

Dr. Iosif Petrakis

Winter term 19/20 16.12.2019

Mathematics for Natural Scientists I Sheet 10

Exercise 1. Let the function $\sqrt{x}: \mathbb{R}^+ \to \mathbb{R}^+$, defined by $x \mapsto \sqrt{x}$, for every $x \in \mathbb{R}^+$. Show that the function \sqrt{x} is continuous on \mathbb{R}^+ . [4 points]

Exercise 2. (i) Let $D \subseteq \mathbb{R}$, $x_0 \in D$, and $f: D \to \mathbb{R}$ a real function on D. Show that

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{h \to 0} f(x_0 + h) = f(x_0).$$

[2 points]

(ii) If $x, y \in \mathbb{R}^{+*}$, show that

$$\ln(x \cdot y) = \ln(x) + \ln(y)$$

[2 points]

[**Hint:** use the equality $\exp(x + y) = \exp(x) \exp(y)$.]

Exercise 3. (i) Let the function $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = x^3$, for all $x \in \mathbb{R}$. With the use of the Definition 2.4.1. show that

$$f'(x_0) = 3x_0^2,$$

for all $x_0 \in \mathbb{R}$.

[2 points]

(ii) Let the function $g : \mathbb{R} \to \mathbb{R}$, where $g(x) = x^4$, for all $x \in \mathbb{R}$. With the use of the Definition 2.4.1. show that

$$g'(x_0) = 4x_0^3$$

for all $x_0 \in \mathbb{R}$. [2 points] **Exercise 4.** Let $n \in \mathbb{N}$ with n > 0 and let the function $f : \mathbb{R} \to \mathbb{R}$, where

$$f(x) = x^n,$$

for all $x \in \mathbb{R}$. With the use of the Definition 2.4.1. show that

$$f'(x_0) = nx_0^{n-1},$$

for all $x_0 \in \mathbb{R}$. [4 points] [Hint: Use the equality

$$(x_0 + h)^n = \sum_{k=0}^n \binom{n}{k} x_0^k \cdot h^{n-k}.$$

Submission. Wednesday 08. January 2020, in the Exercise-session.Discussion. Wednesday 08. January 2020, in the Exercise-session.