

Dr. Iosif Petrakis

Winter term 19/20 06.11.2019

Mathematics for Natural Scientists I Sheet 4

Exercise 1. With the use of the Archimedean axiom show the following:

(i) ∀_{x∈ℝ}∃_{!m∈ℤ}(m − 1 < x ≤ m).
[2 points]
(ii) ∀_{ε>0}∃_{n∈ℕ+}(¹/_n < ε).
[2 points]

Exercise 2. Let $a \in \mathbb{R}$. With the use of the Archimedean axiom and the Bernoulli inequality show the following.

(i) If a > 1, then ∀_{x∈ℝ}∃_{n∈ℕ}(aⁿ > x).
[2 points]
(ii) If 0 < a < 1, then ∀_{ε>0}∃_{n∈ℕ}(aⁿ < ε).
[2 points]

Exercise 3. Let the sequence $\delta : \mathbb{N} \to \mathbb{R}$, defined by

$$\delta_n = \frac{n}{n+1}, \quad \text{for every } n \in \mathbb{N},$$

and let the sequence $\zeta : \mathbb{N} \to \mathbb{R}$, defined by

$$\zeta_n = \frac{n}{2^n}, \quad \text{for every } n \in \mathbb{N}.$$

(i) Show that $\delta_n \xrightarrow{n} 1$.

[1 point]

(ii) Using the corresponding induction principle on the set $\{n \in \mathbb{N} \mid n \geq 4\}$, show that

$$\forall_{n\geq 4} \left(n^2 \leq 2^n \right).$$

[1 point] (iii) Show that $\zeta_n \xrightarrow{n} 0$. [2 points] Exercise 4. (i) Prove or disprove the following:

"The sequence of the Fibonacci numbers Fib is convergent"

[1 point]

(ii) Let $x \in \mathbb{R}$ be a non-zero real number, and let the sequence $\alpha : \mathbb{N} \to \mathbb{R}$, defined by $\alpha_n = x^n$, for every $n \in \mathbb{N}$. Show the following.

(a) If |x| < 1, then $\alpha_n \xrightarrow{n} 0$.

[1 point]

(b) If x = 1, then $\alpha_n \xrightarrow{n} 1$, and if x = -1, then α is divergent.

[1 point]

(c) If |x| > 1, then α is divergent.

[1 point]

Submission. Wednesday 13. November 2019, in the Exercise-session.Discussion. Wednesday 13. November 2019, in the Exercise-session.