

Dr. Iosif Petrakis

Winter term 19/20 16.10.2019

Mathematics for Natural Scientists I Sheet 1

Exercise 1. Let $X = \{5, 10, 15, 20\}$. Find all subsets of X. [4 points]

Exercise 2. If X is a set and A, B, C are subsets of X, show the following: (i) $(A \cap B) \cup A = A$. [0.5 point] (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. [1 point] (iii) $A \cap A' = \emptyset$ and $A \cup A' = X$. [0.5 point] (iv) (A')' = A. [0.5 point] (v) $(A \cap B)' = A' \cup B'$. [1.5 points]

Exercise 3. (i) Is the function $g : \mathbb{Z} \to \mathbb{Z}$, defined by $z \mapsto z^2$, a surjection? [0.5 point] (ii) Give an example of a function $h : \mathbb{N} \to \mathbb{N}$, which is neither injective nor surjective. [1 point] (iii) Find functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ such that $f \circ g \neq g \circ f$. [1 point] (iv) Find functions $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$ such that $f \circ g = g \circ f$. [1.5 point] **Exercise 4.** Let X, Y, Z, W be sets, $f : X \to Y, g : Y \to Z$ and $h : Z \to W$. Show the following: (i) $id_Y \circ f = f$. **[0.5 point]** (ii) $h \circ (g \circ f) = (h \circ g) \circ f$. **[1.5 points]** (iii) If f, g are injective, then $g \circ f$ is injective. **[1 point]** (iv) If f, g are surjective, then $g \circ f$ is surjective. **[1 point]**

Exercise 5. Let $f: X \to Y$. Show that f is a bijection if and only if there is $g: Y \to X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$.

[4 points]

[**Hint**: You need to show that if f is a bijection there is such a function $g: Y \to X$, and you also need to show that if there is such a function $g: Y \to X$, then f is a bijection.]

Submission. Wednesday 23. October 2019, in the Exercise-session.Discussion. Wednesday 23. October 2019, in the Exercise-session.