2}\right)=(x(t), y(t), z(t))$ and $f(x, y, z):=x^{2} y z$. Then f is differentiable on \mathbb{R}^{3} by the Proposition 2.4.3, and by the chain rule we have that

$$
\begin{aligned}
\frac{d f(\boldsymbol{x}(t))}{d t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& =2 x y z e^{t}+x^{2} z+x^{2} y 2 t .
\end{aligned}
$$

As a simple example of applying the chain rule, let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ differentiable, and let $g: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
g(t)=f(P+t Q)
$$

for every $t \in \mathbb{R}$, and some $P, Q \in \mathbb{R}^{3}$. In order to find $g^{\prime}(t)$, let $\boldsymbol{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

such that $g=f \circ \boldsymbol{x}$. Let

$$
\boldsymbol{x}(t)=P+t Q=\left(p_{1}+t q_{1}, p_{2}+t q_{2}, p_{3}+t q_{3}\right)
$$

for every $t \in \mathbb{R}$. Since $\boldsymbol{x}^{\prime}(t)=\left(q_{1}, q_{2}, q_{3}\right)=Q$, we get

$$
g^{\prime}(t)=(f \circ \boldsymbol{x})^{\prime}(t)=\left\langle(\operatorname{grad} f)(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle=\langle(\operatorname{grad} f)(P+t Q), Q\rangle
$$

Corollary 2.4.5. Let U be an open subset of \mathbb{R}^{n} such that for every two points $x_{0}, x_{1} \in U$ there is a differentiable curve $\boldsymbol{x}:[0,1] \rightarrow U$ such that $\boldsymbol{x}(0)=x_{0}$ and $\boldsymbol{x}(0)=x_{1}$.

If $f: U \rightarrow \mathbb{R}$ is differentiable on U, such that

$$
(\operatorname{grad} f)(x)=\mathbf{0},
$$

for every $x \in U$, then f is constant on U.
Proof. Exercise.

2.5. Curve integrals

A vector field is a function $F: U \rightarrow \mathbb{R}^{n}$ that can be interpreted as a field of forces. If $\boldsymbol{x}: I \rightarrow U$ is a cure in U, the vector $\boldsymbol{x}(t)$ is interpreted as the position of the particle at time $t \in I$, and $F(\boldsymbol{x}(t))$ is the force acted upon the particle at position $\boldsymbol{x}(t)$. We may also say that the particle is moving in the force field F.

Definition 2.5.1. Let U be an open subset of \mathbb{R}^{n}. A vector field on U is a function $F: U \rightarrow \mathbb{R}^{n}$. If F is represented by its coordinate functions i.e.,

$$
F=\left(f_{1}, \ldots, f_{n}\right),
$$

F is differentiable on U, if each $f_{i}: U \rightarrow \mathbb{R}$ is differentiable on U. F is called conservative, if there is a differentiable function $V: U \rightarrow \mathbb{R}$ such that ${ }^{1}$

$$
F=-\operatorname{grad} V
$$

In this case V is called a potential energy function for F.
If V is a potential energy function for F and $c \in \mathbb{R}$ is some constant, then

$$
V+c
$$

is also a potential energy function for F. If f is a differentiable function on U, then, by the Definition 2.4.2, we get the vector field on U defined by

$$
U \ni x \mapsto(\operatorname{grad} f)(x)
$$

Let $F: U \rightarrow \mathbb{R}^{n}$ be a differentiable vector field on U and $\boldsymbol{x}: I \rightarrow U$ a differentiable curve in U. Then the function $F \circ \boldsymbol{x}: I \rightarrow \mathbb{R}^{n}$ is well-defined

[^6]
and let the function on I defined by
$$
t \mapsto\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle,
$$
for every $t \in I$. E.g., let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$$
F(x, y):=\left(e^{x y}, y^{2}\right)
$$
for every $(x, y) \in \mathbb{R}^{2}$, and let $\boldsymbol{x}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by
$$
\boldsymbol{x}(t):=(t, \sin t)
$$
for every $t \in \mathbb{R}$. Then
\[

$$
\begin{gathered}
\boldsymbol{x}^{\prime}(t)=(1, \cos t) \\
F(\boldsymbol{x}(t))=\left(e^{t \sin t}, \sin ^{2} t\right)
\end{gathered}
$$
\]

and

$$
\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle=e^{t \sin t}+\left(\sin ^{2} t\right)(\cos t),
$$

for every $t \in \mathbb{R}$.
Definition 2.5.2. Let $U \subseteq \mathbb{R}^{n}$ be open, $\boldsymbol{x}:[a, b] \rightarrow U$ a differentiable curve with a differentiable derivative curve \boldsymbol{x}^{\prime}, and let $F: U \rightarrow \mathbb{R}^{n}$ be a differentiable vector field. The curve integral of F along \boldsymbol{x} is defined by

$$
\int_{\boldsymbol{x}} F:=\int_{a}^{b}\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle d t .
$$

By the continuity of the inner product and our hypotheses on \boldsymbol{x} and F the function on $[a, b]$ defined by

$$
t \mapsto\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle
$$

is continuous, hence Riemann-integrable. The above curve integral is a generalisation of the substitution method of the integral of functions in one variable:

$$
\int_{u(a)}^{u(b)} f(u) d u=\int_{a}^{b} f(u(t)) \frac{d u}{d t} d t .
$$

We use the following parametrisations of a linear, parabolic or circular segment: (I) If $P, Q \in \mathbb{R}^{n}$, the linear segment "from P to Q " is parametrised by the curve $\boldsymbol{x}:[0,1] \rightarrow \mathbb{R}^{n}$, defined by

$$
\boldsymbol{x}(t):=P+t(Q-P)
$$

for every $t \in[0,1]$. Clearly, $\boldsymbol{x}(0)=P$ and $\boldsymbol{x}(1)=Q$.
(II) A parabolic segment of the parabola $y=t^{2}$

is parametrised by the curve $\boldsymbol{x}(t):=\left(t, t^{2}\right)$, where t is in a closed interval determined by the specifications of the respected problem.
(III) A parabolic segment of the parabola $x=t^{2}$

is parametrised by the curve $\boldsymbol{x}(t):=\left(t^{2}, t\right)$, where t is in a closed interval determined by the specifications of the respected problem.
(IV) A circular segment of the circle of radius $r>0$ centered at $(0,0)$ in \mathbb{R}^{2}

is parametrised by the curve $\boldsymbol{x}(t):=(r \cos t, r \sin t)$, where t is in a closed interval determined by the specifications of the respected problem.
Let the vector filed $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
F(x, y):=\left(x^{2}, x y\right)
$$

for every $(x, y) \in \mathbb{R}^{2}$. To determine the integral of F over the parabolic segment

from $P:=(-1,1)$ to $Q:=(1,1)$ we have that $\boldsymbol{x}(t)=\left(t, t^{2}\right)$ and $\boldsymbol{x}^{\prime}(t)=(1,2 t)$, and

$$
\begin{aligned}
& F(\boldsymbol{x}(t))=F\left(t, t^{2}\right)=\left(t^{2}, t^{3}\right), \\
& \left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle=t^{2}+2 t^{4},
\end{aligned}
$$

hence, since $-1 \leq t \leq 1$,

$$
\begin{aligned}
\int_{\boldsymbol{x}} F & =\int_{-1}^{1}\left(t^{2}+2 t^{4}\right) d t \\
& =\int_{-1}^{1} t^{2} d t+\int_{-1}^{1} 2 t^{4} d t \\
& =\frac{2}{3}+\frac{4}{5}
\end{aligned}
$$

To determine the curve integral of the vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
F(x, y):=\left(x^{2} y, y^{3}\right)
$$

for every $(x, y) \in \mathbb{R}^{2}$, over the line segment from $P:=(0,0)$ to $Q:=(1,1)$ we use the parametrisation of the segment

$$
\boldsymbol{x}(t)=P+t(Q-P)=(0,0)+t((1,1)-(0,0))=t(1,1)=(t, t),
$$

where $t \in[0,1]$, and hence $F(\boldsymbol{x}(t))=F(t, t)=\left(t^{3}, t^{3}\right), \boldsymbol{x}^{\prime}(t)=(1,1)$,

$$
\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle=t^{3}+t^{3}=2 t^{3},
$$

and

$$
\int_{\boldsymbol{x}} F=\int_{0}^{1} 2 t^{3}=2 \int_{0}^{1} t^{3}=2 \frac{1}{4}=\frac{1}{2} .
$$

Let the vector field $F: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$, defined by

$$
F(x, y):=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

for every (x, y) in the open subset $\mathbb{R}^{2} \backslash\{(0,0)\}$ of \mathbb{R}^{2}. To determine its integral over the circular segment of the circle of radius 3 around $(0,0)$ from $P:=(3,0)$ to

$$
Q:=\left(\frac{3 \sqrt{3}}{2}, \frac{3}{3}\right)
$$

we consider the curve

$$
\boldsymbol{x}(t)=(3 \cos t, 3 \sin t), \quad \boldsymbol{x}^{\prime}(t)=(-3 \sin t, 3 \cos t), \quad t \in\left[0, \frac{\pi}{6}\right],
$$

since $\boldsymbol{x}(0)=P$ and $\boldsymbol{x}\left(\frac{\pi}{6}\right)=Q$. Since

$$
\begin{aligned}
F(\boldsymbol{x}(t)) & =F(3 \cos t, 3 \sin t) \\
& =\left(\frac{-3 \sin t}{(3 \cos t)^{2}+(-3 \sin t)^{2}}, \frac{3 \cos t}{(3 \cos t)^{2}+(-3 \sin t)^{2}}\right) \\
& =\left(\frac{-3 \sin t}{9}, \frac{3 \cos t}{9}\right) \\
& =\frac{1}{3}(-\sin t, \cos t),
\end{aligned}
$$

and

$$
\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle=\sin ^{2} t+\cos ^{2} t=1,
$$

we get

$$
\int_{\boldsymbol{x}} F=\int_{0}^{\frac{\pi}{6}} d t=\frac{\pi}{6}
$$

Definition 2.5.3. A path in an open subset U of \mathbb{R}^{n} is a finite sequence

$$
p:=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)
$$

where $m \geq 1, \boldsymbol{x}_{1}:\left[a_{1}, b_{1}\right] \rightarrow U, \ldots, \boldsymbol{x}_{m}:\left[a_{m}, b_{m}\right] \rightarrow U$ are curves in U such that

$$
\boldsymbol{x}_{1}\left(b_{1}\right)=\boldsymbol{x}_{2}\left(a_{2}\right) \& \ldots \& \boldsymbol{x}_{m}\left(a_{m}\right)=\boldsymbol{x}_{m-1}\left(b_{m-1}\right) .
$$

A path p is called differentiable on U, if $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ are differentiable curves on U with differentiable derivative curves on U. We also say that p is closed, if

$$
\boldsymbol{x}_{1}\left(a_{1}\right)=\boldsymbol{x}_{m}\left(b_{m}\right) .
$$

If $F: U \rightarrow \mathbb{R}^{n}$ is a differentiable vector field on U, and p is a differentiable path on U, the path integral of F over p is defined by

$$
\int_{p} F:=\int_{\boldsymbol{x}_{1}} F+\ldots+\int_{\boldsymbol{x}_{m}} F
$$

Clearly, a curve in U is a special case of a path in U.

2.6. Conservative vector fields

Theorem 2.6.1. Let $U \subseteq \mathbb{R}^{n}$ be open, and $F: U \rightarrow \mathbb{R}^{n}$ be a differentiable vector field on U.
(I) Let $F=\operatorname{grad} V$, for some differentiable function $V: U \rightarrow \mathbb{R}$.
(a) If $\boldsymbol{x}:[a, b] \rightarrow U$ is a differentiable curve in U with $\boldsymbol{x}(a)=P$ and $\boldsymbol{x}(b)=Q$, then

$$
\int_{\boldsymbol{x}} F=V(Q)-V(P)
$$

(b) If $\boldsymbol{y}:[a, b] \rightarrow U$ is a differentiable curve in U with $\boldsymbol{y}(a)=P$ and $\boldsymbol{y}(b)=Q$, then

$$
\int_{\boldsymbol{y}} F=\int_{\boldsymbol{x}} F
$$

(c) If $\boldsymbol{z}:[a, b] \rightarrow U$ is a closed differentiable curve in U i.e., $\boldsymbol{z}(a)=P=\boldsymbol{z}(b)$, then

$$
\int_{z} F=0
$$

(II) Let $F=-\operatorname{grad} V$, for some differentiable function $V: U \rightarrow \mathbb{R}$.
(a) If $\boldsymbol{x}:[a, b] \rightarrow U$ is a differentiable curve in U with $\boldsymbol{x}(a)=P$ and $\boldsymbol{x}(b)=Q$, then

$$
\int_{\boldsymbol{x}} F=V(P)-V(Q)
$$

(b) If $\boldsymbol{y}:[a, b] \rightarrow U$ is a differentiable curve in U with $\boldsymbol{y}(a)=P$ and $\boldsymbol{y}(b)=Q$, then

$$
\int_{\boldsymbol{y}} F=\int_{\boldsymbol{x}} F
$$

(c) If $\boldsymbol{z}:[a, b] \rightarrow U$ is a closed differentiable curve in U i.e., $\boldsymbol{z}(a)=P=\boldsymbol{z}(b)$, then

$$
\int_{z} F=0 .
$$

Proof. We prove only the first part of (i) and the rest is an exercise. By the definition of the curve integral of f and the chain rule on $V \circ \boldsymbol{x}$

we have that

$$
\begin{aligned}
\int_{\boldsymbol{x}} F & :=\int_{a}^{b}\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle d t \\
& =\int_{a}^{b}\left\langle(\operatorname{grad} V)(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle d t \\
& =\int_{a}^{b}(V \circ \boldsymbol{x})^{\prime}(t) d t \\
& =[V \circ \boldsymbol{x}]_{a}^{b} \\
& =V(\boldsymbol{x}(b))-V(\boldsymbol{x}(a)) \\
& =V(Q)-V(P) .
\end{aligned}
$$

Because of the above independence of the integral $\int_{\boldsymbol{x}} F$ of a conservative vector field from the curve connecting the points P and Q in U, we write

$$
\int_{P}^{Q} F:=\int_{\boldsymbol{x}} F=V(Q)-V(P)
$$

where \boldsymbol{x} is any curve in U from P to Q. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ a vector field defined by

$$
F(x, y, z):=\left(2 x y^{3} z, 3 x^{2} y^{2} z, x^{2} y^{3}\right)
$$

for every $(x, y, z) \in \mathbb{R}^{3}$. If $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by

$$
V(x, y, z):=x^{2} y^{3} z
$$

it is easy to see that $F=\operatorname{grad} V$. If $P:=(1,-1,2)$ and $Q:=(-3,2,5)$, then

$$
\int_{P}^{Q} F=V(Q)-V(P)=V(-3,2,5)-V(1,-1,2)=360-(-2)=362
$$

Let $G: \mathbb{R}^{3} \backslash\{(0,0,0)\} \rightarrow \mathbb{R}^{3}$ be defined by

$$
G(x, y, z):=\frac{k(x, y, z)}{|(x, y, z)|^{3}}
$$

for every $(x, y, z) \in \mathbb{R}^{3} \backslash\{(0,0,0)\}$ and some $k \in \mathbb{R}$. If $V: \mathbb{R}^{3} \backslash\{(0,0,0)\} \rightarrow \mathbb{R}$ is defined by

$$
V(x, y, z):=-\frac{k}{|(x, y, z)|},
$$

for every $(x, y, z) \in \mathbb{R}^{3} \backslash\{(0,0,0)\}$, then one can show (exercise) that

$$
\operatorname{grad} V=G
$$

i.e.,

$$
\left(\frac{\partial V}{\partial x}(x, y, z), \frac{\partial V}{\partial y}(x, y, z), \frac{\partial V}{\partial z}(x, y, z)\right)=\frac{k}{|(x, y, z)|^{3}}(x, y, z) .
$$

If $P:=(1,1,1)$ and $Q:=(1,2,-1)$, then

$$
\begin{aligned}
\int_{P}^{Q} G & =V(Q)-V(P) \\
& =-\frac{k}{|Q|}-\left(-\frac{k}{|P|}\right) \\
& =-k\left(\frac{1}{|Q|}-\frac{1}{|P|}\right) \\
& =-k\left(\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{3}}\right) .
\end{aligned}
$$

2.7. Green's theorem on rectangles

Definition 2.7.1. An rectangle \mathcal{R} in \mathbb{R}^{2} is a set of the form

$$
\mathcal{R}:=[a, b] \times[c, d]:=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b \& c \leq y \leq d\right\}
$$

and an open rectangle is a set of the form

$$
\mathcal{R}^{o}:=(a, b) \times(c, d):=\left\{(x, y) \in \mathbb{R}^{2} \mid a<x<b \& c<y<d\right\}
$$

If $f: \mathcal{R} \rightarrow \mathbb{R}$ is a continuous function ${ }^{2}$, the double integral of f on \mathcal{R} is defined by

$$
\iint_{\mathcal{R}} f:=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x .
$$

[^7]Let $\mathcal{R}:=[1,2] \times[-3,4]$ and $f: \mathcal{R} \rightarrow \mathbb{R}$, defined by

$$
f(x, y):=x^{2} y
$$

for every $(x, y) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
\iint_{\mathcal{R}} f & =\int_{1}^{2}\left(\int_{-3}^{4} x^{2} y d y\right) d x \\
& =\int_{1}^{2} x^{2}\left(\int_{-3}^{4} y d y\right) d x \\
& =\int_{1}^{2} x^{2} \frac{1}{2}(16-9) d x \\
& =\frac{7}{2} \int_{1}^{2} x^{2} d x \\
& =\frac{7}{2} \frac{1}{3}\left(2^{3}-1^{3}\right) \\
& =\frac{49}{6}
\end{aligned}
$$

If $U \subseteq \mathbb{R}^{2}$ is open, and let $F: U \rightarrow \mathbb{R}^{2}$ be a differentiable vector field on U such that

$$
F(x, y):=(p(x, y), q(x, y)),
$$

where $p, q: U \rightarrow \mathbb{R}$ are the components of F. If $\boldsymbol{x}:[a, b] \rightarrow U$ is a differentiable curve in U, then

$$
\begin{aligned}
\int_{\boldsymbol{x}} F & :=\int_{a}^{b}\left\langle F(\boldsymbol{x}(t)), \boldsymbol{x}^{\prime}(t)\right\rangle d t \\
& =\int_{a}^{b}\left(p(x, y) \frac{d x}{d t}+q(x, y) \frac{d y}{d t}\right) d t \\
& =\int_{a}^{b} p(x, y) d x+q(x, y) d y
\end{aligned}
$$

According to the next theorem, if we want to find the path-integral

$$
\int_{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)} F
$$

of a differentiable vector field $F=(p, q)$ defined on an open rectangle, where the path

$$
\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)
$$

parametrises counterclockwise the rectangle \mathcal{R}, it suffices to calculate the double integral

$$
\iint_{\mathcal{R}}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right)
$$

Hence we do not need to calculate the curve integrals separately i.e., to use the equality

$$
\int_{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)} F=\int_{\boldsymbol{x}_{1}} F+\int_{\boldsymbol{x}_{2}} F+\int_{\boldsymbol{x}_{3}} F+\int_{\boldsymbol{x}_{4}} F .
$$

If e.g., we consider the rectangle $[-1,1] \times[-1,1]$

a path that parametrises it counterclockwise is the following sequence of linear segments

$$
((-1,-1) \rightarrow(1,-1),(1,-1) \rightarrow(1,1),(1,1) \rightarrow(-1,1),(-1,1) \rightarrow(-1,-1))
$$

The proof of the next theorem is omitted.
Theorem 2.7.2 (Green's theorem on rectangles). Let $F:(a, b) \times(c, d) \rightarrow \mathbb{R}^{2}$ be a differentiable vector field on the open rectangle $(a, b) \times(c, d)$ such that

$$
F(x, y):=(p(x, y), q(x, y)),
$$

for every $(x, y) \in(a, b) \times(c, d)$. Then

$$
\int_{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)} p(x, y) d x+q(x, y) d y=\iint_{\mathcal{R}}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) .
$$

Let the vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
F(x, y)=\left(3 x y, x^{2}\right)
$$

for every $(x, y) \in \mathbb{R}^{2}$. Hence,

$$
\begin{aligned}
p(x, y) & =3 x y, \quad q(x, y)=x^{2} \\
\frac{\partial q}{\partial x} & =2 x \quad \& \quad \frac{\partial p}{\partial y}=3 x
\end{aligned}
$$

The integral of F around the following rectangle

is calculated with the use of Green's theorem as follows

$$
\begin{aligned}
\int_{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)} p(x, y) d x+q(x, y) d y & =\iint_{\mathcal{R}}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) \\
& =\int_{-1}^{3}\left(\int_{0}^{2}(2 x-3 x) d y\right) d x \\
& =\int_{-1}^{3}\left(\int_{0}^{2}(-x) d y\right) d x \\
& =\int_{-1}^{3}(-x)\left(\int_{0}^{2} d y\right) d x \\
& =\int_{-1}^{3}(-x) 2 d x \\
& =-2 \int_{-1}^{3} x d x \\
& =-8
\end{aligned}
$$

CHAPTER 3

Appendix

3.1. Solution to Exercise 2(ii), Sheet 1

If $f: \mathbb{R} \rightarrow \mathbb{R}$, we say that f is differentiable at $x_{0} \in \mathbb{R}$, if there is some $l \in \mathbb{R}$ such that

$$
l=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h},
$$

where using the $(\epsilon-\delta)$-definition of the notion of limit, this means that

$$
\forall_{\epsilon>0} \exists_{\delta_{f}(\epsilon)>0} \forall_{h \neq 0}\left(|h|<\delta_{f}(\epsilon) \Rightarrow\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-l\right| \leq \epsilon\right) .
$$

This necessarily unique limit l is called the derivative of f at x_{0}, and it is denoted by $f^{\prime}\left(x_{0}\right)$. The function f is called continuous at x_{0}, if

$$
\lim _{h \rightarrow 0} f\left(x_{0}+h\right)=f\left(x_{0}\right) \Leftrightarrow \lim _{h \rightarrow 0}\left[f\left(x_{0}+h\right)-f\left(x_{0}\right)\right]=0
$$

where using the $(\epsilon-\delta)$-definition of the notion of limit, this means that

$$
\forall_{\epsilon>0} \exists_{\delta_{f}(\epsilon)>0} \forall_{h \in \mathbb{R}}\left(|h|<\delta_{f}(\epsilon) \Rightarrow\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq \epsilon\right)
$$

If f is differentiable at x_{0}, then f is continuous at x_{0}. To show this we remark that the function

$$
\phi(h):= \begin{cases}\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} & , h \neq 0 \\ f^{\prime}\left(x_{0}\right)^{h} & , h=0\end{cases}
$$

is continuous at 0 . Since for $h \neq 0$ we have that

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=h \phi(h) \Rightarrow f\left(x_{0}+h\right)=h \phi(h)+f\left(x_{0}\right),
$$

we get

$$
\lim _{h \rightarrow 0} f\left(x_{0}+h\right)=\lim _{h \rightarrow 0}\left[h \phi(h)+f\left(x_{0}\right)\right]=0 f^{\prime}\left(x_{0}\right)+f\left(x_{0}\right)=f\left(x_{0}\right) .
$$

The function f is called differentiable, if it is differentiable at every $x_{0} \in \mathbb{R}$, and it is called continuous, if it is continuous at every $x_{0} \in \mathbb{R}$. If

$$
\begin{gathered}
C(\mathbb{R}):=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is continuous }\} \\
D(\mathbb{R}):=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable }\}
\end{gathered}
$$

the previous remark implies that

$$
D(\mathbb{R}) \subseteq C(\mathbb{R})
$$

Next we show that $D(\mathbb{R})$ is a linear space, and for $C(\mathbb{R})$ we work similarly. Clearly, the constant function 0 is differentiable and its derivative is at every $x_{0} \in \mathbb{R}$ again 0 . Next we show that if $f, g \in D(\mathbb{R})$, then $f+g \in D(\mathbb{R})$. Let $x_{0} \in \mathbb{R}$. Suppose that

$$
l=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \& \quad \lim _{h \rightarrow 0} \frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}=m
$$

Using the triangle inequality

$$
|a+b| \leq|a|+|b|
$$

where $a, b \in \mathbb{R}$, we have that

$$
\begin{gathered}
\left|\frac{(f+g)\left(x_{0}+h\right)-(f+g)\left(x_{0}\right)}{h}-(l+m)\right|= \\
\left|\frac{f\left(x_{0}+h\right)+g\left(x_{0}+h\right)-f\left(x_{0}\right)-g\left(x_{0}\right)}{h}-l-m\right|= \\
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-l+\frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}-m\right| \leq \\
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-l\right|+\left|\frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}-m\right|,
\end{gathered}
$$

and since these two terms become arbitrarily small, for appropriate h, we get that

$$
(f+g)^{\prime}\left(x_{0}\right)=l+m=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right),
$$

and since x_{0} is an arbitrary real number, we conclude that $f+g \in D(\mathbb{R})$. Finally, we show that if $a \in \mathbb{R}$ and $f \in D(\mathbb{R})$, then $a \cdot f \in D(\mathbb{R})$. Since $|a b|=|a||b|$, for every $a, b \in \mathbb{R}$, we have that

$$
\begin{gathered}
\left|\frac{(a \cdot f)\left(x_{0}+h\right)-(a \cdot f)\left(x_{0}\right)}{h}-a l\right|=\left|a\left(\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-l\right)\right| \\
=|a|\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-l\right|
\end{gathered}
$$

and since the right term becomes arbitrarily small for appropriate h, we get

$$
(a \cdot f)^{\prime}\left(x_{0}\right)=a l=a f^{\prime}\left(x_{0}\right)
$$

Since $x_{0} \in \mathbb{R}$ is arbitrary, we conclude that $a \cdot f \in D(\mathbb{R})$.
3.2. On the solution of the Exercise $4(i)$, Sheet 3

The fact that $\int f \in D(\mathbb{R})$ is explained by the following fundamental result.
Theorem 3.2.1. Let $a, b, c, d \in \mathbb{R}$ such that $a \leq b \leq c \leq d$, and $f:[a, d] \rightarrow \mathbb{R}$ continuous. The function $\phi:[a, d] \rightarrow \mathbb{R}$, defined by

$$
\phi(x):=\int_{a}^{x} f(t) d t
$$

for every $x \in[a, d]$ is differentiable in $[a, d]$ and $\phi^{\prime}(x)=f(x)$.
Proof. We will use the following two basic properties of the Riemann integral. (1) If $m \leq f(t) \leq M$, for every $t \in[b, c]$, then

$$
m(c-b) \leq \int_{b}^{c} f(t) d t \leq M(c-b)
$$

$$
\begin{equation*}
\int_{a}^{c} f(t) d t=\int_{a}^{b} f(t) d t+\int_{b}^{c} f(t) d t \tag{2}
\end{equation*}
$$

If $x_{0} \in[a, d]$, then by (2) we have that

$$
\begin{aligned}
\frac{\phi\left(x_{0}+h\right)-\phi\left(x_{0}\right)}{h} & :=\frac{\int_{a}^{x_{0}+h} f(t) d t-\int_{a}^{x_{0}} f(t) d t}{h} \\
& =\frac{\int_{a}^{x_{0}} f(t) d t+\int_{x_{0}}^{x_{0}+h} f(t) d t-\int_{a}^{x_{0}} f(t) d t}{h} \\
& =\frac{\int_{x_{0}}^{x_{0}+h} f(t) d t}{h} .
\end{aligned}
$$

Since f is continuous on the compact interval $\left[x_{0}, x_{0}+h\right]$, let $s, s^{\prime} \in\left[x_{0}, x_{0}+h\right]$ such that

$$
\begin{aligned}
f(s) & :=\min \left\{f(t) \mid t \in\left[x_{0}, x_{0}+h\right]\right\}:=m \\
f\left(s^{\prime}\right) & :=\max \left\{f(t) \mid t \in\left[x_{0}, x_{0}+h\right]\right\}:=M
\end{aligned}
$$

By (1) we have that

$$
\begin{aligned}
& m\left(x_{0}+h-x_{0}\right) \leq \int_{x_{0}}^{x_{0}+h} f(t) d t \leq M\left(x_{0}+h-x_{0}\right) \Leftrightarrow \\
& f(s) h \leq \int_{x_{0}}^{x_{0}+h} f(t) d t \leq f\left(s^{\prime}\right) h \stackrel{h \neq 0}{\Rightarrow} \\
& f(s) \leq \frac{\int_{x_{0}}^{x_{0}+h} f(t) d t}{h} \leq f\left(s^{\prime}\right)
\end{aligned}
$$

If $h \rightarrow 0$, then $s, s^{\prime} \rightarrow x_{0}$, and by the continuity of f we get $f(s) \rightarrow f\left(x_{0}\right)$ and $f\left(s^{\prime}\right) \rightarrow f\left(x_{0}\right)$. By the sandwich lemma we get

$$
\phi^{\prime}\left(x_{0}\right):=\lim _{h \rightarrow 0} \frac{\phi\left(x_{0}+h\right)-\phi\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\int_{x_{0}}^{x_{0}+h} f(t) d t}{h}=f\left(x_{0}\right) .
$$

3.3. Solution to Exercise 4(iv)-(v), Sheet 4

Let $A:=\left[a_{i j}\right] \in M_{m, n}(\mathbb{R}), B:=\left[b_{j k}\right] \in M_{n, l}(\mathbb{R})$ and $D:=\left[d_{k r}\right] \in M_{l, s}(\mathbb{R})$. (iv) By the definition of the multiplication of matrices we have that

$$
\begin{gathered}
A B:=\left[a_{i j}\right]\left[b_{j k}\right]:=\left[\sum_{j=1}^{n} a_{i j} b_{j k}\right], \\
B D:=\left[b_{j k}\right]\left[d_{k r}\right]:=\left[\sum_{k=1}^{l} b_{j k} d_{k r}\right], \\
(A B) D:=\left[\sum_{j=1}^{n} a_{i j} b_{j k}\right]\left[d_{k r}\right]:=\left[\sum_{k=1}^{l}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) d_{k r}\right], \\
A(B D):=\left[a_{i j}\right]\left[\sum_{k=1}^{l} b_{j k} d_{k r}\right]:=\left[\sum_{j=1}^{n} a_{i j}\left(\sum_{k=1}^{l} b_{j k} d_{k r}\right)\right] .
\end{gathered}
$$

Since

$$
\sum_{k=1}^{l}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) d_{k r}=\sum_{j=1}^{n} a_{i j}\left(\sum_{k=1}^{l} b_{j k} d_{k r}\right)=\sum_{k=1}^{l} \sum_{j=1}^{n} a_{i j} b_{j k} d_{k r}
$$

we get that $(A B) D=A(B D)$.
(v) Since

$$
\begin{aligned}
& A^{t}:=\left[\alpha_{j i}\right] \in M_{n, m}(\mathbb{R}), \quad \alpha_{j i}:=a_{i j}, \\
& B^{t}:=\left[\beta_{k j}\right] \in M_{l, n}(\mathbb{R}), \quad \beta_{k j}:=b_{j k},
\end{aligned}
$$

the product $B^{t} A^{t} \in M_{l, m}(\mathbb{R})$ is well-defined. Moreover, we have that

$$
(A B)^{t}:=\left[\sum_{j=1}^{n} a_{i j} b_{j k}\right]^{t}:=\left[\gamma_{k i}\right]
$$

where

$$
\gamma_{k i}:=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

Since

$$
B^{t} A^{t}:=\left[\beta_{k j}\right]\left[\alpha_{j i}\right]:=\left[\sum_{j=1}^{n} \beta_{k j} \alpha_{j i}\right]=\left[\sum_{j=1}^{n} b_{j k} a_{i j}\right]=\left[\sum_{j=1}^{n} a_{i j} b_{j k}\right]
$$

we get $B^{t} A^{t}=(A B)^{t}$.

Bibliography

[1] H. B. Enderton: Elements of Set Theory, Academic Press, 1977.
[2] O. Forster: Analysis 2, Vieweg + Teubner, 2007.
[3] W. Greub: Linear Algebra, Springer-Verlag, 1975.
[4] S. Lang: Undergraduate Analysis, Springer, 1983.
[5] S. Lang: Linear Algebra, Springer-Verlag, 1987.
[6] S. Lang: Calculus of Several Variables, Springer, 1987.
[7] J. E. Marsden, A. Tromba: Vector Calculus, W. H. Freeman and Company Publishers, 2012.

[^0]: ${ }^{1}$ A field is a structure $(\mathbb{F} ;+, \mathbf{0}, \cdot, \mathbf{1})$, where \mathbb{F} is a set, $\mathbf{0}, \mathbf{1} \in \mathbb{F},+: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$, and $\cdot: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ such that together with $\left(\mathrm{LS}_{1}\right)-\left(\mathrm{LS}_{4}\right)$ the following conditions are satisfied:
 $\forall_{x, y, z \in \mathbb{F}}(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$.
 $\forall_{x, y, z \in \mathbb{F}}(x \cdot(y+z)=x \cdot y+x \cdot z)$.
 $\forall_{x, y \in \mathbb{F}}(x \cdot y=y \cdot x)$.
 $\forall_{x \in \mathbb{F}}(\mathbf{1} \cdot x=x)$.

[^1]: ${ }^{2}$ This is the logical principle $P \vee \neg P$, where P is any well-formed formula.

[^2]: ${ }^{3}$ The restriction $g_{\mid Y}$ of g is the function $g_{\mid Y}: Y \rightarrow Z$, where $g_{\mid Y}(y):=g(y)$, for every $y \in Y$. Clearly, if Y is a subspace of a linear space X and $f \in \mathcal{L}(X, Z)$, then $f_{Y} \in \mathcal{L}(Y, Z)$.

[^3]: ${ }^{4}$ The symbol $\delta_{k i}$ is known as Kronecker's delta.

[^4]: ${ }^{5}$ A simpler argument is the following. As we have shown after the Definition 1.5.1, $T_{A}\left(e_{i}\right)$ is the i-column of A. Hence, $T_{A_{T}}\left(e_{i}\right)$ is the i-column of A_{T}, which is exactly $T\left(e_{i}\right)$ by the definition of A_{T}.

[^5]: ${ }^{6}$ The following figure also explains why $|x+y| \leq|x|+|y|$.

[^6]: ${ }^{1}$ The negative sign is only traditional, and it can be avoided.

[^7]: ${ }^{2}$ All functions defined on a rectangle that we are going to study here are going to be continuous.

