

Dr. Iosif Petrakis

STITUT

Winter term 19/20 02.12.2019

Mathematics for Natural Scientists I Sheet 8

Exercise 1. (i) Let the function $h_1 : \mathbb{R} \to \mathbb{R}$, defined by

$$h_1(x) = x^2 + 1,$$

for every $x \in \mathbb{R}$. Draw the graph of h_1 . [1 point]

(ii) Let the function $h_2 : \mathbb{R} \to \mathbb{R}$, defined by

 $h_2(x) = -x^2,$

for every $x \in \mathbb{R}$. Draw the graph of h_2 .

[1 point]

(iii) Let the function $h_3 : \mathbb{R} \to \mathbb{R}$, defined by

$$h_3(x) = (x-1)^2,$$

for every $x \in \mathbb{R}$. Draw the graph of h_3 . [2 points]

Exercise 2. Let the polynomials $p, q : \mathbb{R} \to \mathbb{R}$, defined by

$$p(x) = 2 + 3x + 4x^2,$$

 $q(x) = 3 + x,$

for every $x \in \mathbb{R}$, respectively.

(i) Determine the composition function $p \circ q$.

[1 point]

(ii) Determine the composition function $q \circ p$.

[1 point]

(iii) Determine the domain of the rational function $R_{pq}(x) = \frac{p(x)}{q(x)}$, and find the value $R_{pq}(-1)$. [2 points] **Exercise 3.** The *ceiling function* $[.] : \mathbb{R} \to \mathbb{R}$ is defined by $x \mapsto [x]$, for every $x \in \mathbb{R}$, where [x] is the unique integer such that

$$\lceil x \rceil - 1 < x \le \lceil x \rceil.$$

(i) Draw the graph of the ceiling function.

[2 points]

(ii) Find the limits

$$\lim_{x \to 0^+} \lceil x \rceil \quad \& \quad \lim_{x \to 0^-} \lceil x \rceil$$

[2 points]

Exercise 4. Let the Dirichlet function $\text{Dir} : \mathbb{R} \to \mathbb{R}$, defined by

$$\operatorname{Dir}(x) := \left\{ \begin{array}{ll} 1 & , \, x \in \mathbb{Q} \\ 0 & , \, x \in \mathbb{I}, \end{array} \right.$$

(i) Find a sequence $(\alpha_n)_{n\in\mathbb{N}}$ of reals such that the following conditions are satisfied:

(a) $\alpha_n > 0$, for every $n \in \mathbb{N}$, and (b) $\alpha_n \in \mathbb{Q}$, for every $n \in \mathbb{N}$, and

(c) $\lim_{n \to \infty} \alpha_n = 0.$

[1 point]

(ii) Find a sequence $(\beta_n)_{n \in \mathbb{N}}$ of reals such that the following conditions are satisfied: (c) $\beta_n > 0$, for every $n \in \mathbb{N}$, and (d) $\beta_n \in \mathbb{I}$, for every $n \in \mathbb{N}$, and (e) $\lim_{n \to \infty} \beta_n = 0$.

[1 point]

(iii) Determine the following limits

$$\lim_{n \longrightarrow \infty} \operatorname{Dir}(\alpha_n) \quad \& \quad \lim_{n \longrightarrow \infty} \operatorname{Dir}(\beta_n).$$

[1 point]

(iv) Does the limit

$$\lim_{x \longrightarrow 0^+} \operatorname{Dir}(x)$$

exist?

[1 point]

Submission. Wednesday 11. December 2019, in the Exercise-session.

Discussion. Wednesday 11. December 2019, in the Exercise-session.