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CHAPTER 1

Number systems

In this chapter we study some basic properties of the following number systems:
the natural numbers N, the integers Z, the rational numbers Q, and the real numbers
R. First we need to give a short introduction to the fundamental notions of a set
and of a function between sets.

1.1. Sets

DEFINITION 1.1.1. A formula ¢ is a mathematical expression. Let ¢, be
formulas. The implication “¢ implies ¥” is denoted by

¢ = .
The conjunction “¢ and 1” is denoted by
oAy, orby ¢ & .
The equivalence “¢ if and only if " is denoted by
=Y

and it is the conjunction ¢ = ¥ & ¥ = ¢. The negation “not ¢” is denoted by —¢.
The disjunction “¢ or ¢” is denoted by

V.
Let ¢(z) be a formula i.e., the variable x occurs in ¢. The formula
T (¢(2))
is read as “there exists x such that ¢(z) holds”, and the formula
V2 (6(2))

is read as “for all x we have that ¢(z) holds”.

To prove ¢ = 1), we suppose ¢ and we prove . If ¢ is false, then the implication
¢ = 1 is true, in a trivial way. To prove ¢ & 1, we prove ¢ and we prove . To
prove ¢ < v, we prove ¢ = ¢ and we prove ) = ¢. To prove ¢, we suppose ¢
and we reach a contradiction, like ¥ & —), for some formula 1. To prove ¢ V 1,
we prove ¢, or we prove . Sometimes, to prove ¢ V 1, we prove —=(—¢ & —)). To
prove 3, ((,zb(x)), we find z and we prove ¢(z). Sometimes, to prove 3, (d)(x)), we
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2 1. NUMBER SYSTEMS

prove ﬁﬁ[ﬂm ((b(x))] To prove Yy (¢($)), we suppose an arbitrary x and we prove
¢(x). Some basic examples of formulas appear in the next definition.

DEFINITION 1.1.2. A set [Menge] X is a collection of mathematical objects. A
mathematical object x that is a member of X is called an element of X, and we
write

z e X.
If y is a mathematical object that is not an element of X, we write

y¢ X
instead of =(y € X). The set that has no elements is called the empty set [leere
Menge] and it is denoted by 0. Let X and Y be sets. We say that X and Y are
equal, in symbols X =Y, if they have the same elements i.e.,

Vo(ze X ©aeY).

We say that X is a subset [Teilmenge] of Y, in symbols X C Y, if every element of
X is an element of Y i.e.,
Vo(reX=zeY).

If X CY and there is y € Y such that y ¢ X, then we say that X is a proper
subset [echte Teilmenge] of Y. In this case we write X C Y. If X is a set, the
collection P(X) of all subsets of X is called the powerset [Potenzmenge] of X.

Very often we use the symbols {} to denote the elements of a set. E.g., the set
of matural numbers [natiirliche Zahlen] N is denoted by

N=1{0,1,2,3,...}.
The set of integers [ganze Zahlen] Z is denoted by
Z={..6-3-2-1,01,23,...}
and
N C Z.
If X is a set, we can define a subset Xp of X through a property P(x) on X by
collecting all elements of X such that P(x) holds. In this case we write

Xp={reX|P(x)}
E.g., the set Even of even natural numbers [gerade Zahlen] is defined as follows:
Even = {n € N| P(n)}, P(n):& Jpen(n=2m),
ElmeN(n = 2m) & Hm(m eN&n= Qm).

Clearly, Even C N. The set 0dd of odd natural numbers [ungerade Zahlen] is defined
as follows:

0dd={n e N|Q(n)}, Q(n):& Ipen(n=2m+1).
Notice that two sets X,Y are equal if they are subsets of each other i.e.,
X=Y&XCY&Y CX.
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DEFINITION 1.1.3. Let X,Y be sets. The intersection [Schnittmenge] X NY
of X and Y is the set of all mathematical objects that are elements both of X and
Y ie.,

XNY={z2|ze X &zeY}.

The union [Vereinigungsmenge] X UY of X and Y is the set of all mathematical
objects that are elements either of X or of Y i.e.,
XUY={z|zeX V zeY}
If A C X, the complement [Komplement] A’ of A in X is the set of all elements of
X that do not belong to A i.e.,
A ={reX|x¢A}
It is easy to see that

OddNEven=( & 0ddUEven=N & 0dd’' =Even & Even’ = 0dd.
PROPOSITION 1.1.4. If X is a set and A, B,C are subsets of X, the following
hold:
(i) 0 C X and X C X.
(i) ANA=A and AU A = A.
(tit) ANB=BNA and AUB=BUA.
(iv) (ANB)NC=ANn(BNC) and (AUB)UC =AU (BUCQC).
(v) (ANB)UA=A and (AUB)NA=A.
(vi) ACBeANB=Aand ACB< AUB=B.
(vii) AN(BUC)=(ANB)U(ANC) and AU(BNC)=(AUB)N(AUCQC).
PRrOOF. (i) For ) C X we need to show that
Vo(z €l =z eX).

Let  such that = € (). Since this is impossible by the definition of (), we conclude,
in a trivial way, that the implication z € ) = x € X holds. Since x is arbitrary,
the proof is completed. For X C X we work similarly, and we use the fact that the
implication x € X = x € X holds.

(v) We show only (AU B)N A = A. For that we show first that (AU B)N A C A.
If b € (AU B) N A, we show that b € A. By the definition of intersection we have
that b € (AU B) and b € A. Hence we get the required b € A. Next we show that
AC(AUB)NA. If a € A, we show that a € (AUB)NAie.,a€ AUBand a € A.
Both inclusions follow trivially from the hypothesis a € A.

(ii)-(iv) and (vi) -(vii) is an exercise. O

ProrosiTION 1.1.5. If X is a set and A, B C X, the following hold:
(1) 0 =X and X' = 0.
(1) ANA =0 and AUA = X.
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(iii) (A') = A.
(iv) (ANnB)Y = A" UDB.
(v) (AUB) =A'NnB".
(vi) ACB< B ' C A
PRroOF. (i) By the definition of the complement of a subset we have that
V={reX|z¢hl=X
X' ={zeX|z¢ X}=0.
For (ii) we use the logical principle ¢V —¢ (Principle of the Excluded Middle, PEM),
and for (iii) the principle =—=¢ = ¢ (Double Negation Shift, DNS). O
PROPOSITION 1.1.6. If X is a set and A, B C X, the difference A — B between
A and B is the set of all elements in A that are not in B i.e.,
A-B={zeX|z€ A& zx¢ B}
If C C X, the following hold:
(i) A-B=ANBHB.
(ii) ( A—B)—-C=A—-(BUC).
(791) A (B—C):(A—B)U(AOC’).
(iv) (AUB)—-C=(A-C)U(B-0).
(v) A—-(BUC)=(A-B)Nn(A-0).
Proor. Exercise. O
ProrosiTiON 1.1.7. If X is a set and A, B C X, the symmetric difference
A A B of A and B is defined by
AAB=(A-B)U(B-A).
If C C X, the following hold:
(i) ArnD=Aand AnA=0.
(i) ANB=BAA.
(#it) AN(BAC)=(AAB)AC.
(iv) AN(BAC)=(ANC)A(ANC).
Proor. Exercise. O
DEFINITION 1.1.8. If XY are sets, their product X x Y is the set of all pairs
(z,y) withz € X and y € Y ie.,
XxY=A{(z,y)|lzeX &yeY}
where if (z,y), (¢/,y') € X x Y, we have that

(zy) =@ y)er=2"&y=y"
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1.2. Functions

DEFINITION 1.2.1. If XY are sets, a function f: X — Y from X to Y is a
rule that associates to every element z € X a unique element f(z) € Y, which is
called the value of f at x. To denote that f maps z to f(z) we also write

x = f(x).
The set X is called the domain [Definitionsmenge] of f, and Y is the range of
[Zielmenge] of f. The image [Wertemenge] Im(f) of f is the set of values of f i.e.,

In(f) ={y €Y | Joex (v = f(2))}-
Ifg: X - Y, then f =g, if f and g are equal on every input z € X i.e.,
=9 Voex (f(2) = g(z)).
By the uniqueness hypothesis in the Definition 1.2.1 a function f : X — Y
satisfies for every x, 2’ € X the implication
r=w= f(x) = f(w)
i.e., it “maps equal inputs to equal outputs”. Clearly, Im(f) C Y. Let e.g., f : N —

N be defined by
n — 2n.

By definition, f(0) =0, f(1) =2, and f(50) = 100. Clearly, Im(f) = Even.

DEFINITION 1.2.2. A function f : X — Y is called an injection, or injective
[injektiv], if for every z, 2’ € X we have that

fx)=flw) =z =w.
Moreover, f is called a surjection, or surjective [surjektiv], if Im(f) =Y. A function

f is called a bijection, or bijective [bijektiv], if it is both an injection and a surjection.

It is easy to see that f is injective, if for every z,z’ € X it satisfies

z#w= f(z)# f(w)
ie., if f “maps unequal inputs to unequal outputs”. The function n — 2n is
injective, since 2n = 2m = n = m, for every n,m € N, but it is not surjective,
since Im(f) = Even C N. If X is a set, the identity map [identische Abbildung]
idx : X — X is defined by the rule

T .

Clearly, idx is a bijection. Let g : Z — N be defined by

R

—z ,2<0.

Then g is surjective, since g(n) = n, for every n € N, but g is not injective, since
e.g.,g(—1)=g(1) =1. If X,Y are sets, and yo € Y, let gp : X — Y be defined by

T — Yo,
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for every xz € X, is the constant function from X to Y with constant value yg.

DEFINITION 1.2.3. Let XY, Z be sets, f : X - Y and g : Y — Z. The
composition go f: X — Z of f and g is defined, for every z € X, by

(9 1)) = 9( ()
X i* Y L* Z.

gof

Since g and f respect equality, the composition g o f also respects equality i.e.,
if xz,w € X, such that x = w, then f(x) = f(w) and hence

(g0 f)(x) = g(f(2)) = g(f(w)) = (g © f)(w).

If f: N — Nis defined by f(n) =n+1, for every n € N, and if g : N — N is defined
by g(n) = n?, for every n € N, then go f : N = N, and for every n € N

(go f)(n) =g(f(n)) = (n+1)>

ProrosiTiON 1.2.4. Let X,Y,Z, W be sets, andlet f : X - Y, g:Y — Z,
and h: Z — W. The following hold:

(1) foidx = f
idx f
X X Y.
\/’
/
(i) idy o f = f
/ idy
X Y Y
~_ -
f
(i7i) ho(go f)=(hog)of
(hog)of

m

ho(gof)

X

w.

PRrROOF. (i) By the definition of the equality of functions we need to show that

Voex ((f oidx)(z) = f(z)).
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If x € X, then (f oidx)(z) = f(idx(x)) = f(z). Since z is an arbitrary element of
X, we conclude that foidx = f.
(ii) and (iii) Exercise. O

1.3. Induction on N

The induction principle on N is a fundamental tool in proving properties for all
natural numbers. All induction principles mentioned in this section are equivalent.

Induction principle IND on N: Let ¢(n) be a formula on N such that the
following conditions are satisfied:

(1) ¢(0) holds.
(#i) For every n € N, if ¢(n) holds, then ¢(n + 1) holds i.e.,
Vnen(¢(n) = ¢(n +1)).
Then we can infer that ¢(n) holds, for every n € N i.e.,
vnEN (¢(n))
Let NT be the set of non-zero natural numbers i.e.,
Nt ={1,2,3,...}.

Induction principle IND™ on N*: Let 6(n) be a formula on N* such that the
following conditions are satisfied:

(1) 6(1) holds.
(i7) For every n € Nt if 6(n) holds, then 6(n + 1) holds i.e.,
Vyen+ (0(n) = 6(n+1)).
Then we can infer that 8(n) holds, for every n € N7 i.e.,
Vyen+ (0(n)).

ProrosiTION 1.3.1. The induction principle IND on N implies the induction
principle INDT on Nt.

PROOF. Let 6(n) be a formula on NT such that the conditions of IND" are
satisfied. Let ¢(n) be the following formula on N

o(n) & 6(n+1).

By definition ¢(0) :< (1), which holds by our hypothesis on 6. Let n € N such
that ¢(n) :< 0(n + 1). By our hypothesis on 6 we get 8((n + 1) + 1) :& ¢(n + 1),
hence by IND we get

Vaen (¢(n)) 1 Ynen (0(n +1)) & Ynens+ (0(n)).
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PROPOSITION 1.3.2. The induction principle INDT on Nt implies the induction
principle IND on N.

ProOOF. Exercise. O

As an example of using IND™, let us prove the following formula:

VneN+(1+2+...+n= n(n;—l))
If O(n) is the formula on N
O(n) :<:>1+2+...+n:w,
then by the principle IND™T it suffices to show
(1) :=1= w,
which holds trivially, and if n € N* we need to show the following implication:
O(n) = 0(n+1) ie.,

1+2+...+n:n(n;1)} = [1+2+...+n+(n+1):(n+1)2(n+2) )

For that we suppose that

1
1+2+...+n:@

holds, and then we show the equality

n+1)(n+2
1+2+...+n+(n+1):%
as follows:

1+24+...4n+n+1)=[1+2+...+n]+(n+1)

L0y
nn+1) 2(n+1)
2 2
n(n+1)+2(n+1)
2
(n+1)(n+2)
—

If aq,as,...a, € N we define their sum

n
E ar =a1 +as +...ak.
k=1



1.3. INDUCTION ON N 9

For example, we have that

5
Y 2=24+2+2+2+2=10,
k=1

n
Zm = nm,
k=1

n

Zn =n?
k=1

What we showed above is also written as

St

k=1 2
PROPOSITION 1.3.3. Let f : Nt — NV with a = f(1), and for every n,m € N*
Fn+m) = F(n)f(m).
Then
Vien+ (f(”) = an)-
PROOF. We use the induction principle IND' on N* for the formula
O(n) < f(n)=a".

Clearly, 0(1) :< f(1) = a' = a, which holds by the definition of a. If n € N, we
show the implication

O(n) =0(n+1)
i.e., the implication
[f(n) = a”] = [f(n+ 1) = a"+1].
By the hypothesis on f we get
fn+1) = f(n)f(1) = a"f(1) = a"a =a"*".
O

Induction principle IND< on N: Let ¢(n) be a formula on N such that the
following conditions are satisfied:

(1) ¢(0) holds.

(i7) For every n € NT, if ¢(0) and ¢(1) and ... and ¢(n — 1) hold, then ¢(n) holds:
Ypent ([¢(0) &o(l) & ... & p(n—1)] = ¢(n)).

Then we can infer that ¢(n) holds, for every n € N i.e.,

VTLEN (¢(n))
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PROPOSITION 1.3.4. The induction principle IND on N implies the induction
principle IND< on N.

PROOF. Let ¢(n) be a formula on N such that the hypotheses (i) and (ii) of
IND< are satisfied. We show that the hypotheses (i) and (ii) of IND are satisfied,
hence the conclusion of IND, which is also the required conclusion of IND<, follows.
The hypothesis (i) of IND is the hypothesis (i) of IND<. For the proof of the
hypothesis (i) of IND we suppose n € N such that ¢(n), and we show ¢(n + 1).
Suppose that =(¢(n + 1). By the hypothesis (ii) of IND< there is some m; < n+ 1
such that —(¢(my) (if for all m < n 4+ 1 we had that ¢(m) holds, then by the
hypothesis (ii) of IND< we would get ¢(n + 1) too). By a similar argument there
is some my < mq such that —(¢(msg). By repeating this step k& number of times,
where k < (n+1),we get my, = 0, and —~(¢(my) i.e., 7(¢p(0). Since we supposed that
¢(0) holds, we reached a contradiction. Hence, our initial hypothesis =(¢(n + 1) is
false, therefore ¢(n + 1) holds. O

PROPOSITION 1.3.5. The induction principle IND< on N implies the induction
principle IND on N.

Proor. Exercise. O

1.4. The algebraic and the ordering axioms for the set of real numbers

We denote by R the set of real numbers [reele Zahlen| that satisfies the follow-
ing lists of axioms:

I) Axioms for addition.
IT) Axioms for multiplication.

(
(
(III) Distributivity axiom of multiplication over addition.
(IV) Axioms for order and the Archimedean axiom.

(

V) The completeness axiom.

(I) Axioms for addition: There is a function +: R x R — R,

(,y) —»z+y
such that the following axioms are satisfied:
(A1) z+ (y+2) = (x+y) + 2, for every z,y,z € R.
(A2) There is an element 0 of R such that 0 4+ x = x, for every z € R.
(A3) For every x € R there is some y € R such that x +y = 0.
(Ag) x+y =y + z, for every z,y € R.
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Notice that the number 0 in (As) is uniquely determined. Let 0’ € R such that
0+ x =z, for every x € R. If we take x = 0, then by (As) and (A4) we get

0=0+0=0+0=0"

The number y in (As) is uniquely determined. Let ¢y’ € R such that x +y' = 0. We
have that

y=0+y=(@+y)+y=E +a)+y=y+@+y) =y +0=y.
We denote this unique element y by —x, and we define

z—x=z+(—x).

n
in:ler...er
i=1

(IT) Axioms for multiplication: There is a function - : R x R — R,

We also use the notation

(,y) »z-y
such that the following axioms are satisfied:
(My)z-(y-2)=(x-y) -z for every x,y,z € R.
(My) There is an element 1 # 0 of R such that 1 -z = z, for every x € R.
(Ms) For every z € R, such that  # 0, there is some y € R such that z -y = 1.
(My) -y =1y -z, for every z,y € R.
Notice that the number 1 in (M3), and the number y in (M;) are uniquely deter-
mined. We denote this unique element y by 2~ = %, and we define
1

z
— =z —.
T T

n
H%ZMCE
i=1

For simplicity we often write xy instead of z-y. If a € R and n € NT, we define

n a ,n=1
a: n—1 1
a a ,n>1.

We also use the notation

Hence,

i=1
If a # 0, we define
a® = 1.
It is easy to show by IND that for all m,n € N we have that
a™t =ama".
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0 = (@) = (i)n

One can show that for all m,n € Z we have that a™™" = a™a".

If n € N, we define

(ITT) Distributivity axiom of multiplication over addition:

D)z-(y+z)=x-y+a-z for every z,y,z € R.

COROLLARY 1.4.1. If x,y,z,w € R, the following hold.
1) 0-z=0.
i) (—x)y = —(zy).
ii1) (—x)(—y) = zy.
i) —(r+y)=-z—y.
v) If o,y # 0, then xy # 0, and (vy)~! =271y~ L.
vi) If z,w # 0, then

TY _ MY £+£_M
Zzw 2w z  w 2w

(
(
(
(
(
(

(vit) If x #0 and zy = xz, then y = 2.
PRrROOF. Exercise. (|

By (D) and using the induction principle IND™ we can show the distributivity
of multiplication over an arbitrary sum i.e.,

nEN+< Zy Zwy)
i=1

Similarly we can show that

n

>3 = (L) (L) = (L) () - LT

i=1j=1 i=1 =1 = io

(IV) Axioms for order: There is a subset P of R, which is called the set of
positive reals such that the following axioms are satisfied:

(O;) For every x € R we have that
xreP V =0 V —x€eP

and these cases are mutually exclusive i.e., if z € P, then « # 0 and —x ¢ P, and
if 2 =0, then x ¢ P and —z ¢ P, while if —z € P, then ¢ P and = # 0.

(Og) If z,y € P,thenz+y € Pandx -y € P.
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DEFINITION 1.4.2. Let z,y € R. We say that z is negative if —x € P. Let
z>0& 2 € P,
r>ysc—y >0,
y<xST>Y,
z<0& (—z) >0,
r<y&sr<y V r=y.

COROLLARY 1.4.3. If x,y,z € R, the following hold.
(i) 1 e P.
(it) For every n € N we have thatn-1 € P.
(#i1) If x,y are negative, then xy € P.
(i) If £ > 0 and y < 0, then zy < 0.
(v) If x # 0, then 22 > 0.
(vi) If x > 0, then < > 0.
(vit) If x < y (mdy<z then x < z.
(vitd) If x <y and z € R, then x + z < y + z.
(iz) If x <y and z > 0, then zz < yz.
() If x <y and z,y > 0, then <1
(zi) If zy =0, then x =0 ory—O.

PrOOF. (i) By (O1) we have that 1 € P, or 1 =0, or —1 € P. Since by (M3)
1 # 0, we have that 1 € P or —1 € P. Suppose that —1 € P. Then by (O2) we get
(—1)(=1) =12 =1 € P. Since the cases 1 € P and —1 € P cannot hold together,
we get a contradiction. Hence 1 € P is the only true case.
(ii) It follows with the use of IND'. The case n = 1 is just (i).
(iii) By definition —z, —y € P, and by (O2) we get (—z)(—y) = zy € P.
(iv) By definition —y € P, hence by (iii) we get z(—y) = —xy € P, hence zy < 0.
(v) If x # 0, then by (01) we have that © € P or (—x) € P. In the first case, by
(03) we get zx = 22 € P, and in the second, again by (0s), we get zx = 2% =
(—x)(—x) € P.
(vi) - (xi) Exercise. O

Let a € R such that a # 0. If there is some = € R such that 22 = a, then
a > 0. If there are yz,y € R such that 22 = y? = a, then by the Corollary 1.4.3(x)
we have that
xZ—ygzoé(x—y)(x—&-y):O(:)x:y V oz = —y.

Hence, if there is = such that 22 = a, then the equation 22 = @ has exactly two
solutions x and —z. In this case we call the unique positive solution to the equation
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22 = a the square root \/a of a. Notice that we cannot prove yet that every positive

real number has a square root. We also define

Vo=o.
If z € R, then Va2 always exists, and it is either z, if x > 0, or —z, if z < 0. Let
the function
[|:R—=R

x> |x) = Va2,
where |z| is called the absolute value of x.

ProPOSITION 1.4.4. Ifz,y € R, the following hold.
(i) If x,y > 0 and /x,\/y exist, then \/Ty exists and

NECTERVENTE
Moreover, we have that

r<y=Vr<\y

vi) [wy| = [x[[y].

vii) |x|? = 2.

viit) [Triangle inequality] |x + y| < |x| + |y|.

PrROOF. We show only (vi) and the rest is an exercise. We have that

2
2+ y* = (V(z+y)?)
= (z+y)’
=22 4 2zy + 2
(i) )
< z° 4 2lzyl+y
(vi)
= 2% +2|a|ly| +
2
= (lz| +[yl)",
hence by the second implication of the case (i), and by taking the square roots, we
get the required inequality. O
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The Archimedean Axiom (Arch): The order relation < of reals satisfies the
following axiom

(Arch) Ve yeRr ([x >0&y>0]=Juen (mc > y))

COROLLARY 1.4.5. VyerInenTmen(z <n & —m < z).

PROOF. If z = 0, we can take n = m = 1. If z > 0, by (Arch) on z and 1,

there is n € N such that n > x. Consequently, if m =n, we get —m = —n <0 < z.
If < 0, then by the previous case there are n,m € N such that —x <n & —m <
(—x), hence x <m & —n < =z. O

We also write the formula of the previous corollary as follows
VoerTnmen(z <n & —m < x).

The formula
Jwex ((x))

expresses that there exists a unique = € X such that ¢(z). Le.,

Jwex (4(2)) & Jpex (¢($) & Vyex (oy) =y = fﬂ))
If z,y,z € R, we use abbreviations like the following:
r<y<zeor<y&y<z
COROLLARY 1.4.6. VyerTez(k <o <k+1).

Proor. If z = 0, we take £k = 0. If x > 0, by the previous corollary there
is some n > z. Let ng be the smallest element of N such that * < n (we can
find ng by checking for the predecessors m of n if m > x). Since ng > z > 0,
we have that ng > 1, and since by its definition ng is the smallest natural number
> x, we get ng — 1 < z. If z < 0, then by the previous case there is k € Z such
that ¥ < (—2) < k+1. If k = —x, then —k =z < —k+ 1. If k¥ < —z, then
—(k+)<zx<—-kie,-k—-1<zx<—-k=(-k—-1)+1

To show the uniqueness of k we work as follows. Let [ € Z such that [ < z <
[+ 1. Suppose that [ < k. Then [ + 1 < k, and

I<z<l+1<Ek<z

i.e., we reached the contradiction z < x. Hence [ > k. If we suppose k < [, we
get similarly a contradiction, hence k > [. By the inequalities [ > k and k > | we
conclude that k = 1. O

We use the symbol |z] for this unique k € Z, and we call |z] the floor of z.
COROLLARY 1.4.7. VyerTimez(m —1 <z <m).

PrOOF. We use the Corollary 1.4.6. (]
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We use the symbol [z] for this unique m € Z, and we call [z] the ceiling of .
We also use an abbreviation of the following form

Ves0(9(e)) 1 Veer(e > 0= ¢(e)).
COROLLARY 1.4.8. V.503,en+ (£ <é).
Proor. Exercise. O

We can show inductively the Bernoulli inequality: if a > —1, then
VneN((l +a)" >1+ na).
COROLLARY 1.4.9. Let a € R. The following hold.
(i) If a > 1, then VyerInen (a" > x)
(i) If 0 < a < 1, then V5>03n€N(a” < 5).

PRrOOF. Exercise (use the Bernoulli inequality). O

1.5. Sequences of real numbers

DEFINITION 1.5.1. Let X be a set. A sequence of elements of X is a function
a: N — X. We also use the notations

(an)nen, or (am)nlo
for o, where
a, = a(n).
Sometimes we may also use the notation
(060,017012,0437 . )

An element «,, of a sequence « is called the n-th term of a. A sequence of reals is
a function a : N — R.

(i) If z € R, the constant sequence with value x is the function o : N — R with
a, =z, forevery n € N.
This sequence looks as follows:
(z,2,m,...).

(ii) The sequence 8 : N — R, defined by

By = for every n € N,

looks as follows:
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(iii) The sequence v : N — R, defined by
Yo = (=1)", for every n € N,

looks as follows:
(1,-1,1,-1,1,-1,1,...).
(iv) The sequence d : N — R, defined by

671:77
n+1

123
(0727374’...>.
(v) The sequence ¢ : N — R, defined by
n
Cn = 55

01 2 13 34 1
7974 2793 7 8794 47 )

(vi) The sequence of the Fibonacci numbers Fib : N — R is defined recursively as
follows

for every n € N|

looks as follows:

for every n € N,

looks as follows:

0 ,n=0
Fib, :=¢ 1 n=1
Fib,_i + Fib,_o ,n>2,
and it looks as follows:
(0,1,1,2,3,5,8,13,21,...).

DEFINITION 1.5.2. Let o : N — R be a sequence of real numbers, and let x € R.
We say that o converges to x, or x is the limit of «, if

VesoIn.enVasn. (Jan — 2| < ).
In this case we use the notations

n . .
a, — x, or lim a, =z, or lima, ==.
n—oo

A sequence of reals « is called convergent if there is some z € R, such that «
converges to x. We say that « is a divergent sequence, if there is no x € R such
that o converges to x. A sequence of reals « is called bounded, if

s> 0Vnen (Jan| < M).
In this case we say that M is a bound of «, or « is bounded by M.
Since
lap, —z|<ee —e<a,—r<esr—c<a, <z+e,

a sequence « converges to « € R, if for every e-interval around x, eventually (i.e.,
after some index N;) all terms «, of « lie there.
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PROPOSITION 1.5.3 (Uniqueness of limit). If « : N — R is a sequence of real
numbers, and x,y € R, then

[ozni>3: & angy}éx:y.

PROOF. Let ¢ > 0. Since a,, — z and a,, — y, there are Ne € N and
M: €N, such that

€ €
V>N, <|ozn —z| < 2) & Vasm <|ozn —y| < 2).

Hence for all n > max{Ne, M:} we have that
5

225.

3
|x_y|:|$_an+an_y|§‘x_an|+|an_y|<§+

If x # y, then if we take ¢ = ‘wgyl, and since the above holds for every € > 0, we
get the contradiction

[z —y|
2 )
hence = = y is the case. O

lz —y| <

PropPOSITION 1.5.4. If a: N — R is a sequence of real numbers that converges
to some x € R, then a is bounded.

PROOF. Since o, —» x, there is some N; € N such that
V>N, (|ozn —xz| < 1).
Since
lan| = lon — @ + 2| < [an — 2 + |z| <14z,
we get
Voo (lo] < 1+ ).

hence the following real number
M =max {|a1],..., |on,—1], 1+ |2]}
is a bound of the sequence a. O
If a, 8,7, 6, and C are the sequences defined above, the following hold.
(i) an = x: If € > 0, let N. = 0. Then
Vnso(lom — 2] = [z —2[ =0 <e).

(ii) B, - 0: If £ > 0, then by the Corollary 1.4.8 there exists N, € N*, such that
N% < e. Then

IN

1 1
anNg—l </8n - 0‘ = |/Bn| = I F < 5).
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(iii) The sequence 7 is divergent (although it is bounded by 1). Suppose that there
is € R, such that v, — . Hence there is some N; € N such that

Vs (9 — 2l = [(-1)" — 2| < 1).
Hence, for every n > N; we get
2=|(-)"* = (=1)"|

= [Yn+1 = Vnl

= [Ynt1 — T+ — W

< pnr — 2| + [z — 7

<1l+1

=2,
which is a contradiction.
(iv) 6, > 1: Exercise.

(V) ¢ = 0: Exercise.

PROPOSITION 1.5.5. Let (o )nen, (Bn)nen be sequences of reals, and M\, x,y €

R. We define the sequences (a+ B)nen, (@ B)nen, (A@)nen and (%)neN, if Bn £ 0,
for every n € N, as follows:

(a+B)n = an + Bn,

(Aa)n = Ay,

1\ 1
(5).-5
for every n € N. If o, — & and 3, — v, the following hold:
(i) (a+B)n - +y.
(i) (@ B " 2y,
(iid) (A)p —= A
(i) If y # 0, then there is ng € N such that 8, # 0, for all n > ng, and

(1> N
B) ning Yy’

(O‘) oz
B) nin, y

and
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PRrROOF. By definition of convergence of a sequence we have that
Ves0INeenYns e (lom — 2| <€),
Ves0Tnsenps o (18, — x| <e).
(i) By the triangle inequality we have that
@+ B)n — (& + )| = |an + fn —z —y|
= [(an —2) + (Bn — v)|
<lan = 2)| + |80 — vl

cS. 8
2 2
:E,

for all n > No+68 = max{N¢, Ng}
(i) If M > 0 is a bound of the convergent sequence «, then by the triangle inequality
we have that
(- B)rn — 2y| = |an By — 2y

= |anBn — any + any — zy|

= |(anfn — any) + (any — zy)|

< lan(Bn = y)| + [(an — 2)y

= |an||Bn — y| + |an — |y

< M|Bn =yl + |om — ||yl

19 g
<M=yl
TS

<E.E
2 2
:6,

for alanNg'B:maX{Nﬁa N> o L

2M 2(Jy[+1)

(iii) Exercise.

(iv) By the convergence 3, — y we have that

_ a8
for every n > ng = N\, .

2

Hence, for every n > ny we get

|yl
—|Bn —y| > —=-.
|Bn — v 5

Since for every z,y € R we have shown (Blatt 3, Exercise 4(ii)) that

lz —yl > ||z — lyl| > =] — |y,
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we get for every n > ng

> |‘y|_|/8n_y||
> |y|*|ﬂn*y‘
||
> _
2yl =5
Wl
2
> 0.

Moreover, we have that

().l

1
= =18 — vl
|Bnlly]
< 21<€ly2)
lyllyl \ 2
= g,

for all n > max{ny, Nf\ﬂ}
2

For the convergence

().
B/ ning Yy

we use the previous convergence and the case (ii).
Let the sequence « defined by
Op = —5 5

for every n € N. Since for n > 0 we have that

Cn?(44142) 44142
Yol -24)  1-247

1
2

and % -4 0 and hence = %

anLZL.

21

% 50, we get 14% -0, 72# 5 0, and hence



22 1. NUMBER SYSTEMS

PROPOSITION 1.5.6. Let (apn)nen, (Bn)nen be sequences of reals, and z,y € R.
n n o
If ap, — x and B, — vy, and if
oy < By,

for every n € N, then x < y.

PROOF. Suppose that ¢ =z —y > 0. For every n > Ng we have that

| |<€<:> c < <‘e S capn<azto
Qp — X = —— <o, —r< o r— - <« T+ -
" 2 2 " 2 2 " 2’
hence

S xr — T+
« r——= .
" 2 2

For every n > N g we have that

€ € € € €
—yY <z - <B—y<zy—--<Bu<y+-
‘6n y| 9 9 5n Y 9 Yy 9 5n Y+ 9
hence
r—y x+y
< = .
ﬂn Y+ 5 D)
Hence for every n > max{N g N g } we get
T+
/BTL < y < a’ru
2
which is a contradiction. Hence = < y is the case. O

1.6. The completeness axiom

All axioms (I), (IT), (III) and (IV) are satisfied also by the set of rational
numbers Q. The axiom discussed in this section is the most important axiom for
the set of the real numbers R, and, as expected, it is not satisfied by Q.

LEMMA 1.6.1. If k,l € N, the following hold:

(i) k € Even = k? € Even.
(ii) k € 0dd = k? € 0dd.
(i73) k? € Even = k € Even.
(iv) k? € 0dd = k € 0dd.
(v) k € Even = kil € Even.
(vi) k,l € 0dd = Kkl € 0dd.
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PROOF. (i) If k = 2n, for some n € N, then k? = (2n)? = 4n? = 2(2n?) € Even.
(i) If k = 2n + 1, for some n € N, then k? = (2n + 1)? = 4n? + 4n + 1 =
2[2n? + 2n] + 1 € 0dd.
(iii) If k% € Even and k € 0dd, then by (ii) ¥? € 0dd too, which is a contradiction.
(iv) If k? € 0dd and k € Even, then by (i) k? € Even too, which is a contradiction.
(v)-(vi) are left to the reader as a simple exercise. O

LEMMA 1.6.2. There is no rational number q such that ¢* = 2.

PROOF. Let p € Q such that p? = 2. Moreover, let

pzja

where without loss of generality p > 0 and k,l are natural numbers, which are
not both of them even (why?). If k? = 2[2, then k? € Even, hence k € Even.
Let k = 2m, for some m € Nt. Since k? = 4m? = 2(2?, we get I2 = 2m?, hence
I? € Even, therefore [ € Even, a fact which contradicts our hypothesis on k and
l. O

DEFINITION 1.6.3. A sequence (ay,)nen of reals in called a Cauchy-sequence, if
VesoTo.ent Vam>c. (Jan — o | < €).
PROPOSITION 1.6.4. If (n)nen s a convergent sequence, then (aup)nen 1S a
Cauchy-sequence.

PROOF. If z € R such that a,, — z, we have that

e €
|o¢n—am|:|an—x—|—x—am\§|an—x\+|x—am|<§—|—§=£,

for all n,m > N: = C.. O

Completeness axiom (CA): If (an)nen is a Cauchy-sequence of reals, then
(an)nen is convergent.

Next we use CA to prove the existence of the square root of a positive real
number.

THEOREM 1.6.5. Let a,b € R such that a > 0 and b > 0. Let the sequence
(an)nen be defined by

The following hold:

(1) ap >0, for allm € N.

(ii) o2 > a, for allm > 1.
(#01) ant1 < ay, for allm > 1.
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(1v) If (Bn)nen+ is the sequence of reals defined by
571 = iv ne NJra

then

(a) B2 < a, for everyn > 1,

(b) Bn < aum, for every n,m > 1, and

(

¢) For every n > 1 we have that

1
Qan — fn < on—1 (o1 = pr).
(v) The sequence (a,)nen s a Cauchy-sequence.
(vi) If € R such that a,, — x, then x >0 and 2% = a.

PROOF. (i) We use the induction principle IND.
(ii) We show that

(iii) Using (i) and (ii) we show that
Qn — apg1 > 0.

(iv)(a) By (ii) we have that

a
a2 >a= — <1,
«
n
hence
2
a a
ﬁi:—2:—2a§1 a=a
a'n a’ﬂ
(iv)(b) By (iii) we have that
1 a>0 a a
an+1§an:> 27 6n+1: Zizﬁn
Q1 Qn On41 7%

i.e., for every n > 1 we have that

(1.1) Bn+1 = Bn.
Let n,m > 1. Suppose first that n > m. By (ii) for every n > 1 we have that

a
1.2 = <a,.
(12) fu=2-<a

By (iii) we have that
(e70) San—l <... Sa’nu

hence by the Equation 1.2 we get

ﬂngangan—lg---gam-
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Suppose next that n < m. By the Equations 1.1 and 1.2 we get

ﬂngﬂnJrlSSﬂmgam

(iv)(c) We use the induction principle INDT. If n = 1, then

1
ar — f1 = 2*0(041 —51)~
If n > 1, then by the Equation 1.1 we have that

5n+1 Z ﬂn = _6n+1 S _577,7

hence
ant1 = Byt < g1 — Bn

= %(Oén‘i’ﬂn) — Bn

1

= 5(an = B)

11 1
1
= 27(041 - ﬂl)
(v) We calculate the absolute value |, — oy, |. Suppose first that n < m. By (iii)
we get |ay, — | = ay — aup. By the cases (iv)(b) and (iv)(c) we have that

|04n704m| =ap — 0y < ap — By < F(Ofl 7ﬂ1)-

Suppose next that n > m. By (iil) we get |an — am| = @ — @, By the cases
(iv)(b) and (iv)(c) we have that

|an - am| =am — 0 <y, — By < om—1 (al - /81)
Suppose that a; # 81 < a3 — 1 > 0, since a1 > 51. If (,, = 27%1, for every n > 1,
then ¢, — 0, and for every n,m > N¢ e = C. we have that
@1 —P1

|y, — | < €

i.e., (n)nen is a Cauchy-sequence. Notice that if ay — 81 = 0, then what we want
follows trivially. In this case we have that
a 2
o= — & af =a,
aq

and by the case (iv)(c) we have that

1
0§|04n*5n|§2,17_1(041*51)20
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2

ie., o, = By, for every n > 1, hence o,

is the constant sequence \/a.
(vi) We show that 38, — . Since

= q, for every n > 1, and by (i) (ay)n>1

1Br — x| < |Bn — anl| + |an — x|,
and since by (iv)(c) |Bn — an| — 0, we get B, — . Hence

z2 :( lim ,Bn) ( lim Bn)

n—00 n—r-00

= lim f?
n——0o0

(iv)(a)
< a

(1)

< lim o
n—>00

:( lim ozn)-( lim ozn)

n—o0 n—o0o
=z-x
= 22
From the inequalities 22 < a < 2% we conclude that 2% = a. O

As a consequence of the previous theorem, if we define the sequence

Ozozl,

1 2
O‘n—&-lzi an"’; )

an = V2.

Using this sequence we can show that the set Q of rational numbers does not
satisfy CA (Exercise). As a generalization of the previous theorem, CA implies the
existence of the k-th root of a positive real, for every k > 2.

then

THEOREM 1.6.6. Let k € N such that k > 2, and let a,b € R such that a > 0
and b > 0. Let the sequence (ay)nen be defined by

Ot()Zb,

1 a
Apt1 = E ((kj - 1)0&n + k:l) .

Qn

The following hold:
(1) ap >0, for allm € N.
(v) The sequence (an)nen is a Cauchy-sequence.

(vi) If © € R such that oy, 5 2, then z >0 and z* = a.
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DEFINITION 1.6.7. The set I of irrational real numbers is defined by

I={zeR|z¢Q}

i.e., I is the complement of Q in R.

Clearly, V2,V/3 el

1.7. Infinite series of real numbers

DEFINITION 1.7.1. Let (v, )nen be a sequence of real numbers. The sequence
(0n)nen of partial sums of (a,)nen is defined by

n
Op = g Q=00+ a1 + ...+ Qp,
k=0
for every n € N. If (0,,)nen converges to a real number x, we write

o0
z= lim o, = E Q.
n—-oo
n=0
If (0y)nen converges, we write

o0
Z a, € R.
n=0

If (0 )nen is divergent, we write

i a, ¢ R.
n=0

Note that if n > m, then
n m
momon= (L)~ (L)
k=0 k=0
= (a0+a1+...+am+am+1—|—...an) — (a0+a1+...+am)
=Qmy1t+ ...+ Oy
n
- >
k=m+1
As a special case we get

e (§n)- ()

k=0 k=0
:(ao—l—al—i—...—&—an,l—l—an)—(ao—i—al—&—...—i—an,l)

= ay,.
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If a,, = 0, for every n € N, then for the corresponding sequence of partial sums
we have that

Un:Zak:O+O+...+0:0,
k=0
hence

oo
Z a, = 0.
n=0

If x # 0, and «,, = x, for every n € N, then for the corresponding sequence of
partial sums we have that

Un:Zak:x—l—x—i—...—l—x:(n—i—l)x.
k=0

By the Archimedean axiom we get that the sequence (oy,)nen is unbounded, hence

i a, ¢ R.
n=0

If (an)nen is a sequence of real numbers, each term «,, can be written as a tele-
scoping sum:

an =ag+ (a1 —ag) + (ae —ag) + ...+ (n — ap—1)

n
=ap + Z(Oék — —1)
k=1

n—1

=g + Z(ak+1 — ag).

k=0
We can use this writing of a,, to calculate an infinite series as follows. Suppose
that we need to calculate -
Z 777/7
n=1

for some sequence (7, )nen of real numbers.

Step 1. Let (ay,)nen be a sequence of real numbers such that for every & > 1
Ve = Qg — Op—1-

Step 2. By the above writing of o, as a telescoping sum we get

> o= (ar— 1) = an —ap.
k=1

k=1
Step 3. If x € R such that lim,,__., a,, = , then

Z'Yn = nh—r>noo (Z'Wc)
n=1 k=0
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= lim (an—ao)

n—o0
= lim «, — lim o«
n—oo n—moo
=T — Q.

Example. Suppose that we need to find

= 1
Zn(n—i—l)’

n=1
Since
1k k-1
TR+l kvl ko ORT %D
where
(Jz,L:L7 n €N,
n+1

and since ag = 0 and x = lim,, 0 o, = 1, We get

= 1
—=1-0=1.
nz::l n(n+1)
The following result is an immediate consequence of the Proposition 1.5.5.

PROPOSITION 1.7.2. Let (an)nen, (Bn)nen be sequences of real numbers, and
let \,peR.If

iane]& & iﬁneR,
n=0 n=0

then
Z (/\an + uﬁn) eR, and
n=0
Z (/\an +/1J/Bn) = A(Zan) +N(Z/Bn>
n=0 n=0 n=0

As a corollary of the above proposition, from the previous example we get

2@25(27@):5-1:5.

PROPOSITION 1.7.3 (Infinite geometric series). If x € R such that |x| < 1, then

(o) o0 1
nzz;)x"ER & ;xnzl—x'
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PROOF. If n € N, then
(19:)( :rk) =1-—2"t
k=0

n 1— anrl

Since x # 1, we get
k
Op = ¥ = .
P 1—2z

Since |z| < 1, by the Exercise 4(ii)(a) of Sheet 4 we have that lim,__,, 2" = 0,
1

hence
oo

lim o, = E " = .

n—>o0 1-— X
n=0

O

As a corollary of the previous proposition, we get

oo 1 B
on
n=1
since
=1 = /1\" 1
S - (2) - L2
n=0 n=0 2
hence 0
1 =1 =1
2= (= — =1 —.

PROPOSITION 1.7.4 (Cauchy-criterion of convergence). Let (an)nen be a se-
quence of real numbers. The sequence (0, )nen of partial sums of (n)nen converges

n

D

k=m+1

<e)

Ves03c.enVn>m>c. (

PrOOF. By the Proposition 1.6.4 and the Completeness axiom the sequence

of partial sums (oy,)nen converges if and only of (0,)nen is a Cauchy-sequence.
By definition this means that for every € > 0 there is C. € N such that for all

if and only if

O

n > m > C. we have that

‘Un - Um| =

PRrROPOSITION 1.7.5 (Criterion of non-convergence of an infinite series). Let
(an)nen be a sequence of real numbers. If the sequence (0,)nen of partial sums of

n
(an)nen converges, then lim, . a, = 0.
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PrROOF. By the Cauchy-criterion of convergence we have that
= |an| < 5).

Now we have one more explanation, why for x # 0

Y egk,
n=0

since the constant sequence = does not converge to 0. The converse to the Propo-
sition 1.7.5 does not hold, in general. One can show that

n

> o

V5>03056an>05+1(
k=n—1

1 1
E — =00, although lim — =0.
— n n—soo N

DEFINITION 1.7.6. Let (v, )nen be a sequence of real numbers. The sequence
(0n)nen of partial sums of (ay,)nen converges absolutely if

o0

Z lan| € R.

n=0

PROPOSITION 1.7.7. If (an)nen 15 a sequence of real numbers, then

o0 o0
Z|an| €ER = Zozn € R.
n=0 n=0

Proor. Exercise. O

PROPOSITION 1.7.8 (Comparison test). If (ap)nen and (Bn)nen are sequences
of real numbers, such that

Voen(lan| < Bn),  and Y Bn €R,
n=0

then -
Z lan| € R.
n=0

PrOOF. By the Cauchy-criterion of convergence we have that

n
<<).

> B
If we define Cla‘ = C’EB , then for every n > m > Cial we get

v6>030§*eNVnzmzc§ (
k=m+1

n

Z lag| < Z Br <

k=m+1 k=m+1

n

> B

k=m+1

<e,
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hence by the Cauchy-criterion of convergence again we get >~ |y, | € R. O

As a corollary of the comparison test we show (exercise) that
— 1
Y S €ER k>2
n=1 n
PROPOSITION 1.7.9 (Quotient-criterion). Let (o )nen be a sequence of real
numbers, such that o, # 0, for every n > ng, and some ng € N. Let 8 € R such
that
(1) 0< <1, and
(ii) for every n > nyg, it holds
Apt1
an,

o)
Z lan| € R.
n=0

<.

Then

PROOF. Since

no—1

%) %)
>l = >l + 3 lewl,
n=0 k=0

k}:ng
it suffices to show that

Z ‘Oék| eR.

k=ngo
Because of this, we suppose without loss of generality that a,, # 0, for every n € N
i.e., ng = 0. Because of (ii), a simple induction shows that

Ynen(Jan] < |aol0™).

- n - n 1
3 laold” = ol (3207 = ool

what we want follows from the comparison test. O

Since



CHAPTER 2

Real-valued functions of a real variable

In this chapter we study the continuity, the differentiability and the integration
of functions defined on a subset of R with values in R. We can picture these
functions through the representation of their graph in the Euclidean plane R?. First
we study the notion of a continuous function f : D C R — R. As it is indicated
by the term continuous, the graph of a continuous function is a continuous curve
in the plane R2.

2.1. The graph of a real-valued function of a real variable

DEFINITION 2.1.1. A real-valued function of a real variable is a function f :
D — R, where D is a subset of R. The graph Gr(f) of f is defined by

Gr(f) ={(z,y) e DxR |y = f(z)}.

Example 1. If ¢ € R, let the constant function c is the function f. : D — R,
defined by f.(z) = ¢, for every x € R. If D = R, the graph of f. is a straight line
parallel to the axis of x’s, the position of which depends on the value of ¢, as it is
shown in the following figure.

Example 2. The identity function idg : R — R, where z — x, for every x € R,
has as graph the following diagonal line, while the graph of the function g : R — R,
defined by g(x) = —z, for every = € R, is the line symmetric to the graph of idg,
with respect to the horizontal axis.

33
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y
g(x) = —x idg(z) = =

Example 3. The absolute value function |.| : R — R, defined by z — |z|, for every
x € R, has as graph the following curve

y

[-|(z) = ||

Example 4. The square function sq : R — R, defined by sq(z) = 22, for every
x € R, has as graph the following curve

Yy
sq(x) = 22
3 4
2 4
1 4
-3 -2 -1 1 2 3

Example 5. The function ,/: R* — R, defined by v/(z) = v/, for every = € R*,
has as graph the following curve
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— Vi =vz

Example 6. The Dirichlet function Dir : R — R is defined by
{ 1 ,z€Q

Dir(z) := 0 . zel
and its graph cannot be represented by a continuous curve in the plane.

Example 7. The floor function |.| : R — R is defined by = — |z], for every
z € R, where |z] is the unique integer such that

lz] <a < |z]+1.

The graph of the floor function is pictured in the following figure.
Y,

5 *—o

*—o

4
3
2 o
1
0

DEFINITION 2.1.2. Let D C R, f,g: D — R, and A € R. Let the functions
f+ag, M, f-g:D—R, defined by

(f +9)(@) = f(z) +g(z),
(Af)(x) = Af(x),
(f-9)(x) = f(z) - g(x),
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for every = € D, respectively. If
Dy ={z e D|g(x)# 0},

we define the function g : Dy — R, where
/ [z
(L) -1,
g 9(x)

Example 8. The function Siq :R* —» R, where R* = {& € R| z # 0}, is defined by

1 1
()@=
sq x
for every z € R*.

Example 9. A polynomial p is a function p : R — R, where

n
p= Z akidﬂkg
k=0

= apid} + a1idg + ... ayidj

for every z € Dj.

= ag + a1idg + azid3 + ... + apidf,

where ag,a1,...,a, € R. If a, # 0, the number n is called the degree of p. If
x € R, then by definition we get

p(z) = (;d) (2)

= (ao + aridg + asid} + ... + anid})(z)

=ag+ a1z + ax® + ...+ apz™.

The identity function idg is a polynomial of degree 1 (ag = 0 and a; = 1), while
the function h(x) = 22 is a polynomial of degree 2 (ag = a; = 0 and az = 1).

Example 10. If p = ZZ:O akidﬁé and q = ZZL:O bkidﬁ are polynomials, the rational
function Ry, is a function Ry, : Dy — R, defined by
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- ag + a1z + asz? + ... + apz”
T bo+ bz 4 bax2 + ..+ bypr™’

where
D; = {x €R | by + byx + box® + ... + bpx™ # 0}.
The next definition is a special case of the Definition 1.2.3.
DEFINITION 2.1.3. Let D, E CR, and let f: D — R and g : E — R, such that
In(f) ={f(z) |z € D} C E.
The composition go f: D — R of f and g is defined, for every = € D, by
(g0 f)(x) =g(f(x))
f g

D—FE—R.

gof
Example 11. If sq(z) = 2%, then (\/0sq)(z) = V(sq(z)) = Va2 = |z
R >4 Rt v R.
~_ -
Josal

2.2. Continuity

DEFINITION 2.2.1. Let D C R, f: D — R, and x0,] € RU {—00,+0}. Let
also the set
F(N,R) = {a: N — R}.
(i) Let D(xo) be the set of all sequences in D that converge to x i.e.,
D(z0) = {(an)nen € F(IN,R) | Vpen(ay, € D) & h_r)n Qp = To}

If the set D(xg) is non-empty, we say that zq is an accumulation-point of D. If x¢
is an accumulation-point of D, we define

lim f(2) =1 Y(a,)eneDia) (nh;nm flan) = z)

Tr—T0
ie.,
L, on = o] = [ Jim_ flow) =1,
for every sequence of real numbers (o, )nen in D.
(ii) If zyp € R, let the set

DY (z0) = {(zn)nen € FIN,R) | Vpen(an € D & o > 20) &  lim «,, = 20}
n—oo
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If the set DT (zg) is non-empty, we define

:t—>zsr n oo

lim f(:L‘) =& v(an)nENED+(x0)( lim f(an) = l>
(iii) If 29 € R, let the set

D™ (2z9) = {(an)neny € F(N,R) | Vpen(an € D & o, < x0) & hlfl Q= o}

If the set D~ (xg) is non-empty, we define

lim  f(z) =1:% Ya,),cneD (20) (nll_ﬁnoo floy) = l).

z—zy
(iv) Let D be unbounded above i.e.,
Vnendzep(z > n).
For such a set D we define
D(+00) = {(0)nen € F(N.B) | Vyen(an € D) & lim_ay, = +oo},
and
Jm  f(@) =15 Yia,),cnen(+oo) (nli_ﬂﬂoo (an) = l) :
(v) Let D be unbounded below i.e.,
VnenTdeep(z < —n).
For such a set D we define

D(*OO) = {(an)nEN S F(NvR) | V71»’51\1(0% € D) & hlg)o Qp = 700}3

n

and

lim f(l‘) =[:& V(Dén)neNGD(OO)( lim f(an) = l).

Tr—r—00 n——oQ0

If g € D, then z( is an accumulation-point of D, since the constant sequence
Zo is in D(zo).

Example 1. If we consider the floor function (Example 7 in the previous section),

Y
2 e—o
1 *—o
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then
lim |z]=0 & lim |z] =-1,

z—0t rz—0—
since if (ap)nen € RT(0), then by definition a,, > 0, for every n € N, and since
lim,,— o oy, = 0, then for every n > ng, for some ng € N, we have that «,, € (0, 1],
hence |au, | = 0, for every n > ng. Hence

lim |ap| = lim 0=0.
n—r 00 n—=o0

Similarly, if (o, )neny € R7(0), then by definition «,, < 0, for every n € N, and
since lim,,_ ., o, = 0, then for every n > ng, for some ng € N, we have that

ap, € (—=1,0], hence |ay, | = —1, for every n > ng. Hence
lim |a,| = lim —1=-1.
n—>oo n——=o9Q0

DEFINITION 2.2.2. Let D be a subset of R and zg € D. A function f: D — R
is continuous at xg, if

lim f(z) = f(zo).

r—rxo

The function f is called continuous on D, if it is continuous at very point in D.
By the Definition 2.2.1 f : D — R is continuous at z¢ € D if and only if

[ lim «, = :Uo] = [n@mf(an) = f(xo)],

n—aoo
for every sequence of real numbers (o, )nen in D. The Examples 1-5 of real functions
in the previous section are continuous functions on their domain of definition, while
the Examples 6 and 7 are not.
ProrosiTION 2.2.3. Let D CR, 29 € D, f,g: D — R, and X € R.
(I) Suppose that f, g are continuous at .

(i) The functions f + g, A\f,f g : D — R, defined in the Definition 2.1.2, are
continuous at xg.

it) If g(xo 0 & xzg € DI, the function L. pr R, defined also in the
g g g
Definition 2.1.2, is continuous at .

(II) (i) If f, g are continuous on D, then the functions f + g, Af,f-g: D — R are
also continuous on D.

(ii) If f,g are continuous on Dy, the function 5 : Dy — R is continuous on Dy.

Proor. (I)(i) Let () nen be a sequence of reals in D such that lim,, . «;,, =
xo. By the Proposition 1.5.5 we get

nh—n>100 (f + g) (an) = n1£>noo [f(an) + g(an)]

= f(x0) + g(x0)
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= (f +g)($0),
n@w (M) (an) = n@m A(om) = Anﬁnw flom) = Af(z0) = (Af)(20),

and

lim (f-g)(an) = lim [f(an) - g(an)]

n—o0 n—>o0
= lm_flan)- lm_g(a,)
f(xo) - g(x0)
= (f- 9) (zo)-
(I)(ii) Let (Bn)nen be a sequence of reals in D} such that lim, o 8, = xo. By
the Proposition 1.5.5 we get

i (50 = i, 208 = ==l = 6 = () o)
(IT)(i) and (IT)(ii) follow immediately from (I)(i) and (I)(ii), respectively. O

By the previous proposition the real functions in the Examples 8-10 of the
previous section are continuous functions on their domain of definition.

PROPOSITION 2.2.4. Let D,E C R,z € D andyo € E, and let f : D — R and
g: E — R, such that In(f) = {f(z) |z € D} C E and yo = f(x). The following
hold:

(i) If f is continuous at x¢ and g is continuous at yo, the composition gof : D — R
18 continuous at xg.

(i) If f is continuous on D and g is continuous on E, the composition g o f is
continuous on D.

PRrOOF. (i) Let (an)nen be a sequence of reals in D such that lim,, ., a,, =
2o. By the definition of continuity of f at xy and of g at yg we have that

im f(on) = f(zo) =yo &  lim _g(f(an)) = g(yo) = 9(/(x0)).
Hence,

lim (gof)(an): lim g(f(an))

n—so0 n-— o0
= 9(f(0))
= (g0 f)(2o).
(ii) Tt follows immediately from (i). O

Example. Since the function sq(z) = 22

is continuous on R and the function v is
continuous on R* (Exercise), by the previous proposition we have that the absolute

value-function is continuous on R [recall that (\/o sq)(z) = \/(sq(x)) = V2 = | ]
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sq v
vosa=|[|

THEOREM 2.2.5 (Intermediate value theorem). Let a,b € R such that a < b,
and let f : [a,b] — R be continuous on [a,b]. If f(a)f(b) < 0, then there exists
xo € la,b] such that f(xo) = 0.

PRrROOF. See [1], p. 106. O

Notice that the condition f(a)f(b) < 0 above is equivalent to
[f(a) <0 & f(b)>0] or [f(a)>0& f(b)<O0].
COROLLARY 2.2.6. Let a,b € R such that a < b, and let f : [a,b] = R be

continuous on [a,b]. If c € R such that f(a) < ¢ < f(b), then there exists xy € [a, D]
such that f(xq) = c.

PROOF. Let the function g : [a,b] — R, defined by
g9(x) = f(z) —c,
for every z € [a,b]. Since g(a) = f(a) —c < 0 and g(b) = f(b) — ¢ > 0, by the
Theorem 2.2.5 there exists xg € [a, b] such that
g(xo) =04 f(zg) —c=0%& f(xy) =c.
O

COROLLARY 2.2.7. Let p : R — R a polynomial function of odd degree i.e.,
there is n € N such that
p(x) = ag + a1z + asx® + ...+ agpx® + 22"
for every x € R. Then there exists xg € R such that p(zo) = 0.

PrROOF. If x # 0, we have that

_ 2n+1 ago ai a2 a2p
p(z) =™ <x2n+1+xzn+xzn_1+m+x+1>~

Then we get

;cgn-&l-oop(x) =t & a:gn—loop(m) -

Hence we can find a < 0 < b such that p(a) < 0 < p(b). Since p is continuous on
R, it is also continuous on a,b|, hence by the Theorem 2.2.5 there is 2y € R such
that p(zo) = 0. O

Notice that there is a polynomial function of even degree without any roots
ie., p(x) # 0, for every x € R. Consider for example the polynomial function
p(r) = 2% + 1, where x € R. This is also evident by the graph of p.
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)
plz) =22 +1

DEFINITION 2.2.8. A real function f : D — R is called bounded, if there is
M € R such that M > 0 and

Voen (If(2)] < M).

The geometric interpretation of a bounded function f with bound M > 0 is
that its graph Gr(f) is between the horizontal lines y = M and y = —M.

A continuous function defined on an unbounded interval can be unbounded.
E.g., the above function p(z) = #? + 1 is defined on R and its graph cannot be
between any two horizontal lines. If a continuous function though, is defined on a
bounded set, it is always a bounded function.

THEOREM 2.2.9. Let a,b € R such that a < b, and let f : [a,b] — R be
continuous on [a,b]. Then there exists xo,x1 € [a,b] such that f(xo) = m, f(r1) =
M, and

vme[a,b] (m < f({E) < M)

PROOF. See [1], p. 110. O
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2.3. Elementary Functions

ProprosITION 2.3.1. For every z € R the exponential series

0 n 0 1 2 3
x x x x x
DW= r=g Tttt
n=0

converges absolutely.

PROOF. We use the quotient-criterion (Proposition 1.7.9). Let

For every = # 0 and n > 2|z| we have that

"t in! ’_ |z ] -

On41 _ 1
(n+ 1) n+1= 2

70

O

With the help of the exponential series we define the famous number e of Euler

oo

1 1 1
ezexp(l)zzﬁzl—kl—&—i—kg—!—....

n=0
and the exponential function exp : R — R with exp(z) = €7, for every = € R.
Y

exp(z) = e
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PROPOSITION 2.3.2. For every z,y € R the following hold:
i) exp(x +y) = exp(z) exp(y).
1) exp(z) > 0.
iii) exp(—x) =

iv) exp(k) = e*, for every k € Z.

PROOF. See [1], p. 80. O

1
oxp(@) -

(
(
(
(

Basic limit 1. Next we explain why
lim exp(z) —1

=1.
z—0 x
From the definition of exp(z) we have that
e T e "
exp(z) — 1 = (Zn') =y
n=0 n=1
hence, if x # 0 we have that
exp(z) —1 1 g=a”
x o Z n!
n=1
IRV
2\ 17 + - + 31 +
_1 x! x2 a3
=1+ §+§+E+ s

which converges to 1, as x converges to 0.
The exponential function exp is continuous and strictly increasing (x < y =
exp(z) < exp(y)), and maps R bijectively onto
*={zeR|z>0}

Its inverse function

In:R™ <R 2+ In()
is also continuous and strictly monotone, and it is called the natural logarithmic
function. By definition we have that

exp(In(z)) = @ = g,
In(exp(z)) = lne” =z,
and since exp and In are injective functions we have that
exp(z) =exp(y) =z =y, z,y€R,
In(z) =In(y) ==y, =,ycR".
It is then easy to show (Exercise) that
In(z - y) = In(z) + In(y),
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for every x,y € R**. Instead of In(x), one also writes log(z).
For every x € R the infinite series

9]
x2n+1 T 1.3 1.5

sin(z) = 2(71)”7(% ) TR TR

n=0

e}
.172" 1‘0 $2 1‘4

cos(e) = ()" Gy = Gy o Far o

n=0 ’

are absolutely convergent (see [1], p. 140). Their absolute convergence follows from
the absolute convergence of the infinite exponential series. The functions

sin:R—R z—sin(z), & cos:R—-R x> cos(z)

are shown to be continuous on R.
Y

f(z) =sinzx

f(x) =cosz

The real number 7 is the unique root of the function cos in the interval [0, 2]

(see [1], pp. 142-143). Based on the previous definitions it is not trivial to show the
fundamental equality

sin(z)? 4 cos(z)? = 1.
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Basic limit 2. Next we explain why

tim S0
r—0 X
From the definition of sin(x) we have that
sin(z) 1 i( ) x2ntl
T N !
x Bt (2n+1)
_1(=z 23 2P
A\ B T T
z? ozt
=1- 31 + B Foo

which converges to 1, as x converges to 0.

The tangent function is defined on the set
7r
DtaHZR\{2+k7T|]€€Z}

through the rule
sin(z)

tan(z) = cos(@)’

The cotangent function is defined on the set

Deot = R\ {kr | k € Z}

through the rule

cot(z) = cos(x)

sin(z)
One can show that
cot(z) = tan (z — )
5 .

2.4. Differentiation

DEFINITION 2.4.1. Let D C R and f : D — R a real function. We say that f
is differentiable at xg € D, is the limit

f' (o)

exists. For the calculation of this limit we consider sequences (a,)nen of real
numbers such that lim,,__,. h,, = 0 and

[hn #0 & z9+h, € D], forallneN.

— lim f(xo + h) — f(z0)
h—0 h
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The limit f'(xq) is called the derivative of f at 2. The function f is called differ-
entiable in D, if f is differentiable at every point x € D. We also use the notations
df (o) df

et %(xo) for f'(zo).

The ratio
f(@o + 1) — f(zo)
h
is the tangent of the following angle in the triangle (zo, f(x0)), (zo + h, f(zo + h)),
and (zo + h, f(20)).

v,
3__
2__
f(zo+h) — f(xo)
1 T 1
h
I 0 } } } } } >
-1 0 1 2 3 4 5 z

By taking the limit
h— 0& 29+ h — x0,

the derivative f/(xg) of f at x¢ is the slope of the line that is tangent to the graph
of f at the point (zq, f(xo)).

Example 1. For the constant function f: R — R, f(z) = ¢, for all z € R, we get

f(zo+h) = f(xo)

’ _ . _ . c—cC — . —
f(wo) = hlglo h N hlino h hlinoo 0
Example 2. For the identity map idg : R — R,idg(x) = z, for all € R, we get
L _ o ddr(zo +h) —idr(ze) . @wot+h—x0 B
idg’(z0) = hlino h o hhglo h o hlino =1

Example 3. For the function g : R — R, g(z) = Az, for all x € R, where A € R,
we get
Ao + h) — Azg Axg + Ah — Azxg

/ = 1 _— = 1 _— = 1 =
9'wo) = hlino h hlglo h hlglo/\ A
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Example 4. For the function sq: R — R, where sq(z) = 22, for all z € R, we get

. sq(xg + h) — sq(z
s (o) = iy 23000+ =350
_ i (B0
h—0 h
~ m 23 + 2woh + h? — 22
h—0 h
. 2170h + h2
= lim ——
h—0 h
~ lim h(2zo + h)
h—0 h
(2xo + h)

lim
h—0
= lim 229+ lim A

h—0 h—0
=2x90+0
= 2.’E0.

Example 5. For the inverse function inv : R* — R, where
1
inv(x) = —,
(@) ==

for all x € R*, we get

inv(zg + h) — inv(z)

inv/(zg) = li

R S

1
B limy,__,0 2o (l‘o + h)

1
7limh4,0(a?g + xoh)

1
B limy, 9 .%'(2) + limy, 0 xoh
1

2240
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1
.
Lo

Example 6. For the exponential function exp : R — R we get (Exercise)
exp’(zg) = xo,
for all zg € R.
Example 7. For the sinus function sin : R — R we get (Exercise)
sin’(zg) = cos(zo),
for all zg € R.
Example 8. For the cosinus function cos : R — R we get (Exercise)
cos’(xg) = —sin(zp),
for all g € R.

Example 9. The absolute-value function |.| : R — R, where |.|(z) = |z|, for all
r € R, is not differentiable at xo = 0. Suppose that
i lzo + h| — |zo|
im —————— =
h—s0 h
Let the following sequences of real numbers:

1 1
) n = T 1> eN.
h n+1 "

leR.

We get
1

1= lim ™
n—moo ———

n+1

0+ 5| —10]
1
n+1

. 0+ an| — ||
llm —mMmm———
n—s o0 o,

=1

S

= lim
n—-o0

n—soo Bn
0— 1| —
= lim ’ "+11’

n—>o0 —_——
n+1

0]

= lim —X——
n—oo = ——

=1

PROPOSITION 2.4.2. If the function f : D — R is differentiable at xqg € D, then
f is continuous at xg.
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PRrROOF. It suffices to show (Exercise 2(i), Sheet 10)
lim f(zo + h) = f(zo)
h—0
This follows from the existence of f'(xg) and the equality

f(x() + h) - f((E(]) = f(x() + h}z B f(fl'())

where h # 0. O

h,

PRrROPOSITION 2.4.3. Let f,g : D — R be differentiable functions at xg € D,
and A € R. Then the functions

f+a N, f-g:D—=R
are also differentiable at xo, and the following rules hold:
(f +9) (z0) = f'(z0) + g'(20),
(Af) (o) = Af' (o),

(f - 9)(z0) = f'(z0) - g(w0) + f(20) - ¢'(20).
If g(x) # 0, for every x € D, then the function

i:D%R
g

is also differentiable at xy with
(f)'(x N CORC I (CORICD
g) " 9(x0)? '
PRrROOF. We use the following equalities:
(f+9) o +h) = (f+9)(wo) _ [wo+h) = flzo) | g(zo+h)—g(z0)

h h h ’
(Af) (o + h})L — M)@o) _ flao+ h})L —J(wo)
(f9)(xo +h) — (£g)(x0)
_ S+ hl;g(wo +h) = f(@o)g(xo + h) + f(x0)g(xo + h) — f(x0)g(x0)
_ [f(@o+h) = flwo)lg(ao + hfz + f(};o)[g(xo + 1) — g(0)]

= flwo + hiz —J(@0) g(xo + h) + f(x0) g

If f(x) =1, for every x € D, then

(zo +h) — g(xo)
3 .

1 1
g@oth)  glwo) _ 1 g(wo) — g(wo + h)

h h g(wo)g(xo + h)
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1 [g(xo + h) — g(xo)
g(xo)g(wo + h) h ’

(5) = St

The general case follows from the product-rule:

(=2

and

, 1 1
= Fan) o+ fla) - (3) )
_ 1 ooy . =9 (o)
_f( 0) g(xo) +f( 0) ($0)2
_ f/(fﬂo) - g(x0) — f(x0) '9’(»’”0
g(wo)?

O

Example 10. Let n € NT and let f,, : R — R defined by f,(z) = 2", for every
z € R. Then

f! (o) = mag ™",
for every zop € R. If n =1, then
fi' (o) = idr (z0) = 1 = 1f1(zo) 1.
For the induction-step, since
fasr(@) = 2™ = 2"z = fu(2)ida(z),
from the product-rule we have that
frs1' (o) = (fn - idr)’(20)
= fu'(20)idr(20) + fn(w0)idr’ (z0)
= fn'(x0)zo + fn(@0)1

(I~H') n—1 n
="nxy xo+ T,

= nx{ + g
=(n+1)zg.
COROLLARY 2.4.4. Let f,g : D — R be n-times differentiable functions at
zo € D, and A € R. If f™ (o) denotes the nth-derivative of f at xo, where

fO = f, then f+ g, \f,f-g: D — R are n-times differentiable functions at x
and the following equalities hold:

(f +9)"™ (o) = " (x0) + ¢ (0),
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)™ (z0) = Af™) (20),
-9 @o) =3 (M) £ (z0) - g (z).
g 0 2 (k) 0)'9 0

Proor. Exercise. O

PROPOSITION 2.4.5 (Derivative of the inverse function). Let D C R be a non-
trivial interval of R (i.e., D has more than one points), f : D — R a continuous
and strictly monotone function and g = f=1: f(D) — R its inverse function.

f g
D f(D) D.

\_/

go f=idp

If f is differentiable at xo € D with f'(xo) # 0, then g is differentiable at yo = f(xo)
with
1 1

700 = ) = Flato))
PrOOF. Let (Bn)nen € f(D)\ {yo} such that 8, —= vo. If a,, = g(B,), for

every n € N, then by the continuity of ¢ at yo we get o, — x¢. Notice that by
the injectivity of g we have that 3, # yo = «a, # xg, for every n € N. Hence

9(Bn) — 9(o)

9'(yo) = lim
n—oo n — yo
1~ ap — T
n—oo f(an) = f(xo)
=0 T fen
Qan—2T0
_ 1
1
f'(o)
O
In the above proof we used the equality
flag) = Tim L) =I@0)
T—z0 T — X

for the proof of which we work as in the solution of the Exercise 2(i), Sheet 10.
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Example 11. The function In : R™ — R, where x — In(z), is the inverse function
of the function exp : R — R. From the previous proposition we get
1 1 1
In’ = = ——
n0) = S n(a0)) — exp(n(zo) — 7o
PROPOSITION 2.4.6 (Chain-rule). Let f : D — R and g : E — R such that
f(D)cE

golf
If f is differentiable at xo € D and g is differentiable at yo = f(x¢) € E, then the
composite function go f : D — R is differentiable at x¢ with
(g0 ) (z0) = g'(f(20)) - f'(20).
PROOF. Let the function h : E — R be defined by
et
h(e) :=
g’ (vo) y €= Yo-

Since g is differentiable at yq, we get

lim h(e) = g¢'(yo) = h(yo)

e—>Yo

i.e., h is continuous at yg. Moreover, we have that

Veer(g(e) — g(yo) = h(e)(e — yo))-
If e # yo, then we use the definition of h(e), while if e = yp, both therms of the
equality are 0. Hence

o) = 19U (@) — 9(f(20))
(9o f)(zo) = lim pra—
i h(f(x))[f(z) = f(xo)]

Tr—rxQ Xr — X

T—>T0 T——>T0 €T — JCO

= h(f(z0))g' (o)
= h(yo)g' (o)
=g'(f(x0))g'

= tim h(f(z)) lim L) =1@0)
)

(z0)-
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Example 12. Let f : R — R be differentiable in R and let the function g : R — R
be defined by

g(z) = £(20192 + 2020),

for every z € R. Then
g (z0) = 2019 (201920 + 2020).

Example 13. Let g : R — R be defined by

g(x) = sin®(z),
for every z € R. L.e., h = sqosin. Hence

g (z0) = 2sin(wg) sin’(zg) = 2sin(xg) cos(zg).

Example 14. Let h : R — R be defined by

h(z) = cos?(x),
for every z € R. L.e., h = sq o cos. Hence

h'(zo) = 2cos(zg) cos’(zg) = 2 cos(xg)[— sin(zg)] = —2sin(xg) cos(zo).
Example 15. Let ¢ € R and f : Rt* — R be defined by
f(@) = a°,

for every € R. Then one can show (Exercise) that

f(20) = azg ™,
for every zo € RT*.
Let f:C —R,g:D—R,and h: E — R such that f(C) C D and F(D) C E

¢t ioyep— ypycr -t

hogof

If f is differentiable at zo € F, g is differentiable at yo = f(x9) € E, and h
is differentiable at zp = g(yo), then one can show (Exercise) that the composite
function hogo f: C' — R is differentiable at zy with

(hogo f)(zo) = h'(g(f(x0))) - g'(f(20)) - f'(w0)-
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2.5. Some geometric properties of the derivative

DEFINITION 2.5.1. A function f : [a,b] — R has a local mazimum at £ € [a, b),
if there is € > 0 such that

vacE[a,b}“x - £| <e= f(il') < f(f))v

while f has a local minimum at £ € [a, b], if there is € > 0 such that

vxE[a,b](|x - £| <e= f(iE) > f(f))

A function f : [a,b] — R has a local extremum at & € [a, ], if f has a local maximum
at & or f has a local minimum at &.

A constant function has a (local) maximum [and a (local) minimum] at every
point of its domain. Clearly, a local minimum (maximum) may not be a (global)
minimum (maximum).

PROPOSITION 2.5.2. Let f : (a,b) = R and £ € [a,b] such that f has a local
extremum at & and f is differentiable at £&. Then f'(§) = 0.

PROOF. We suppose that f has a local maximum at £ and for the case of a
local minimum we proceed similarly. Let ¢ > 0 such that f(z) < f(¢), for every
x € [a,b] with |z — £| < e. We have that

') = hlig10 h
h) —
h) —

Since for appropriately small h we have that f(§ 4+ h) — f(§) <0, if h > 0, then
JEHRZIE) < 0 hence f'1(€) < 0, while if h < 0, then LE=IE) > o hence
f'—(&) > 0. Consequently, f/(£) =0. O

If a differentiable function f at £ satisfies f'(£) = 0, this does not imply, in
general, that f has alocal extremum at €. E.g., if f : R — R is defined by f(z) = 23,
for every x € R, then f’(0) = 0, while f has not a local extremum at 0.
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PRrROPOSITION 2.5.3 (Rolle’s theorem). Let f : [a,b] — R, where a < b, a
continuous function with f(a) = f(b). Let also f be differentiable in the open
interval (a,b). Then there is ¢ € (a,b) such that f'(c) = 0.

y

PRrOOF. If f is constant, then we can take as ¢ any element of (a,b). If f is
not constant, then there is ¢ € (a,b) with f(zo) > f(a) or f(zo) < f(a). Let
f(xo) > f(a) is the case. Since f is a continuous function on [a,d], it has a global
minimum at some & € [a,b]. Since xy € (a,b), we get £ € (a,b). By Proposition 2.5.2
we have that f/(£) = 0. We proceed similarly, if f(zq) < f(a). O
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COROLLARY 2.5.4 (Mean value theorem). Let f : [a,b] = R, where a < b, a
continuous function, which is also differentiable in the open interval (a,b). Then
there is ¢ € (a,b) such that

y
(0
f(a)
(0

X
a c b
PROOF. Let the function F : [a,b] — R defined by
f(®) — fla
Fo) = @) - | PO 0 a)
—a
for every x € [a,b]. Clearly, F is continuous on [a, b] and differentiable in (a,b) with

a

for every x € (a,b). Moreover, F(a) = f(a) = F(b), hence by Rolle’s theorem there

is ¢ € (a,b) such that F'(c) = 0. By the above formula for F’(x) we get
b) — f(a)
FI — 0 !/ _ f( .
©=0e o)==
(]

The geometric meaning of the mean value theorem is that there is a point
(¢, f(¢)) in the graph of f such that the line tangent at (c, f(c)) is parallel to the
segment from (a, f(a)) to (b, f(b)). Notice that if f satisfies the hypotheses of the
mean value theorem and f(a) = f(b), then Rolle’s theorem follows from the mean
value theorem.
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COROLLARY 2.5.5. Let f : [a,b] — R, where a < b, a continuous function,
which is also differentiable in the open interval (a,b). Let m, M € R such that
Vae(ap) (m < f'(x) < M).
Then for every x1,x2 € [a,b] with z1 < x9 we have that
m(ze —x1) < f(z2) — f(21) < M(22 — 21).

PrROOF. If 1 = x5, then all terms in the required inequalities are 0, hence equal
to each other. Let x; < xo. Since the restriction f;, ».) of f to the subinterval
[x1, 22] of [a,b] is continuous on [z, x2] and differentiable in (z1, 23), by the mean
value theorem there is ¢ € (21, z2) such that

m< ()= 1@ = 1@)

To — I
and what we want to show follows now immediately. O
COROLLARY 2.5.6. Let f : [a,b] — R, where a < b, a continuous function,

which is also differentiable in the open interval (a,b). If f'(x) = 0, for every
x € (a,b), then f is constant on [a,].

ProOOF. By our hypothesis we have that
Voe(an (0 < f'(z) <0).
Let x1, 25 € [a,b]. By the previous corollary we get
0=0(z2 — 1) < f(z2) — f(z1) <0(z2 — 1) =0,
hence f(z1) = f(x2). O

2.6. The Riemann integral

DEFINITION 2.6.1. A function ¢ : [a,b] — R, where a < b, is called a step-
function, if there is a partition (Unterteilung)

a=20 <1< ...<Tp_1<Tp=2>0
of the interval [a,b], such that ¢ is constant in every sub-interval (z;_1,x;), where
i€ {1,...,n}. Let ¢(x) := ¢, for every z € (x;_1,%;). The values of ¢ at the
points g, 1, ...,z, of the partition are arbitrary real numbers. Let T[a,b] the
set of all step-function ¢ : [a,b] — R. The integral f; ¢(x)dx of a step-function
¢ € Tla,b] is define by
b n
/ ¢(z)dx = Z ci(x; — xi-1).
@ i=1
PROPOSITION 2.6.2. The integral [

. O(x)dz of a step-function ¢ € Tla,b] is
independent from the partition of [a,b].
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PROOF. Let the following partitions of [a, b]:
(P): a=20<x1 < ...<Tp_1< Ty =20,
Q): a=yo<y1<...<Ym-1<Ym =,

and let
ox)=c¢;, x€(xim1,2;), 1€{1,...,n},

¢(y):dja ye(y]—layj)7 ]6{1,,771}
We show that

éc;‘(l’i—l‘il) :Z/qu(x)d;v:/qu(y :i:: — 1)

We suppose first that
P <Q:&Viet, ..} I{1rn}— {1, m} (Ti = Uk,)-
In this case we have that
Tic1 = Ykiq <Yky141 < ... < Yg; = T4,

and
dj = c;, for every j with k;_1 < j <k;.
Then we get

/ dy—Zd i)

Suppose next that P, are arbitrary partitions of [a,b]. Then P U @ is a new
partition of [a, b] such that

P<PUQ & Q<PUQ.

By the previous case we get

PUQ(;S(z)dz:/(b( x)dx & PUQ¢ dz-/qS
hence [, ¢(z)dz = [, ¢(y a
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From the geometric point of view, the integral f: ¢(x)dx of a step-function ¢
on [a,b] is the algebraic sum of the areas between the z-axis and the graph of ¢.
Let the partition
a=x9<x1=0>
of the interval [a,b]. The constant function ¢, : [a,b] — R, where ¢.(z) = ¢, for
every « € [a,b], is a step-function with

b 1
/ ¢c(x)d1' = 20(1'1 — uTo) = C(b — a).
@ i=1

If ¢,¢ € Tla,b] and X € R, it is easy to show that
(i) 6+ € Tla,b] and

/ab (¢+¢)x)dx:/ab¢>(x)dx+/ab¢(x)dx
(i) A € Tla,b] and
/ (M) (z da:—)\/ o(x)dz,

(idi) ¢<w:»/¢ dw</¢>
where

¢ < 1/) = vwe[a,b] (¢(I) < 11[}(:6))
Let f : [a,b] — R an arbitrary bounded function i.e., there are m, M € R such that

m < f(z) < M, x € [a,b].

If ¢, € Tla,b] is the constant function with value m on [a,b] and if ¢y € Ta, b
is the constant function with value M on [a, ], then

Let the sets

_ {/ab¢(x)dx|¢e7'[a,b] &<z>zf},

b
B(f) = {/ d(a)dz | ¢ € Tla,b) & ¢ < f}.
A(f) is a non-empty subset of R, because ¢y € Ta,b] with ¢p; > f and
b
M(b— a) = / i (2)dz € A(F).

A(f) is a bounded below (nach unten beschrinkte) subset of R, because for every
fb ¢(z)dz € A(f) we have that

a

b b
62 f20n= [ oo [ nla)ds =m0 a).
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Similarly, B(f) is a non-empty subset of R, because ¢, € T [a,b] with ¢,, < f and

b
m(b—a)z/ ¢m(x)dx € B(f).

B(f) is also a bounded above (nach oben beschriankte) subset of R, because for
every f: ¢(z)dz € B(f) we have that

b b
o< f<ou= [ dwn< [ (o) =Mb-a)

DEFINITION 2.6.3 (Supremum, Infimum). Let A C R. A number s € R is called
supremum (infimum) of A, if s is the least upper bound (gratest lower bound) of
A. The real number s is the least upper bound of A, if the following conditions are
satisfied:

(1) s is an upper bound of A (a € A= a < s).
(i1) If s’ is another upper bound of A, then s < s'.

Similarly, the real number ¢ is the gratest lower bound of A, if the following condi-
tions are satisfied:

() t is a lower bound of A (a € A= a > t).
(#4) If t’ is another lower bound of A, then ¢’ < t.

Clearly, the least upper bound (greatest lower bound) of @ are uniquely determined.
For them we use the notation

sup(A) [bzw. inf(A)].
For example, we have that
sup(0,1) =1 & inf(0,1) =0.

THEOREM 2.6.4. A non-empty and bounded above (below) subset A CR has a
supremum (infimum,).

ProoF. With the use of the Completeness Axiom (see [1], pp. 89-90). O

DEFINITION 2.6.5 (Upper-integral, Lower-integral). Let f : [a,b] — R be a
bounded function. We define

/abf(x)d:c =inf A(f) = inf{/abcb(x)d:c | ¢ € Tla,b] & ¢ > f},

/abf(ﬂf)dx:SupB(f):Sup{/ab¢(x)d$|(ZSG'T[a,b]&Qﬁgf}.

For every step-function ¢ € T a, b] we have that (Exercise)

/ab¢(x)dx: /b 6 (x)dz / ' ().



62 2. REAL-VALUED FUNCTIONS OF A REAL VARIABLE

Let the Dirichlet-Function Dir : [0,1] — R on [0, 1], defined by

. o 1 ,xe@m[071]
Dir(z) ~—{ 0 ,zelno1],

One can show (Exercise) that

1 1
/ Dir(z)de =1 & / Dir(z)dx =0,
0 J0_

/OlDir(x)dx7é /01 Dir(z)da

DEFINITION 2.6.6. A bounded function f : [a,b] — R is called Riemann-
integrable, or simply integrable, if

hence

In this case we write

A step-function is Riemann-integrable, while the Dirichlet-Function on [0, 1] is
not.

PROPOSITION 2.6.7. (i) A continuous function f : [a,b] — R is Riemann-
integrable.

(i1) A monotone function f : [a,b] = R is Riemann-integrable.
PROOF. See [1], pp. 198-199. 0

PROPOSITION 2.6.8. Let f,g: [a,b] = R be integrable functions and A € R.
(i) The function f + g : [a,b] — R is integrable and

/ab (f +g)z)dz = /abf(x)dx + /abg(m)dm.

(i3) The function Af : [a,b] — R is integrable and

/GAf d:cf/f

(iid) f<g= / F(z)dz < / g(@)da,
where ’
f < g = v;ze[a,b] (f(.%) < g($))
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(iv) The |f]: [a,b] — R is integrable and
b b
[ tws| < [ ir@a.

PROOF. We use the corresponding properties of the step-functions. For the
details see [1], pp. 199-201. O

PROPOSITION 2.6.9. Let a < ¢ <b and f : [a,c] = R. Then f ist integrable if
and only if its restrictions fia.5 on [a,b] and fp,o on [b,c| are integrable, and

/acf(x)dx - /abf(x)dx—l—/bcf(a:)dm.

PrOOF. We use the corresponding propertiy of the step-functions. For the
details see [1], p. 207. O

DEFINITION 2.6.10. Let a < b and f : [a,b] — R a bounded function. We
define

| sz =o

/ba F@)de = — /abf(a:)dx.

2.7. Integration and Differentiation

and

PROPOSITION 2.7.1. Let f : [a,b] — R be a continuous function and c € [a, b].

If x € [a,b], let
F(z) = / f(®)dt.

The function F : [a,b] — R is differentiable and F' = f. We call F the indefinite
integral of f.

PROOF. See [1], p. 209. O

DEFINITION 2.7.2. A differentiable function F : [a,b] — R is a primitive func-
tion of f : [a,b] = R, if F' = f.

The indefinite integral of f is a primitive function of f.

PROPOSITION 2.7.3. Let F' : [a,b] — R be a primitive function of f : [a,b] — R.
A function G : [a,b] — R is a primitive function of f if and only if F — G is a
constant.

PrOOF. (i) Let FF — G = ¢, where c € R. Then G’ = (F —¢) = F' = f.

(ii) If G is a primitive function of f, then G’ = f = F'. Hence, (F — G)' = 0. By
Corollary 2.5.6 we get F' — (G is constant. O
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THEOREM 2.7.4 (Fundamental theorem of Differential and Integral Calculus
(FTDIC)). Let f : [a,b] — R be a continuous function and F a primitive function
of f. Then

/ F@)dz = F(b) — Fl(a).

PrOOF. For every z € [a,b] let
Gl) = / F(t)dt.

Since F' is a primitive function of f, by Proposition 2.7.3 there is ¢ € R such that

F—-G=c.
Hence we have that

F(b) — F(a) = (G(b) + ¢) = (G(a) +¢)
=G(b) - G(a)

/abf(t)dt/aaf(t)dt
—/abf(t)dt—o

= / ’ F(t)dt.

We use the notation:

F(z)| = F(b) - F(a).

a
Hence the equality of Theorem 2.7.4 is written also as

/ ' fla)de = ()

Examples of using (FTDIC):

/0 ldr = /0 g dir = ida ()

b

a
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1 1 1 1
/ 2"dx = / 2" ) de = 2t

— ]‘ 1n+1 _ ]‘ O’I’LJrl ]‘

n+1 n+1 n+1

/1 e /1 " ln(e)]de = n(z)|

T

1
If x < 0, then by the chain rule we get

1 1
In(—z)] = — (-1 —.
In(—a))' = —(-1) = -
Hence
-1 1 -1
/ —dz =In(—z)| :=In(1)—-In(2) =0—1n(2) = —In(2).
_9 T _9
We write the two previous cases in one, as follows:

dx
— =1In(|z]), 0 is not in the interval of the integration.

As an application of (FTDIC) and the chain rule we have that

bgt) . ’
/amdt—ln(|g(t)|)

=1n(|g(0)]) = In (lg(a)l),
where g : [a,b] = R is a continuously differentiable function i.e., g’ is a continuous
g

g(t)

function (hence the function
t € la,b.

is integrable), such that g(t) # 0, for every

PROPOSITION 2.7.5 (Substitution rule). Let f : [a',b'] — R be a continuous
function and g : [a,b] — [a’, V] a continuously differentiable function. Then

b g(b)
[ rtaogwac= [ faya.
a g(a)

PROOF. Let F : [a/,b'] — R be a primitive function of f. For the composite
function F o g : [a,b] — R the chain rule gives

(Fog)(t)=F'(g(t)g'(t) = f(g(t))g (t).
By Theorem 2.7.4 we have that

b
/ Fa(t)g (V)dt = (F o g)(1)

k=
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O

Example 1: If f(z) = 1, where 2 # 0, and g : [a,b] — R is as in the last example
before Proposition 2.7.5, then we have that

b

— [ ftateng vy
g(b)

:/ flx)dx
g(a)
g(b)

:/ 1d:v
g(a) T

g(b)
=1In (|z|)
g(a)

=1n (lg(0)]) —In (|g(a)])-

Example 2: If ¢ € R, then

b b+c
/ ft+odt= | fa)de

('

If g(t) =t + ¢, for every t € R, then ¢'(¢t) =1 and

/ft+cdt /f

g(b)
= / f(z)dx
g(a)

b+c

= f(z)dx

b 1 be
/ flet)dt = - f(z)dz

If g(t) = ct, for every t € R, then ¢'(t) = ¢ and

b b
[ stevie =1 [ siateng o
1 90
- z)dzx
cL@fU

1 be

- f(z)d.

c ac

Example 3: If ¢ # 0, then
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PROPOSITION 2.7.6. Let f,g : [a,b] = R be continuously differentiable func-

tions. Then ,
[ @ @)de = fa)g(a)

PROOF. If F = f - g, then
F'(z) = f'(z)g(z) + f(2)g'(z) & f(2)d (x) = F'(z) - f'(2)g(z),

for every x € [a, b]. Hence

/f m-/wwwwummm

/F’ dx—/f

=cw—/gMNmm

a a

b

- [ s

a

Example 1. If a,b > 0, then

/a () = / () da

=zln(z)| — /ab In'(x)zdw

=zln(z) 7/ —zdx
a a T

b
=z ln(x) —/ dx

=zln(z)| —=

= [zln(z) — ]

a

= [z(In(z) — 1)]| .

a

Example 2. Let the integral

I—/e cos(z)dzx.
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We have that

I= /(e“)’cos(m)dw

— " cos(x) — / e[ sin(z)]dz
= e” cos(z) + /e:’: sin(x)dx
= e" cos(z) + J.

Moreover, we have that
J = /e"” sin(x)dx
= /(e””)'sin(x)dsc
= e”sin(x) — /em cos(z)dx

= e"sin(z) — 1.
Hence

I =e"cos(z)+esin(x) — I & 1= %[cos(x) + sin(z)].
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