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CHAPTER 1

Number systems

In this chapter we study some basic properties of the following number systems:
the natural numbers N, the integers Z, the rational numbers Q, and the real numbers
R. First we need to give a short introduction to the fundamental notions of a set
and of a function between sets.

1.1. Sets

Definition 1.1.1. A formula φ is a mathematical expression. Let φ, ψ be
formulas. The implication “φ implies ψ” is denoted by

φ⇒ ψ.

The conjunction “φ and ψ” is denoted by

φ ∧ ψ, or by φ & ψ.

The equivalence “φ if and only if ψ” is denoted by

φ⇔ ψ

and it is the conjunction φ⇒ ψ & ψ ⇒ φ. The negation “not φ” is denoted by ¬φ.
The disjunction “φ or ψ” is denoted by

φ ∨ ψ.
Let φ(x) be a formula i.e., the variable x occurs in φ. The formula

∃x
(
φ(x)

)
is read as “there exists x such that φ(x) holds”, and the formula

∀x
(
φ(x)

)
is read as “for all x we have that φ(x) holds”.

To prove φ⇒ ψ, we suppose φ and we prove ψ. If φ is false, then the implication
φ ⇒ ψ is true, in a trivial way. To prove φ & ψ, we prove φ and we prove ψ. To
prove φ ⇔ ψ, we prove φ ⇒ ψ and we prove ψ ⇒ φ. To prove ¬φ, we suppose φ
and we reach a contradiction, like ψ & ¬ψ, for some formula ψ. To prove φ ∨ ψ,
we prove φ, or we prove ψ. Sometimes, to prove φ ∨ ψ, we prove ¬(¬φ & ¬ψ). To
prove ∃x

(
φ(x)

)
, we find x and we prove φ(x). Sometimes, to prove ∃x

(
φ(x)

)
, we

1



2 1. NUMBER SYSTEMS

prove ¬¬
[
∃x
(
φ(x)

)]
. To prove ∀x

(
φ(x)

)
, we suppose an arbitrary x and we prove

φ(x). Some basic examples of formulas appear in the next definition.

Definition 1.1.2. A set [Menge] X is a collection of mathematical objects. A
mathematical object x that is a member of X is called an element of X, and we
write

x ∈ X.
If y is a mathematical object that is not an element of X, we write

y /∈ X
instead of ¬(y ∈ X). The set that has no elements is called the empty set [leere
Menge] and it is denoted by ∅. Let X and Y be sets. We say that X and Y are
equal, in symbols X = Y , if they have the same elements i.e.,

∀x
(
x ∈ X ⇔ x ∈ Y

)
.

We say that X is a subset [Teilmenge] of Y , in symbols X ⊆ Y , if every element of
X is an element of Y i.e.,

∀x
(
x ∈ X ⇒ x ∈ Y

)
.

If X ⊆ Y and there is y ∈ Y such that y /∈ X, then we say that X is a proper
subset [echte Teilmenge] of Y . In this case we write X ( Y . If X is a set, the
collection P(X) of all subsets of X is called the powerset [Potenzmenge] of X.

Very often we use the symbols {} to denote the elements of a set. E.g., the set
of natural numbers [natürliche Zahlen] N is denoted by

N = {0, 1, 2, 3, . . .}.
The set of integers [ganze Zahlen] Z is denoted by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},
and

N ( Z.
If X is a set, we can define a subset XP of X through a property P (x) on X by
collecting all elements of X such that P (x) holds. In this case we write

XP = {x ∈ X | P (x)}.
E.g., the set Even of even natural numbers [gerade Zahlen] is defined as follows:

Even = {n ∈ N | P (n)}, P (n) :⇔ ∃m∈N
(
n = 2m

)
,

∃m∈N
(
n = 2m

)
:⇔ ∃m

(
m ∈ N & n = 2m

)
.

Clearly, Even ( N. The set Odd of odd natural numbers [ungerade Zahlen] is defined
as follows:

Odd = {n ∈ N | Q(n)}, Q(n) :⇔ ∃m∈N
(
n = 2m+ 1

)
.

Notice that two sets X,Y are equal if they are subsets of each other i.e.,

X = Y ⇔ X ⊆ Y & Y ⊆ X.
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Definition 1.1.3. Let X,Y be sets. The intersection [Schnittmenge] X ∩ Y
of X and Y is the set of all mathematical objects that are elements both of X and
Y i.e.,

X ∩ Y = {z | z ∈ X & z ∈ Y }.
The union [Vereinigungsmenge] X ∪ Y of X and Y is the set of all mathematical
objects that are elements either of X or of Y i.e.,

X ∪ Y = {z | z ∈ X ∨ z ∈ Y }.
If A ⊆ X, the complement [Komplement] A′ of A in X is the set of all elements of
X that do not belong to A i.e.,

A′ = {x ∈ X | x /∈ A}.

It is easy to see that

Odd ∩ Even = ∅ & Odd ∪ Even = N & Odd′ = Even & Even′ = Odd.

Proposition 1.1.4. If X is a set and A,B,C are subsets of X, the following
hold:

(i) ∅ ⊆ X and X ⊆ X.

(ii) A ∩A = A and A ∪A = A.

(iii) A ∩B = B ∩A and A ∪B = B ∪A.

(iv) (A ∩B) ∩ C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

(v) (A ∩B) ∪A = A and (A ∪B) ∩A = A.

(vi) A ⊆ B ⇔ A ∩B = A and A ⊆ B ⇔ A ∪B = B.

(vii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. (i) For ∅ ⊆ X we need to show that

∀x
(
x ∈ ∅ ⇒ x ∈ X

)
.

Let x such that x ∈ ∅. Since this is impossible by the definition of ∅, we conclude,
in a trivial way, that the implication x ∈ ∅ ⇒ x ∈ X holds. Since x is arbitrary,
the proof is completed. For X ⊆ X we work similarly, and we use the fact that the
implication x ∈ X ⇒ x ∈ X holds.
(v) We show only (A ∪B) ∩A = A. For that we show first that (A ∪B) ∩A ⊆ A.
If b ∈ (A ∪ B) ∩ A, we show that b ∈ A. By the definition of intersection we have
that b ∈ (A ∪B) and b ∈ A. Hence we get the required b ∈ A. Next we show that
A ⊆ (A∪B)∩A. If a ∈ A, we show that a ∈ (A∪B)∩A i.e., a ∈ A∪B and a ∈ A.
Both inclusions follow trivially from the hypothesis a ∈ A.
(ii)-(iv) and (vi) -(vii) is an exercise. �

Proposition 1.1.5. If X is a set and A,B ⊆ X, the following hold:

(i) ∅′ = X and X ′ = ∅.
(ii) A ∩A′ = ∅ and A ∪A′ = X.
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(iii)
(
A′
)′ = A.

(iv) (A ∩B)′ = A′ ∪B′.
(v) (A ∪B)′ = A′ ∩B′.
(vi) A ⊆ B ⇔ B′ ⊆ A′.

Proof. (i) By the definition of the complement of a subset we have that

∅′ = {x ∈ X | x /∈ ∅} = X,

X ′ = {x ∈ X | x /∈ X} = ∅.
For (ii) we use the logical principle φ∨¬φ (Principle of the Excluded Middle, PEM),
and for (iii) the principle ¬¬φ⇒ φ (Double Negation Shift, DNS). �

Proposition 1.1.6. If X is a set and A,B ⊆ X, the difference A−B between
A and B is the set of all elements in A that are not in B i.e.,

A−B = {x ∈ X | x ∈ A & x /∈ B}.
If C ⊆ X, the following hold:

(i) A−B = A ∩B′.
(ii) (A−B)− C = A− (B ∪ C).

(iii) A− (B − C) = (A−B) ∪ (A ∩ C).

(iv) (A ∪B)− C = (A− C) ∪ (B − C).

(v) A− (B ∪ C) = (A−B) ∩ (A− C).

Proof. Exercise. �

Proposition 1.1.7. If X is a set and A,B ⊆ X, the symmetric difference
A M B of A and B is defined by

A M B = (A−B) ∪ (B −A).

If C ⊆ X, the following hold:

(i) A M ∅ = A and A M A = ∅.
(ii) A M B = B M A.

(iii) A M (B M C) = (A M B) M C.

(iv) A ∩ (B M C) = (A ∩ C) M (A ∩ C).

Proof. Exercise. �

Definition 1.1.8. If X,Y are sets, their product X × Y is the set of all pairs
(x, y) with x ∈ X and y ∈ Y i.e.,

X × Y = {(x, y) | x ∈ X & y ∈ Y },
where if (x, y), (x′, y′) ∈ X × Y , we have that

(x, y) = (x′, y′)⇔ x = x′ & y = y′.
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1.2. Functions

Definition 1.2.1. If X,Y are sets, a function f : X → Y from X to Y is a
rule that associates to every element x ∈ X a unique element f(x) ∈ Y , which is
called the value of f at x. To denote that f maps x to f(x) we also write

x 7→ f(x).

The set X is called the domain [Definitionsmenge] of f , and Y is the range of
[Zielmenge] of f . The image [Wertemenge] Im(f) of f is the set of values of f i.e.,

Im(f) = {y ∈ Y | ∃x∈X
(
y = f(x)

)
}.

If g : X → Y , then f = g, if f and g are equal on every input x ∈ X i.e.,

f = g ⇔ ∀x∈X
(
f(x) = g(x)

)
.

By the uniqueness hypothesis in the Definition 1.2.1 a function f : X → Y
satisfies for every x, x′ ∈ X the implication

x = w ⇒ f(x) = f(w)

i.e., it “maps equal inputs to equal outputs”. Clearly, Im(f) ⊆ Y . Let e.g., f : N→
N be defined by

n 7→ 2n.

By definition, f(0) = 0, f(1) = 2, and f(50) = 100. Clearly, Im(f) = Even.

Definition 1.2.2. A function f : X → Y is called an injection, or injective
[injektiv], if for every x, x′ ∈ X we have that

f(x) = f(w)⇒ x = w.

Moreover, f is called a surjection, or surjective [surjektiv], if Im(f) = Y . A function
f is called a bijection, or bijective [bijektiv], if it is both an injection and a surjection.

It is easy to see that f is injective, if for every x, x′ ∈ X it satisfies

x 6= w ⇒ f(x) 6= f(w)

i.e., if f “maps unequal inputs to unequal outputs”. The function n 7→ 2n is
injective, since 2n = 2m ⇒ n = m, for every n,m ∈ N, but it is not surjective,
since Im(f) = Even ( N. If X is a set, the identity map [identische Abbildung]
idX : X → X is defined by the rule

x 7→ x.

Clearly, idX is a bijection. Let g : Z→ N be defined by

g(z) :=

{
z , z ≥ 0
−z , z < 0.

Then g is surjective, since g(n) = n, for every n ∈ N, but g is not injective, since
e.g., g(−1) = g(1) = 1. If X,Y are sets, and y0 ∈ Y , let ŷ0 : X → Y be defined by

x 7→ y0,
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for every x ∈ X, is the constant function from X to Y with constant value y0.

Definition 1.2.3. Let X,Y, Z be sets, f : X → Y and g : Y → Z. The
composition g ◦ f : X → Z of f and g is defined, for every x ∈ X, by

(g ◦ f)(x) = g(f(x))

X Y Z.
f g

g ◦ f

Since g and f respect equality, the composition g ◦ f also respects equality i.e.,
if x,w ∈ X, such that x = w, then f(x) = f(w) and hence

(g ◦ f)(x) = g(f(x)) = g(f(w)) = (g ◦ f)(w).

If f : N→ N is defined by f(n) = n+1, for every n ∈ N, and if g : N→ N is defined
by g(n) = n2, for every n ∈ N, then g ◦ f : N→ N, and for every n ∈ N

(g ◦ f)(n) = g(f(n)) = (n+ 1)2.

Proposition 1.2.4. Let X,Y, Z,W be sets, and let f : X → Y , g : Y → Z,
and h : Z →W . The following hold:

(i) f ◦ idX = f

X X Y .
idX f

f

(ii) idY ◦ f = f

X Y Y .
f idY

f

(iii) h ◦ (g ◦ f) = (h ◦ g) ◦ f

X Y Z W .
f g h

g ◦ f

h ◦ (g ◦ f)

h ◦ g

(h ◦ g) ◦ f

Proof. (i) By the definition of the equality of functions we need to show that

∀x∈X
(
(f ◦ idX)(x) = f(x)

)
.
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If x ∈ X, then (f ◦ idX)(x) = f(idX(x)) = f(x). Since x is an arbitrary element of
X, we conclude that f ◦ idX = f .
(ii) and (iii) Exercise. �

1.3. Induction on N

The induction principle on N is a fundamental tool in proving properties for all
natural numbers. All induction principles mentioned in this section are equivalent.

Induction principle IND on N: Let φ(n) be a formula on N such that the
following conditions are satisfied:

(i) φ(0) holds.

(ii) For every n ∈ N, if φ(n) holds, then φ(n+ 1) holds i.e.,

∀n∈N
(
φ(n)⇒ φ(n+ 1)

)
.

Then we can infer that φ(n) holds, for every n ∈ N i.e.,

∀n∈N
(
φ(n)

)
.

Let N+ be the set of non-zero natural numbers i.e.,

N+ = {1, 2, 3, . . .}.
Induction principle IND+ on N+: Let θ(n) be a formula on N+ such that the
following conditions are satisfied:

(i) θ(1) holds.

(ii) For every n ∈ N+, if θ(n) holds, then θ(n+ 1) holds i.e.,

∀n∈N+

(
θ(n)⇒ θ(n+ 1)

)
.

Then we can infer that θ(n) holds, for every n ∈ N+ i.e.,

∀n∈N+

(
θ(n)

)
.

Proposition 1.3.1. The induction principle IND on N implies the induction
principle IND+ on N+.

Proof. Let θ(n) be a formula on N+ such that the conditions of IND+ are
satisfied. Let φ(n) be the following formula on N

φ(n) :⇔ θ(n+ 1).

By definition φ(0) :⇔ θ(1), which holds by our hypothesis on θ. Let n ∈ N such
that φ(n) :⇔ θ(n+ 1). By our hypothesis on θ we get θ((n+ 1) + 1) :⇔ φ(n+ 1),
hence by IND we get

∀n∈N
(
φ(n)

)
:⇔ ∀n∈N

(
θ(n+ 1)

)
⇔ ∀n∈N+

(
θ(n)

)
.

�
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Proposition 1.3.2. The induction principle IND+ on N+ implies the induction
principle IND on N.

Proof. Exercise. �

As an example of using IND+, let us prove the following formula:

∀n∈N+

(
1 + 2 + . . .+ n =

n(n+ 1)

2

)
If θ(n) is the formula on N+

θ(n) :⇔ 1 + 2 + . . .+ n =
n(n+ 1)

2
,

then by the principle IND+ it suffices to show

θ(1) :⇔ 1 =
1(1 + 1)

2
,

which holds trivially, and if n ∈ N+ we need to show the following implication:

θ(n)⇒ θ(n+ 1) i.e.,[
1 + 2 + . . .+ n =

n(n+ 1)

2

]
⇒
[
1 + 2 + . . .+ n+ (n+ 1) =

(n+ 1)(n+ 2)

2

]
.

For that we suppose that

1 + 2 + . . .+ n =
n(n+ 1)

2

holds, and then we show the equality

1 + 2 + . . .+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

as follows:

1 + 2 + . . .+ n+ (n+ 1) =
[
1 + 2 + . . .+ n

]
+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.

If a1, a2, . . . an ∈ N we define their sum
n∑
k=1

ak = a1 + a2 + . . . ak.
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For example, we have that

5∑
k=1

2 = 2 + 2 + 2 + 2 + 2 = 10,

n∑
k=1

m = nm,

n∑
k=1

n = n2.

What we showed above is also written as
n∑
k=1

k =
n(n+ 1)

2
.

Proposition 1.3.3. Let f : N+ → N+ with a = f(1), and for every n,m ∈ N+

f(n+m) = f(n)f(m).

Then

∀n∈N+

(
f(n) = an

)
.

Proof. We use the induction principle IND+ on N+ for the formula

θ(n) :⇔ f(n) = an.

Clearly, θ(1) :⇔ f(1) = a1 = a, which holds by the definition of a. If n ∈ N+, we
show the implication

θ(n)⇒ θ(n+ 1)

i.e., the implication [
f(n) = an

]
⇒
[
f(n+ 1) = an+1

]
.

By the hypothesis on f we get

f(n+ 1) = f(n)f(1) = anf(1) = ana = an+1.

�

Induction principle IND< on N: Let φ(n) be a formula on N such that the
following conditions are satisfied:

(i) φ(0) holds.

(ii) For every n ∈ N+, if φ(0) and φ(1) and . . . and φ(n− 1) hold, then φ(n) holds:

∀n∈N+

([
φ(0) & φ(1) & . . . & φ(n− 1)

]
⇒ φ(n)

)
.

Then we can infer that φ(n) holds, for every n ∈ N i.e.,

∀n∈N
(
φ(n)

)
.
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Proposition 1.3.4. The induction principle IND on N implies the induction
principle IND< on N.

Proof. Let φ(n) be a formula on N such that the hypotheses (i) and (ii) of
IND< are satisfied. We show that the hypotheses (i) and (ii) of IND are satisfied,
hence the conclusion of IND, which is also the required conclusion of IND<, follows.
The hypothesis (i) of IND is the hypothesis (i) of IND<. For the proof of the
hypothesis (ii) of IND we suppose n ∈ N such that φ(n), and we show φ(n + 1).
Suppose that ¬(φ(n+ 1). By the hypothesis (ii) of IND< there is some m1 < n+ 1
such that ¬(φ(m1) (if for all m < n + 1 we had that φ(m) holds, then by the
hypothesis (ii) of IND< we would get φ(n + 1) too). By a similar argument there
is some m2 < m1 such that ¬(φ(m2). By repeating this step k number of times,
where k ≤ (n+1),we get mk = 0, and ¬(φ(mk) i.e., ¬(φ(0). Since we supposed that
φ(0) holds, we reached a contradiction. Hence, our initial hypothesis ¬(φ(n+ 1) is
false, therefore φ(n+ 1) holds. �

Proposition 1.3.5. The induction principle IND< on N implies the induction
principle IND on N.

Proof. Exercise. �

1.4. The algebraic and the ordering axioms for the set of real numbers

We denote by R the set of real numbers [reele Zahlen] that satisfies the follow-
ing lists of axioms:

(I) Axioms for addition.

(II) Axioms for multiplication.

(III) Distributivity axiom of multiplication over addition.

(IV) Axioms for order and the Archimedean axiom.

(V) The completeness axiom.

(I) Axioms for addition: There is a function + : R× R→ R,

(x, y) 7→ x+ y

such that the following axioms are satisfied:

(A1) x+ (y + z) = (x+ y) + z, for every x, y, z ∈ R.

(A2) There is an element 0 of R such that 0 + x = x, for every x ∈ R.

(A3) For every x ∈ R there is some y ∈ R such that x+ y = 0.

(A4) x+ y = y + x, for every x, y ∈ R.
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Notice that the number 0 in (A2) is uniquely determined. Let 0′ ∈ R such that
0′ + x = x, for every x ∈ R. If we take x = 0, then by (A2) and (A4) we get

0 = 0′ + 0 = 0 + 0′ = 0′.

The number y in (A3) is uniquely determined. Let y′ ∈ R such that x+ y′ = 0. We
have that

y = 0 + y = (x+ y′) + y = (y′ + x) + y = y′ + (x+ y) = y′ + 0 = y′.

We denote this unique element y by −x, and we define

z − x = z + (−x).

We also use the notation
n∑
i=1

xi = x1 + . . .+ xn.

(II) Axioms for multiplication: There is a function · : R× R→ R,

(x, y) 7→ x · y
such that the following axioms are satisfied:

(M1) x · (y · z) = (x · y) · z, for every x, y, z ∈ R.

(M2) There is an element 1 6= 0 of R such that 1 · x = x, for every x ∈ R.

(M3) For every x ∈ R, such that x 6= 0, there is some y ∈ R such that x · y = 1.

(M4) x · y = y · x, for every x, y ∈ R.

Notice that the number 1 in (M2), and the number y in (M3) are uniquely deter-
mined. We denote this unique element y by x−1 = 1

x , and we define

z

x
= z · 1

x
.

We also use the notation
n∏
i=1

xi = x1 · . . . · xn.

For simplicity we often write xy instead of x · y. If a ∈ R and n ∈ N+, we define

an :=

{
a , n = 1
an−1a , n > 1.

Hence,

an =

n∏
i=1

a.

If a 6= 0, we define
a0 = 1.

It is easy to show by IND that for all m,n ∈ N we have that

am+n = aman.
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If n ∈ N, we define

a−n = (a−1)n =

(
1

a

)n
.

One can show that for all m,n ∈ Z we have that am+n = aman.

(III) Distributivity axiom of multiplication over addition:

(D) x · (y + z) = x · y + x · z, for every x, y, z ∈ R.

Corollary 1.4.1. If x, y, z, w ∈ R, the following hold.

(i) 0 · x = 0.

(ii) (−x)y = −(xy).

(iii) (−x)(−y) = xy.

(iv) −(x+ y) = −x− y.

(v) If x, y 6= 0, then xy 6= 0, and (xy)−1 = x−1y−1.

(vi) If z, w 6= 0, then

x

z

y

w
=
xy

zw
&

x

z
+
y

w
=
xw + yz

zw
.

(vii) If x 6= 0 and xy = xz, then y = z.

Proof. Exercise. �

By (D) and using the induction principle IND+ we can show the distributivity
of multiplication over an arbitrary sum i.e.,

∀n∈N+

(
x

n∑
i=1

yi =

n∑
i=1

xyi

)
.

Similarly we can show that

n∑
i=1

m∑
j=1

xiyj =

( n∑
i=1

xi

)( m∑
j=1

yj

)
=

( m∑
j=1

yj

)( n∑
i=1

xi

)
=

m∑
j=1

n∑
i=1

yjxi.

(IV) Axioms for order: There is a subset P of R, which is called the set of
positive reals such that the following axioms are satisfied:

(O1) For every x ∈ R we have that

x ∈ P ∨ x = 0 ∨ −x ∈ P,

and these cases are mutually exclusive i.e., if x ∈ P , then x 6= 0 and −x /∈ P , and
if x = 0, then x /∈ P and −x /∈ P , while if −x ∈ P , then x /∈ P and x 6= 0.

(O2) If x, y ∈ P , then x+ y ∈ P and x · y ∈ P .
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Definition 1.4.2. Let x, y ∈ R. We say that x is negative if −x ∈ P . Let

x > 0⇔ x ∈ P,

x > y ⇔ x− y > 0,

y < x⇔ x > y,

x < 0⇔ (−x) > 0,

x ≤ y ⇔ x < y ∨ x = y.

Corollary 1.4.3. If x, y, z ∈ R, the following hold.

(i) 1 ∈ P .

(ii) For every n ∈ N+ we have that n · 1 ∈ P .

(iii) If x, y are negative, then xy ∈ P .

(iv) If x > 0 and y < 0, then xy < 0.

(v) If x 6= 0, then x2 > 0.

(vi) If x > 0, then 1
x > 0.

(vii) If x < y and y < z, then x < z.

(viii) If x < y and z ∈ R, then x+ z < y + z.

(ix) If x < y and z > 0, then xz < yz.

(x) If x < y and x, y > 0, then 1
y <

1
x .

(xi) If xy = 0, then x = 0 or y = 0.

Proof. (i) By (O1) we have that 1 ∈ P , or 1 = 0, or −1 ∈ P . Since by (M2)
1 6= 0, we have that 1 ∈ P or −1 ∈ P . Suppose that −1 ∈ P . Then by (O2) we get
(−1)(−1) = 12 = 1 ∈ P . Since the cases 1 ∈ P and −1 ∈ P cannot hold together,
we get a contradiction. Hence 1 ∈ P is the only true case.
(ii) It follows with the use of IND+. The case n = 1 is just (i).
(iii) By definition −x,−y ∈ P , and by (O2) we get (−x)(−y) = xy ∈ P .
(iv) By definition −y ∈ P , hence by (iii) we get x(−y) = −xy ∈ P , hence xy < 0.
(v) If x 6= 0, then by (O1) we have that x ∈ P or (−x) ∈ P . In the first case, by
(O2) we get xx = x2 ∈ P , and in the second, again by (O2), we get xx = x2 =
(−x)(−x) ∈ P .
(vi) - (xi) Exercise. �

Let a ∈ R such that a 6= 0. If there is some x ∈ R such that x2 = a, then
a > 0. If there are yx, y ∈ R such that x2 = y2 = a, then by the Corollary 1.4.3(x)
we have that

x2 − y2 = 0⇔ (x− y)(x+ y) = 0⇔ x = y ∨ x = −y.

Hence, if there is x such that x2 = a, then the equation x2 = a has exactly two
solutions x and −x. In this case we call the unique positive solution to the equation
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x2 = a the square root
√
a of a. Notice that we cannot prove yet that every positive

real number has a square root. We also define
√

0 = 0.

If x ∈ R, then
√
x2 always exists, and it is either x, if x ≥ 0, or −x, if x < 0. Let

the function

|.| : R→ R

x 7→ |x| =
√
x2,

where |x| is called the absolute value of x.

Proposition 1.4.4. If x, y ∈ R, the following hold.

(i) If x, y ≥ 0 and
√
x,
√
y exist, then

√
xy exists and

√
xy =

√
x
√
y.

Moreover, we have that

x ≤ y ⇒
√
x ≤ √y.

(ii) |x| ≥ 0.

(iii) x ≤ |x|.
(iv) |x| = | − x|.
(v) |x| = 0⇔ x = 0.

(vi) |xy| = |x||y|.
(vii) |x|2 = x2.

(viii) [Triangle inequality] |x+ y| ≤ |x|+ |y|.

Proof. We show only (vi) and the rest is an exercise. We have that

|x+ y|2 =
(√

(x+ y)2
)2

= (x+ y)2

= x2 + 2xy + y2

(iii)

≤ x2 + 2|xy|+ y2

(vi)
= x2 + 2|x||y|+ y2

=
(
|x|+ |y|

)2
,

hence by the second implication of the case (i), and by taking the square roots, we
get the required inequality. �
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The Archimedean Axiom (Arch): The order relation < of reals satisfies the
following axiom

(Arch) ∀x,y∈R
(

[x > 0 & y > 0]⇒ ∃n∈N
(
nx > y

))
.

Corollary 1.4.5. ∀x∈R∃n∈N∃m∈N
(
x < n & −m < x

)
.

Proof. If x = 0, we can take n = m = 1. If x > 0, by (Arch) on x and 1,
there is n ∈ N such that n > x. Consequently, if m = n, we get −m = −n < 0 < x.
If x < 0, then by the previous case there are n,m ∈ N such that −x < n & −m <
(−x), hence x < m & − n < x. �

We also write the formula of the previous corollary as follows

∀x∈R∃n,m∈N
(
x < n & −m < x

)
.

The formula

∃!x∈X
(
φ(x)

)
expresses that there exists a unique x ∈ X such that φ(x). I.e.,

∃!x∈X
(
φ(x)

)
:⇔ ∃x∈X

(
φ(x) & ∀y∈X

(
φ(y)⇒ y = x

))
.

If x, y, z ∈ R, we use abbreviations like the following:

x ≤ y < z :⇔ x ≤ y & y < z.

Corollary 1.4.6. ∀x∈R∃!k∈Z
(
k ≤ x < k + 1

)
.

Proof. If x = 0, we take k = 0. If x > 0, by the previous corollary there
is some n > x. Let n0 be the smallest element of N such that x < n (we can
find n0 by checking for the predecessors m of n if m > x). Since n0 > x > 0,
we have that n0 ≥ 1, and since by its definition n0 is the smallest natural number
> x, we get n0 − 1 ≤ x. If x < 0, then by the previous case there is k ∈ Z such
that k ≤ (−x) < k + 1. If k = −x, then −k = x < −k + 1. If k < −x, then
−(k + 1) < x < −k i.e., −k − 1 ≤ x < −k = (−k − 1) + 1.

To show the uniqueness of k we work as follows. Let l ∈ Z such that l ≤ x <
l + 1. Suppose that l < k. Then l + 1 ≤ k, and

l ≤ x < l + 1 ≤ k ≤ x
i.e., we reached the contradiction x < x. Hence l ≥ k. If we suppose k < l, we
get similarly a contradiction, hence k ≥ l. By the inequalities l ≥ k and k ≥ l we
conclude that k = l. �

We use the symbol bxc for this unique k ∈ Z, and we call bxc the floor of x.

Corollary 1.4.7. ∀x∈R∃!m∈Z
(
m− 1 < x ≤ m

)
.

Proof. We use the Corollary 1.4.6. �
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We use the symbol dxe for this unique m ∈ Z, and we call dxe the ceiling of x.
We also use an abbreviation of the following form

∀ε>0

(
φ(ε)

)
:⇔ ∀ε∈R

(
ε > 0⇒ φ(ε)

)
.

Corollary 1.4.8. ∀ε>0∃n∈N+

(
1
n < ε

)
.

Proof. Exercise. �

We can show inductively the Bernoulli inequality : if a > −1, then

∀n∈N
(
(1 + a)n ≥ 1 + na

)
.

Corollary 1.4.9. Let a ∈ R. The following hold.

(i) If a > 1, then ∀x∈R∃n∈N
(
an > x

)
.

(ii) If 0 < a < 1, then ∀ε>0∃n∈N
(
an < ε

)
.

Proof. Exercise (use the Bernoulli inequality). �

1.5. Sequences of real numbers

Definition 1.5.1. Let X be a set. A sequence of elements of X is a function
α : N→ X. We also use the notations

(αn)n∈N, or (αn)∞n=0

for α, where

αn = α(n).

Sometimes we may also use the notation(
α0, α1, α2, α3, . . .

)
.

An element αn of a sequence α is called the n-th term of α. A sequence of reals is
a function α : N→ R.

(i) If x ∈ R, the constant sequence with value x is the function α : N→ R with

αn = x, for every n ∈ N.

This sequence looks as follows: (
x, x, x, . . .

)
.

(ii) The sequence β : N→ R, defined by

βn =
1

n+ 1
, for every n ∈ N,

looks as follows: (
1,

1

2
,

1

3
, . . .

)
.
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(iii) The sequence γ : N→ R, defined by

γn = (−1)n, for every n ∈ N,
looks as follows: (

1,−1, 1,−1, 1,−1, 1, . . .
)
.

(iv) The sequence δ : N→ R, defined by

δn =
n

n+ 1
, for every n ∈ N,

looks as follows: (
0,

1

2
,

2

3
,

3

4
, . . .

)
.

(v) The sequence ζ : N→ R, defined by

ζn =
n

2n
, for every n ∈ N,

looks as follows: (
0,

1

2
,

2

4
=

1

2
,

3

23
=

3

8
,

4

24
=

1

4
, . . .

)
.

(vi) The sequence of the Fibonacci numbers Fib : N→ R is defined recursively as
follows

Fibn :=

 0 , n = 0
1 , n = 1
Fibn−1 + Fibn−2 , n ≥ 2,

and it looks as follows: (
0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

)
.

Definition 1.5.2. Let α : N→ R be a sequence of real numbers, and let x ∈ R.
We say that α converges to x, or x is the limit of α, if

∀ε>0∃Nε∈N∀n≥Nε
(
|αn − x| < ε

)
.

In this case we use the notations

αn
n−→ x, or lim

n→∞
αn = x, or limαn = x.

A sequence of reals α is called convergent if there is some x ∈ R, such that α
converges to x. We say that α is a divergent sequence, if there is no x ∈ R such
that α converges to x. A sequence of reals α is called bounded, if

∃M>0∀n∈N
(
|αn| ≤M

)
.

In this case we say that M is a bound of α, or α is bounded by M .

Since

|αn − x| < ε⇔ −ε < αn − x < ε⇔ x− ε < αn < x+ ε,

a sequence α converges to x ∈ R, if for every ε-interval around x, eventually (i.e.,
after some index Nε) all terms αn of α lie there.
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Proposition 1.5.3 (Uniqueness of limit). If α : N → R is a sequence of real
numbers, and x, y ∈ R, then[

αn
n−→ x & αn

n−→ y
]
⇒ x = y.

Proof. Let ε > 0. Since αn
n−→ x and αn

n−→ y, there are N ε
2
∈ N and

M ε
2
∈ N, such that

∀n≥Nε
(
|αn − x| <

ε

2

)
& ∀n≥Mε

(
|αn − y| <

ε

2

)
.

Hence for all n ≥ max{N ε
2
,M ε

2
} we have that

|x− y| = |x− αn + αn − y| ≤ |x− αn|+ |αn − y| <
ε

2
+
ε

2
= ε.

If x 6= y, then if we take ε = |x−y|
2 , and since the above holds for every ε > 0, we

get the contradiction

|x− y| < |x− y|
2

,

hence x = y is the case. �

Proposition 1.5.4. If α : N→ R is a sequence of real numbers that converges
to some x ∈ R, then α is bounded.

Proof. Since αn
n−→ x, there is some N1 ∈ N such that

∀n≥N1

(
|αn − x| < 1

)
.

Since

|αn| = |αn − x+ x| ≤ |αn − x|+ |x| < 1 + |x|,
we get

∀n≥N1

(
|αn| < 1 + |x|

)
.

hence the following real number

M = max
{
|α1|, . . . , |αN1−1|, 1 + |x|

}
is a bound of the sequence α. �

If α, β, γ, δ, and ζ are the sequences defined above, the following hold.

(i) αn
n−→ x: If ε > 0, let Nε = 0. Then

∀n≥0
(
|αn − x| = |x− x| = 0 < ε

)
.

(ii) βn
n−→ 0: If ε > 0, then by the Corollary 1.4.8 there exists Nε ∈ N+, such that

1
Nε

< ε. Then

∀n≥Nε−1
(
|βn − 0| = |βn| =

1

n+ 1
≤ 1

Nε
< ε

)
.
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(iii) The sequence γ is divergent (although it is bounded by 1). Suppose that there

is x ∈ R, such that γn
n−→ x. Hence there is some N1 ∈ N such that

∀n≥N1

(
|γn − x| = |(−1)n − x| < 1

)
.

Hence, for every n ≥ N1 we get

2 = |(−1)n+1 − (−1)n|
= |γn+1 − γn|
= |γn+1 − x+ x− γn|
≤ |γn+1 − x|+ |x− γn|
< 1 + 1

= 2,

which is a contradiction.

(iv) δn
n−→ 1: Exercise.

(v) ζn
n−→ 0: Exercise.

Proposition 1.5.5. Let (αn)n∈N, (βn)n∈N be sequences of reals, and λ, x, y ∈
R. We define the sequences (α+β)n∈N, (α ·β)n∈N, (λα)n∈N and

(
1
β

)
n∈N, if βn 6= 0,

for every n ∈ N, as follows:

(α+ β)n = αn + βn,

(α · β)n = αn · βn,

(λα)n = λαn,(
1

β

)
n

=
1

βn
,

for every n ∈ N. If αn
n−→ x and βn

n−→ y, the following hold:

(i) (α+ β)n
n−→ x+ y.

(ii) (α · β)n
n−→ x · y.

(iii) (λα)n
n−→ λx.

(iv) If y 6= 0, then there is n0 ∈ N such that βn 6= 0, for all n ≥ n0, and(
1

β

)
n+n0

n−→ 1

y
,

and (
α

β

)
n+n0

n−→ x

y
.
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Proof. By definition of convergence of a sequence we have that

∀ε>0∃Nαε ∈N∀n≥Nαε
(
|αn − x| < ε

)
.

∀ε>0∃Nβε ∈N∀n≥Nβε
(
|βn − x| < ε

)
.

(i) By the triangle inequality we have that

|(α+ β)n − (x+ y)| = |αn + βn − x− y|
= |(αn − x) + (βn − y)|
≤ |αn − x)|+ |βn − y|

<
ε

2
+
ε

2
= ε,

for all n ≥ Nα+β
ε = max{Nα

ε
2
, Nβ

ε
2
}.

(ii) If M > 0 is a bound of the convergent sequence α, then by the triangle inequality
we have that

|(α · β)n − xy| = |αnβn − xy|
= |αnβn − αny + αny − xy|
= |(αnβn − αny) + (αny − xy)|
≤ |αn(βn − y)|+ |(αn − x)y|
= |αn||βn − y|+ |αn − x||y|
≤M |βn − y|+ |αn − x||y|

< M
ε

2M
+ |y| ε

2(|y|+ 1)

<
ε

2
+
ε

2
= ε,

for all n ≥ Nα·β
ε = max{Nβ

ε
2M
, Nα

ε
2(|y|+1)

}.

(iii) Exercise.

(iv) By the convergence βn
n−→ y we have that

|βn − y| <
|y|
2
,

for every n ≥ n0 = Nβ
|y|
2

. Hence, for every n ≥ n0 we get

−|βn − y| > −
|y|
2
.

Since for every x, y ∈ R we have shown (Blatt 3, Exercise 4(ii)) that

|x− y| ≥
∣∣|x| − |y|∣∣ ≥ |x| − |y|,
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we get for every n ≥ n0

|βn| = |y − (y − βn)|
≥
∣∣|y| − |βn − y|∣∣

≥ |y| − |βn − y|

≥ |y| − |y|
2

=
|y|
2

> 0.

Moreover, we have that ∣∣∣∣( 1

β

)
n

− 1

y

∣∣∣∣ =

∣∣∣∣ 1

βn
− 1

y

∣∣∣∣
=

∣∣∣∣y − βnβny

∣∣∣∣
=

1

|βn||y|
|βn − y|

≤ 2

|y|
1

|y|

(
ε|y|2

2

)
= ε,

for all n ≥ max{n0, Nβ
ε|y|2

2

}.
For the convergence (

α

β

)
n+n0

n−→ x

y

we use the previous convergence and the case (ii). �

Let the sequence α defined by

αn =
4n2 + 14n

n2 − 2
,

for every n ∈ N. Since for n > 0 we have that

αn =
n2(4 + 14 1

n )

n2(1− 2 1
n2 )

=
4 + 14 1

n

1− 2 1
n2

,

and 1
n

n−→ 0 and hence 1
n2 = 1

n
1
n

n−→ 0, we get 14 1
n

n−→ 0, −2 1
n2

n−→ 0, and hence

αn
n−→ 4.
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Proposition 1.5.6. Let (αn)n∈N, (βn)n∈N be sequences of reals, and x, y ∈ R.

If αn
n−→ x and βn

n−→ y, and if

αn ≤ βn,

for every n ∈ N, then x ≤ y.

Proof. Suppose that ε = x− y > 0. For every n ≥ Nα
ε
2

we have that

|αn − x| <
ε

2
⇔ −ε

2
< αn − x <

ε

2
⇔ x− ε

2
< αn < x+

ε

2
,

hence

αn > x− x− y
2

=
x+ y

2
.

For every n ≥ Nβ
ε
2

we have that

|βn − y| <
ε

2
⇔ −ε

2
< βn − y <

ε

2
⇔ y − ε

2
< βn < y +

ε

2
,

hence

βn < y +
x− y

2
=
x+ y

2
.

Hence for every n ≥ max{Nβ
ε
2
, Nβ

ε
2
} we get

βn <
x+ y

2
< αn,

which is a contradiction. Hence x ≤ y is the case. �

1.6. The completeness axiom

All axioms (I), (II), (III) and (IV) are satisfied also by the set of rational
numbers Q. The axiom discussed in this section is the most important axiom for
the set of the real numbers R, and, as expected, it is not satisfied by Q.

Lemma 1.6.1. If k, l ∈ N, the following hold:

(i) k ∈ Even⇒ k2 ∈ Even.

(ii) k ∈ Odd⇒ k2 ∈ Odd.

(iii) k2 ∈ Even⇒ k ∈ Even.

(iv) k2 ∈ Odd⇒ k ∈ Odd.

(v) k ∈ Even⇒ kl ∈ Even.

(vi) k, l ∈ Odd⇒ kl ∈ Odd.
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Proof. (i) If k = 2n, for some n ∈ N, then k2 = (2n)2 = 4n2 = 2(2n2) ∈ Even.
(ii) If k = 2n + 1, for some n ∈ N, then k2 = (2n + 1)2 = 4n2 + 4n + 1 =
2[2n2 + 2n] + 1 ∈ Odd.
(iii) If k2 ∈ Even and k ∈ Odd, then by (ii) k2 ∈ Odd too, which is a contradiction.
(iv) If k2 ∈ Odd and k ∈ Even, then by (i) k2 ∈ Even too, which is a contradiction.
(v)-(vi) are left to the reader as a simple exercise. �

Lemma 1.6.2. There is no rational number q such that q2 = 2.

Proof. Let p ∈ Q such that p2 = 2. Moreover, let

p =
k

l
,

where without loss of generality p > 0 and k, l are natural numbers, which are
not both of them even (why?). If k2 = 2l2, then k2 ∈ Even, hence k ∈ Even.
Let k = 2m, for some m ∈ N+. Since k2 = 4m2 = 2l2, we get l2 = 2m2, hence
l2 ∈ Even, therefore l ∈ Even, a fact which contradicts our hypothesis on k and
l. �

Definition 1.6.3. A sequence (αn)n∈N of reals in called a Cauchy-sequence, if

∀ε>0∃Cε∈N+∀n,m≥Cε
(
|αn − αm| < ε

)
.

Proposition 1.6.4. If (αn)n∈N is a convergent sequence, then (αn)n∈N is a
Cauchy-sequence.

Proof. If x ∈ R such that αn
n−→ x, we have that

|αn − αm| = |αn − x+ x− αm| ≤ |αn − x|+ |x− αm| <
ε

2
+
ε

2
= ε,

for all n,m ≥ N ε
2

= Cε. �

Completeness axiom (CA): If (αn)n∈N is a Cauchy-sequence of reals, then
(αn)n∈N is convergent.

Next we use CA to prove the existence of the square root of a positive real
number.

Theorem 1.6.5. Let a, b ∈ R such that a > 0 and b > 0. Let the sequence
(αn)n∈N be defined by

α0 = b,

αn+1 =
1

2

(
αn +

a

αn

)
.

The following hold:

(i) αn > 0, for all n ∈ N.

(ii) α2
n ≥ a, for all n ≥ 1.

(iii) αn+1 ≤ αn, for all n ≥ 1.
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(iv) If (βn)n∈N+ is the sequence of reals defined by

βn =
a

αn
, n ∈ N+,

then
(a) β2

n ≤ a, for every n ≥ 1,

(b) βn ≤ αm, for every n,m ≥ 1, and

(c) For every n ≥ 1 we have that

αn − βn ≤
1

2n−1
(α1 − β1).

(v) The sequence (αn)n∈N is a Cauchy-sequence.

(vi) If x ∈ R such that αn
n−→ x, then x ≥ 0 and x2 = a.

Proof. (i) We use the induction principle IND.
(ii) We show that

α2
n − a =

1

4

(
αn−1 +

a

αn−1

)2

− a ≥ 0.

(iii) Using (i) and (ii) we show that

αn − αn+1 ≥ 0.

(iv)(a) By (ii) we have that

α2
n ≥ a⇒

a

α2
n

≤ 1,

hence

β2
n =

a2

α2
n

=
a

α2
n

a ≤ 1 · a = a.

(iv)(b) By (iii) we have that

αn+1 ≤ αn ⇒
1

αn+1
≥ 1

αn

a>0⇒ βn+1 =
a

αn+1
≥ a

αn
= βn

i.e., for every n ≥ 1 we have that

(1.1) βn+1 ≥ βn.

Let n,m ≥ 1. Suppose first that n ≥ m. By (ii) for every n ≥ 1 we have that

(1.2) βn =
a

αn
≤ αn.

By (iii) we have that

αn ≤ αn−1 ≤ . . . ≤ αm,
hence by the Equation 1.2 we get

βn ≤ αn ≤ αn−1 ≤ . . . ≤ αm.
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Suppose next that n ≤ m. By the Equations 1.1 and 1.2 we get

βn ≤ βn+1 ≤ . . . ≤ βm ≤ αm.

(iv)(c) We use the induction principle IND+. If n = 1, then

α1 − β1 =
1

20
(
α1 − β1

)
.

If n > 1, then by the Equation 1.1 we have that

βn+1 ≥ βn ⇒ −βn+1 ≤ −βn,

hence

αn+1 − βn+1 ≤ αn+1 − βn

=
1

2

(
αn + βn

)
− βn

=
1

2

(
αn − βn

)
≤ 1

2

[
1

2n−1
(α1 − β1)

]
=

1

2n
(α1 − β1).

(v) We calculate the absolute value |αn − αm|. Suppose first that n ≤ m. By (iii)
we get |αn − αm| = αn − αm. By the cases (iv)(b) and (iv)(c) we have that

|αn − αm| = αn − αm ≤ αn − βn ≤
1

2n−1
(α1 − β1).

Suppose next that n ≥ m. By (iii) we get |αn − αm| = αm − αn. By the cases
(iv)(b) and (iv)(c) we have that

|αn − αm| = αm − αn ≤ αm − βm ≤
1

2m−1
(α1 − β1).

Suppose that α1 6= β1 ⇔ α1− β1 > 0, since α1 ≥ β1. If ζn = 1
2n−1 , for every n ≥ 1,

then ζn
n−→ 0, and for every n,m ≥ Nζ

ε
α1−β1

= Cε we have that

|αn − αm| < ε

i.e., (αn)n∈N is a Cauchy-sequence. Notice that if α1 − β1 = 0, then what we want
follows trivially. In this case we have that

α1 =
a

α1
⇔ α2

1 = a,

and by the case (iv)(c) we have that

0 ≤ |αn − βn| ≤
1

2n−1
(α1 − β1) = 0



26 1. NUMBER SYSTEMS

i.e., αn = βn, for every n ≥ 1, hence α2
n = a, for every n ≥ 1, and by (i) (αn)n≥1

is the constant sequence
√
a.

(vi) We show that βn
n−→ x. Since

|βn − x| ≤ |βn − αn|+ |αn − x|,

and since by (iv)(c) |βn − αn|
n−→ 0, we get βn

n−→ x. Hence

x2 =
(

lim
n−→∞

βn
)
·
(

lim
n−→∞

βn
)

= lim
n−→∞

β2
n

(iv)(a)

≤ a

(ii)

≤ lim
n−→∞

α2
n

=
(

lim
n−→∞

αn
)
·
(

lim
n−→∞

αn
)

= x · x
= x2.

From the inequalities x2 ≤ a ≤ x2 we conclude that x2 = a. �

As a consequence of the previous theorem, if we define the sequence

α0 = 1,

αn+1 =
1

2

(
αn +

2

αn

)
,

then

αn
n−→
√

2.

Using this sequence we can show that the set Q of rational numbers does not
satisfy CA (Exercise). As a generalization of the previous theorem, CA implies the
existence of the k-th root of a positive real, for every k ≥ 2.

Theorem 1.6.6. Let k ∈ N such that k ≥ 2, and let a, b ∈ R such that a > 0
and b > 0. Let the sequence (αn)n∈N be defined by

α0 = b,

αn+1 =
1

k

(
(k − 1)αn +

a

αk−1n

)
.

The following hold:

(i) αn > 0, for all n ∈ N.

(v) The sequence (αn)n∈N is a Cauchy-sequence.

(vi) If x ∈ R such that αn
n−→ x, then x ≥ 0 and xk = a.
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Definition 1.6.7. The set I of irrational real numbers is defined by

I = {x ∈ R | x /∈ Q}
i.e., I is the complement of Q in R.

Clearly,
√

2,
√

3 ∈ I.

1.7. Infinite series of real numbers

Definition 1.7.1. Let (αn)n∈N be a sequence of real numbers. The sequence
(σn)n∈N of partial sums of (αn)n∈N is defined by

σn =

n∑
k=0

αk = α0 + α1 + . . .+ αn,

for every n ∈ N. If (σn)n∈N converges to a real number x, we write

x = lim
n−→∞

σn =

∞∑
n=0

αn.

If (σn)n∈N converges, we write
∞∑
n=0

αn ∈ R.

If (σn)n∈N is divergent, we write
∞∑
n=0

αn /∈ R.

Note that if n ≥ m, then

σn − σm =

( n∑
k=0

αk

)
−
( m∑
k=0

αk

)
=
(
α0 + α1 + . . .+ αm + αm+1 + . . . αn

)
−
(
α0 + α1 + . . .+ αm

)
= αm+1 + . . .+ αn

=

n∑
k=m+1

αk.

As a special case we get

σn − σn−1 =

( n∑
k=0

αk

)
−
( n−1∑
k=0

αk

)
=
(
α0 + α1 + . . .+ αn−1 + αn

)
−
(
α0 + α1 + . . .+ αn−1

)
= αn.
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If αn = 0, for every n ∈ N, then for the corresponding sequence of partial sums
we have that

σn =

n∑
k=0

αk = 0 + 0 + . . .+ 0 = 0,

hence
∞∑
n=0

αn = 0.

If x 6= 0, and αn = x, for every n ∈ N, then for the corresponding sequence of
partial sums we have that

σn =

n∑
k=0

αk = x+ x+ . . .+ x = (n+ 1)x.

By the Archimedean axiom we get that the sequence (σn)n∈N is unbounded, hence
∞∑
n=0

αn /∈ R.

If (αn)n∈N is a sequence of real numbers, each term αn can be written as a tele-
scoping sum:

αn = α0 + (α1 − α0) + (α2 − α1) + . . .+ (αn − αn−1)

= α0 +

n∑
k=1

(αk − αk−1)

= α0 +

n−1∑
k=0

(αk+1 − αk).

We can use this writing of αn to calculate an infinite series as follows. Suppose
that we need to calculate

∞∑
n=1

γn,

for some sequence (γn)n∈N of real numbers.

Step 1. Let (αn)n∈N be a sequence of real numbers such that for every k ≥ 1

γk = αk − αk−1.
Step 2. By the above writing of αn as a telescoping sum we get

n∑
k=1

γk =

n∑
k=1

(αk − αk−1) = αn − α0.

Step 3. If x ∈ R such that limn−→∞ αn = x, then
∞∑
n=1

γn = lim
n−→∞

( n∑
k=0

γk

)
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= lim
n−→∞

(
αn − α0

)
= lim
n−→∞

αn − lim
n−→∞

α0

= x− α0.

Example. Suppose that we need to find

∞∑
n=1

1

n(n+ 1)
.

Since

γk =
1

k(k + 1)
=

k

k + 1
− k − 1

k
= αk − αk−1,

where

αn =
n

n+ 1
, n ∈ N,

and since α0 = 0 and x = limn−→∞ αn = 1, we get

∞∑
n=1

1

n(n+ 1)
= 1− 0 = 1.

The following result is an immediate consequence of the Proposition 1.5.5.

Proposition 1.7.2. Let (αn)n∈N, (βn)n∈N be sequences of real numbers, and
let λ, µ ∈ R. If

∞∑
n=0

αn ∈ R &

∞∑
n=0

βn ∈ R,

then
∞∑
n=0

(
λαn + µβn

)
∈ R, and

∞∑
n=0

(
λαn + µβn

)
= λ

( ∞∑
n=0

αn

)
+ µ

( ∞∑
n=0

βn

)
.

As a corollary of the above proposition, from the previous example we get

∞∑
n=1

5

n(n+ 1)
= 5

( ∞∑
n=1

1

n(n+ 1)

)
= 5 · 1 = 5.

Proposition 1.7.3 (Infinite geometric series). If x ∈ R such that |x| < 1, then

∞∑
n=0

xn ∈ R &

∞∑
n=0

xn =
1

1− x
.
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Proof. If n ∈ N, then

(1− x)

( n∑
k=0

xk
)

= 1− xn+1.

Since x 6= 1, we get

σn =

n∑
k=0

xk =
1− xn+1

1− x
.

Since |x| < 1, by the Exercise 4(ii)(a) of Sheet 4 we have that limn−→∞ xn+1 = 0,
hence

lim
n−→∞

σn =

∞∑
n=0

xn =
1

1− x
.

�

As a corollary of the previous proposition, we get
∞∑
n=1

1

2n
= 1,

since
∞∑
n=0

1

2n
=

∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2,

hence

2 =

(
1

2

)0

+

∞∑
n=1

1

2n
= 1 +

∞∑
n=1

1

2n
.

Proposition 1.7.4 (Cauchy-criterion of convergence). Let (αn)n∈N be a se-
quence of real numbers. The sequence (σn)n∈N of partial sums of (αn)n∈N converges
if and only if

∀ε>0∃Cε∈N∀n≥m≥Cε
(∣∣∣∣ n∑

k=m+1

αk

∣∣∣∣ < ε

)
.

Proof. By the Proposition 1.6.4 and the Completeness axiom the sequence
of partial sums (σn)n∈N converges if and only of (σn)n∈N is a Cauchy-sequence.
By definition this means that for every ε > 0 there is Cε ∈ N such that for all
n ≥ m ≥ Cε we have that

|σn − σm| =
∣∣∣∣ n∑
k=m+1

αk

∣∣∣∣ < ε.

�

Proposition 1.7.5 (Criterion of non-convergence of an infinite series). Let
(αn)n∈N be a sequence of real numbers. If the sequence (σn)n∈N of partial sums of
(αn)n∈N converges, then limn−→∞ αn = 0.
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Proof. By the Cauchy-criterion of convergence we have that

∀ε>0∃Cε∈N∀n≥Cε+1

(∣∣∣∣ n∑
k=n−1

αk

∣∣∣∣ = |αn| < ε

)
.

�

Now we have one more explanation, why for x 6= 0
∞∑
n=0

x /∈ R,

since the constant sequence x does not converge to 0. The converse to the Propo-
sition 1.7.5 does not hold, in general. One can show that

∞∑
n=0

1

n
=∞, although lim

n−→∞

1

n
= 0.

Definition 1.7.6. Let (αn)n∈N be a sequence of real numbers. The sequence
(σn)n∈N of partial sums of (αn)n∈N converges absolutely if

∞∑
n=0

|αn| ∈ R.

Proposition 1.7.7. If (αn)n∈N is a sequence of real numbers, then
∞∑
n=0

|αn| ∈ R ⇒
∞∑
n=0

αn ∈ R.

Proof. Exercise. �

Proposition 1.7.8 (Comparison test). If (αn)n∈N and (βn)n∈N are sequences
of real numbers, such that

∀n∈N
(
|αn| ≤ βn

)
, and

∞∑
n=0

βn ∈ R,

then
∞∑
n=0

|αn| ∈ R.

Proof. By the Cauchy-criterion of convergence we have that

∀ε>0∃Cβε ∈N∀n≥m≥Cβε

(∣∣∣∣ n∑
k=m+1

βk

∣∣∣∣ < ε

)
.

If we define C
|α|
ε = Cβε , then for every n ≥ m ≥ C |α|ε we get

n∑
k=m+1

|αk| ≤
n∑

k=m+1

βk ≤
∣∣∣∣ n∑
k=m+1

βk

∣∣∣∣ < ε,
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hence by the Cauchy-criterion of convergence again we get
∑∞
n=0 |αn| ∈ R. �

As a corollary of the comparison test we show (exercise) that
∞∑
n=1

1

nk
∈ R, k ≥ 2.

Proposition 1.7.9 (Quotient-criterion). Let (αn)n∈N be a sequence of real
numbers, such that αn 6= 0, for every n ≥ n0, and some n0 ∈ N. Let θ ∈ R such
that
(i) 0 < θ < 1, and
(ii) for every n ≥ n0, it holds ∣∣∣∣αn+1

αn

∣∣∣∣ ≤ θ.
Then

∞∑
n=0

|αn| ∈ R.

Proof. Since
∞∑
n=0

|αn| =
n0−1∑
k=0

|αk|+
∞∑

k=n0

|αk|,

it suffices to show that
∞∑

k=n0

|αk| ∈ R.

Because of this, we suppose without loss of generality that αn 6= 0, for every n ∈ N
i.e., n0 = 0. Because of (ii), a simple induction shows that

∀n∈N
(
|αn| ≤ |α0|θn

)
.

Since
∞∑
n=0

|α0|θn = |α0|
( ∞∑
n=0

θn
)

= |α0|
1

1− θ
,

what we want follows from the comparison test. �



CHAPTER 2

Real-valued functions of a real variable

In this chapter we study the continuity, the differentiability and the integration
of functions defined on a subset of R with values in R. We can picture these
functions through the representation of their graph in the Euclidean plane R2. First
we study the notion of a continuous function f : D ⊆ R → R. As it is indicated
by the term continuous, the graph of a continuous function is a continuous curve
in the plane R2.

2.1. The graph of a real-valued function of a real variable

Definition 2.1.1. A real-valued function of a real variable is a function f :
D → R, where D is a subset of R. The graph Gr(f) of f is defined by

Gr(f) = {(x, y) ∈ D × R | y = f(x)}.

Example 1. If c ∈ R, let the constant function c is the function fc : D → R,
defined by fc(x) = c, for every x ∈ R. If D = R, the graph of fc is a straight line
parallel to the axis of x’s, the position of which depends on the value of c, as it is
shown in the following figure.

0 < c

c < 0

c = 0

Example 2. The identity function idR : R → R, where x 7→ x, for every x ∈ R,
has as graph the following diagonal line, while the graph of the function g : R→ R,
defined by g(x) = −x, for every x ∈ R, is the line symmetric to the graph of idR,
with respect to the horizontal axis.

33
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x

y

idR(x) = xg(x) = −x

Example 3. The absolute value function |.| : R→ R, defined by x 7→ |x|, for every
x ∈ R, has as graph the following curve

x

y

|.|(x) = |x|

Example 4. The square function sq : R → R, defined by sq(x) = x2, for every
x ∈ R, has as graph the following curve

x

y

−3 −2 −1 0 1 2 3

1

2

3

sq(x) = x2

Example 5. The function
√

: R+ → R, defined by
√

(x) =
√
x, for every x ∈ R+,

has as graph the following curve
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√
(x) =

√
x

Example 6. The Dirichlet function Dir : R→ R is defined by

Dir(x) :=

{
1 , x ∈ Q
0 , x ∈ I,

and its graph cannot be represented by a continuous curve in the plane.

Example 7. The floor function b.c : R → R is defined by x 7→ bxc, for every
x ∈ R, where bxc is the unique integer such that

bxc ≤ x < bxc+ 1.

The graph of the floor function is pictured in the following figure.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Definition 2.1.2. Let D ⊆ R, f, g : D → R, and λ ∈ R. Let the functions
f + g, λf, f · g : D → R, defined by

(f + g)(x) = f(x) + g(x),

(λf)(x) = λf(x),

(f · g)(x) = f(x) · g(x),
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for every x ∈ D, respectively. If

D∗g = {x ∈ D | g(x) 6= 0},

we define the function f
g : D∗g → R, where(

f

g

)
(x) =

f(x)

g(x)
,

for every x ∈ D∗g .

Example 8. The function 1
sq

: R∗ → R, where R∗ = {x ∈ R | x 6= 0}, is defined by(
1

sq

)
(x) =

1

x2
,

for every x ∈ R∗.
Example 9. A polynomial p is a function p : R→ R, where

p =

n∑
k=0

akidkR

= a0id0
R + a1id1

R + . . . anidnR

= a0 + a1idR + a2id2
R + . . .+ anidnR,

where a0, a1, . . . , an ∈ R. If an 6= 0, the number n is called the degree of p. If
x ∈ R, then by definition we get

p(x) =

( n∑
k=0

akidkR

)
(x)

=
(
a0 + a1idR + a2id2

R + . . .+ anidnR
)
(x)

= a0 + a1x+ a2x
2 + . . .+ anx

n.

The identity function idR is a polynomial of degree 1 (a0 = 0 and a1 = 1), while
the function h(x) = x2 is a polynomial of degree 2 (a0 = a1 = 0 and a2 = 1).

Example 10. If p =
∑n
k=0 akidkR and q =

∑m
k=0 bkidkR are polynomials, the rational

function Rpq is a function Rpq : D∗q → R, defined by

Rpq(x) =
p(x)

q(x)

=

(∑n
k=0 akidkR

)
(x)(∑m

k=0 bkidkR

)
(x)
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=
a0 + a1x+ a2x

2 + . . .+ anx
n

b0 + b1x+ b2x2 + . . .+ bmxm
,

where
D∗q = {x ∈ R | b0 + b1x+ b2x

2 + . . .+ bmx
m 6= 0}.

The next definition is a special case of the Definition 1.2.3.

Definition 2.1.3. Let D,E ⊆ R, and let f : D → R and g : E → R, such that

Im(f) = {f(x) | x ∈ D} ⊆ E.
The composition g ◦ f : D → R of f and g is defined, for every x ∈ D, by

(g ◦ f)(x) = g(f(x))

D E R.
f g

g ◦ f

Example 11. If sq(x) = x2, then (
√ ◦ sq)(x) =

√
(sq(x)) =

√
x2 = |x|

R R+ R.
sq

√

√ ◦ sq = |.|

2.2. Continuity

Definition 2.2.1. Let D ⊆ R, f : D → R, and x0, l ∈ R ∪ {−∞,+∞}. Let
also the set

F(N,R) = {α : N→ R}.
(i) Let D(x0) be the set of all sequences in D that converge to x0 i.e.,

D(x0) = {(αn)n∈N ∈ F(N,R) | ∀n∈N(αn ∈ D) & lim
n−→∞

αn = x0}.

If the set D(x0) is non-empty, we say that x0 is an accumulation-point of D. If x0
is an accumulation-point of D, we define

lim
x−→x0

f(x) = l :⇔ ∀(αn)n∈N∈D(x0)

(
lim

n−→∞
f(αn) = l

)
i.e., [

lim
n−→∞

αn = x0
]
⇒
[

lim
n−→∞

f(αn) = l
]
,

for every sequence of real numbers (αn)n∈N in D.

(ii) If x0 ∈ R, let the set

D+(x0) = {(xn)n∈N ∈ F(N,R) | ∀n∈N(αn ∈ D & αn > x0) & lim
n−→∞

αn = x0}.
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If the set D+(x0) is non-empty, we define

lim
x−→x+

0

f(x) = l :⇔ ∀(αn)n∈N∈D+(x0)

(
lim

n−→∞
f(αn) = l

)
.

(iii) If x0 ∈ R, let the set

D−(x0) = {(αn)n∈N ∈ F(N,R) | ∀n∈N(αn ∈ D & αn < x0) & lim
n−→∞

αn = x0}.

If the set D−(x0) is non-empty, we define

lim
x−→x−0

f(x) = l :⇔ ∀(αn)n∈N∈D−(x0)

(
lim

n−→∞
f(αn) = l

)
.

(iv) Let D be unbounded above i.e.,

∀n∈N∃x∈D(x ≥ n).

For such a set D we define

D(+∞) = {(αn)n∈N ∈ F(N,R) | ∀n∈N(αn ∈ D) & lim
n−→∞

αn = +∞},

and

lim
x−→+∞

f(x) = l :⇔ ∀(αn)n∈N∈D(+∞)

(
lim

n−→∞
f(αn) = l

)
.

(v) Let D be unbounded below i.e.,

∀n∈N∃x∈D(x ≤ −n).

For such a set D we define

D(−∞) = {(αn)n∈N ∈ F(N,R) | ∀n∈N(αn ∈ D) & lim
n−→∞

αn = −∞},

and

lim
x−→−∞

f(x) = l :⇔ ∀(αn)n∈N∈D(−∞)

(
lim

n−→∞
f(αn) = l

)
.

If x0 ∈ D, then x0 is an accumulation-point of D, since the constant sequence
x0 is in D(x0).

Example 1. If we consider the floor function (Example 7 in the previous section),

x

y

−2 −1 0 1 2

−2

−1

0

1

2
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then
lim

x−→0+
bxc = 0 & lim

x−→0−
bxc = −1,

since if (αn)n∈N ∈ R+(0), then by definition αn > 0, for every n ∈ N, and since
limn−→∞ αn = 0, then for every n ≥ n0, for some n0 ∈ N, we have that αn ∈ (0, 1],
hence bαnc = 0, for every n ≥ n0. Hence

lim
n−→∞

bαnc = lim
n−→∞

0 = 0.

Similarly, if (αn)n∈N ∈ R−(0), then by definition αn < 0, for every n ∈ N, and
since limn−→∞ αn = 0, then for every n ≥ n0, for some n0 ∈ N, we have that
αn ∈ (−1, 0], hence bαnc = −1, for every n ≥ n0. Hence

lim
n−→∞

bαnc = lim
n−→∞

−1 = −1.

Definition 2.2.2. Let D be a subset of R and x0 ∈ D. A function f : D → R
is continuous at x0, if

lim
x−→x0

f(x) = f(x0).

The function f is called continuous on D, if it is continuous at very point in D.

By the Definition 2.2.1 f : D → R is continuous at x0 ∈ D if and only if[
lim

n−→∞
αn = x0

]
⇒
[

lim
n−→∞

f(αn) = f(x0)
]
,

for every sequence of real numbers (αn)n∈N inD. The Examples 1-5 of real functions
in the previous section are continuous functions on their domain of definition, while
the Examples 6 and 7 are not.

Proposition 2.2.3. Let D ⊆ R, x0 ∈ D, f, g : D → R, and λ ∈ R.

(I) Suppose that f, g are continuous at x0.

(i) The functions f + g, λf, f · g : D → R, defined in the Definition 2.1.2, are
continuous at x0.

(ii) If g(x0) 6= 0 ⇔ x0 ∈ D∗g , the function f
g : D∗g → R, defined also in the

Definition 2.1.2, is continuous at x0.

(II) (i) If f, g are continuous on D, then the functions f + g, λf, f · g : D → R are
also continuous on D.

(ii) If f, g are continuous on D∗g , the function f
g : D∗g → R is continuous on D∗g .

Proof. (I)(i) Let (αn)n∈N be a sequence of reals in D such that limn−→∞ αn =
x0. By the Proposition 1.5.5 we get

lim
n−→∞

(
f + g

)
(αn) = lim

n−→∞

[
f(αn) + g(αn)

]
= lim
n−→∞

f(αn) + lim
n−→∞

g(αn)

= f(x0) + g(x0)
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=
(
f + g

)
(x0),

lim
n−→∞

(
λf
)
(αn) = lim

n−→∞
λf(αn) = λ lim

n−→∞
f(αn) = λf(x0) =

(
λf
)
(x0),

and

lim
n−→∞

(
f · g

)
(αn) = lim

n−→∞

[
f(αn) · g(αn)

]
= lim
n−→∞

f(αn) · lim
n−→∞

g(αn)

= f(x0) · g(x0)

=
(
f · g

)
(x0).

(I)(ii) Let (βn)n∈N be a sequence of reals in D∗g such that limn−→∞ βn = x0. By
the Proposition 1.5.5 we get

lim
n−→∞

(
f

g

)
(βn) = lim

n−→∞

f(βn)

g(βn)
=

limn−→∞ f(βn)

limn−→∞ g(βn)
=
f(x0)

g(x0)
=

(
f

g

)
(x0).

(II)(i) and (II)(ii) follow immediately from (I)(i) and (I)(ii), respectively. �

By the previous proposition the real functions in the Examples 8-10 of the
previous section are continuous functions on their domain of definition.

Proposition 2.2.4. Let D,E ⊆ R, x0 ∈ D and y0 ∈ E, and let f : D → R and
g : E → R, such that Im(f) = {f(x) | x ∈ D} ⊆ E and y0 = f(x0). The following
hold:

(i) If f is continuous at x0 and g is continuous at y0, the composition g◦f : D → R
is continuous at x0.

(ii) If f is continuous on D and g is continuous on E, the composition g ◦ f is
continuous on D.

Proof. (i) Let (αn)n∈N be a sequence of reals in D such that limn−→∞ αn =
x0. By the definition of continuity of f at x0 and of g at y0 we have that

lim
n−→∞

f(αn) = f(x0) = y0 & lim
n−→∞

g
(
f(αn)

)
= g(y0) = g(f(x0)).

Hence,

lim
n−→∞

(
g ◦ f

)
(αn) = lim

n−→∞
g
(
f(αn)

)
= g(f(x0))

=
(
g ◦ f

)
(x0).

(ii) It follows immediately from (i). �

Example. Since the function sq(x) = x2 is continuous on R and the function
√

is

continuous on R+ (Exercise), by the previous proposition we have that the absolute

value-function is continuous on R [recall that (
√◦sq)(x) =

√
(sq(x)) =

√
x2 = |x|]
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R R+ R.
sq

√

√ ◦ sq = |.|

Theorem 2.2.5 (Intermediate value theorem). Let a, b ∈ R such that a < b,
and let f : [a, b] → R be continuous on [a, b]. If f(a)f(b) < 0, then there exists
x0 ∈ [a, b] such that f(x0) = 0.

Proof. See [1], p. 106. �

Notice that the condition f(a)f(b) < 0 above is equivalent to[
f(a) < 0 & f(b) > 0

]
or

[
f(a) > 0 & f(b) < 0

]
.

Corollary 2.2.6. Let a, b ∈ R such that a < b, and let f : [a, b] → R be
continuous on [a, b]. If c ∈ R such that f(a) < c < f(b), then there exists x0 ∈ [a, b]
such that f(x0) = c.

Proof. Let the function g : [a, b]→ R, defined by

g(x) = f(x)− c,
for every x ∈ [a, b]. Since g(a) = f(a) − c < 0 and g(b) = f(b) − c > 0, by the
Theorem 2.2.5 there exists x0 ∈ [a, b] such that

g(x0) = 0⇔ f(x0)− c = 0⇔ f(x0) = c.

�

Corollary 2.2.7. Let p : R → R a polynomial function of odd degree i.e.,
there is n ∈ N such that

p(x) = a0 + a1x+ a2x
2 + . . .+ a2nx

2n + x2n+1,

for every x ∈ R. Then there exists x0 ∈ R such that p(x0) = 0.

Proof. If x 6= 0, we have that

p(x) = x2n+1

(
a0

x2n+1
+

a1
x2n

+
a2

x2n−1
+ . . .+

a2n
x

+ 1

)
.

Then we get
lim

x−→+∞
p(x) = +∞ & lim

x−→−∞
p(x) = −∞.

Hence we can find a < 0 < b such that p(a) < 0 < p(b). Since p is continuous on
R, it is also continuous on a, b], hence by the Theorem 2.2.5 there is x0 ∈ R such
that p(x0) = 0. �

Notice that there is a polynomial function of even degree without any roots
i.e., p(x) 6= 0, for every x ∈ R. Consider for example the polynomial function
p(x) = x2 + 1, where x ∈ R. This is also evident by the graph of p.
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x

y

−3 −2 −1 0 1 2 3

1

2

3

p(x) = x2 + 1

Definition 2.2.8. A real function f : D → R is called bounded, if there is
M ∈ R such that M > 0 and

∀x∈D
(
|f(x)| ≤M

)
.

The geometric interpretation of a bounded function f with bound M > 0 is
that its graph Gr(f) is between the horizontal lines y = M and y = −M .

y = M

y = −M

A continuous function defined on an unbounded interval can be unbounded.
E.g., the above function p(x) = x2 + 1 is defined on R and its graph cannot be
between any two horizontal lines. If a continuous function though, is defined on a
bounded set, it is always a bounded function.

Theorem 2.2.9. Let a, b ∈ R such that a < b, and let f : [a, b] → R be
continuous on [a, b]. Then there exists x0, x1 ∈ [a, b] such that f(x0) = m, f(x1) =
M , and

∀x∈[a,b]
(
m ≤ f(x) ≤M

)
.

Proof. See [1], p. 110. �
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2.3. Elementary Functions

Proposition 2.3.1. For every x ∈ R the exponential series

exp(x) =

∞∑
n=0

xn

n!
=
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+ . . .

converges absolutely.

Proof. We use the quotient-criterion (Proposition 1.7.9). Let

αn =
xn

n!
.

For every x 6= 0 and n ≥ 2|x| we have that∣∣∣∣αn+1

αn

∣∣∣∣ =

∣∣∣∣ xn+1n!

xn(n+ 1)!

∣∣∣∣ =
|x|
n+ 1

≤ 1

2
.

�

With the help of the exponential series we define the famous number e of Euler

e = exp(1) =

∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

3!
+ . . . .

and the exponential function exp : R→ R with exp(x) = ex, for every x ∈ R.

x

y

y = x

exp(x) = ex

(0, 1)

(1, e)

(1, 0)

exp−1(x) = lnx
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Proposition 2.3.2. For every x, y ∈ R the following hold:

(i) exp(x+ y) = exp(x) exp(y).

(ii) exp(x) > 0.

(iii) exp(−x) = 1
exp(x) .

(iv) exp(k) = ek, for every k ∈ Z.

Proof. See [1], p. 80. �

Basic limit 1. Next we explain why

lim
x−→0

exp(x)− 1

x
= 1.

From the definition of exp(x) we have that

exp(x)− 1 =

( ∞∑
n=0

xn

n!

)
− 1 =

∞∑
n=1

xn

n!
,

hence, if x 6= 0 we have that

exp(x)− 1

x
=

1

x

∞∑
n=1

xn

n!

=
1

x

(
x1

1!
+
x2

2!
+
x3

3!
+ . . .

)
= 1 +

(
x1

2!
+
x2

3!
+
x3

4!
+ . . .

)
,

which converges to 1, as x converges to 0.

The exponential function exp is continuous and strictly increasing (x < y ⇒
exp(x) < exp(y)), and maps R bijectively onto

R+∗ = {x ∈ R | x > 0}.
Its inverse function

ln : R+∗ → R x 7→ ln(x)

is also continuous and strictly monotone, and it is called the natural logarithmic
function. By definition we have that

exp(ln(x)) = eln(x) = x,

ln(exp(x)) = ln ex = x,

and since exp and ln are injective functions we have that

exp(x) = exp(y)⇒ x = y, x, y ∈ R,
ln(x) = ln(y)⇒ x = y, x, y ∈ R+.

It is then easy to show (Exercise) that

ln(x · y) = ln(x) + ln(y),
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for every x, y ∈ R+∗. Instead of ln(x), one also writes log(x).
For every x ∈ R the infinite series

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
=
x

1!
− x3

3!
+
x5

5!
∓ . . . ,

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
=
x0

0!
− x2

2!
+
x4

4!
∓ . . .

are absolutely convergent (see [1], p. 140). Their absolute convergence follows from
the absolute convergence of the infinite exponential series. The functions

sin : R→ R x 7→ sin(x), & cos : R→ R x 7→ cos(x)

are shown to be continuous on R.

x

y

f(x) = sinx

x

y

f(x) = cosx

The real number π
2 is the unique root of the function cos in the interval [0, 2]

(see [1], pp. 142-143). Based on the previous definitions it is not trivial to show the
fundamental equality

sin(x)2 + cos(x)2 = 1.
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Basic limit 2. Next we explain why

lim
x−→0

sin(x)

x
= 1.

From the definition of sin(x) we have that

sin(x)

x
=

1

x

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

=
1

x

(
x

1!
− x3

3!
+
x5

5!
∓ . . .

)
= 1− x2

3!
+
x4

5!
∓ . . . ,

which converges to 1, as x converges to 0.

The tangent function is defined on the set

Dtan = R \
{
π

2
+ kπ | k ∈ Z

}
through the rule

tan(x) =
sin(x)

cos(x)
.

The cotangent function is defined on the set

Dcot = R \ {kπ | k ∈ Z}

through the rule

cot(x) =
cos(x)

sin(x)
.

One can show that

cot(x) = tan
(π

2
− x
)
.

2.4. Differentiation

Definition 2.4.1. Let D ⊆ R and f : D → R a real function. We say that f
is differentiable at x0 ∈ D, is the limit

f ′(x0) = lim
h−→0

f(x0 + h)− f(x0)

h

exists. For the calculation of this limit we consider sequences (αn)n∈N of real
numbers such that limn−→∞ hn = 0 and

[hn 6= 0 & x0 + hn ∈ D], for all n ∈ N.
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The limit f ′(x0) is called the derivative of f at x0. The function f is called differ-
entiable in D, if f is differentiable at every point x ∈ D. We also use the notations

df(x0)

dx
, or

df

dx
(x0) for f ′(x0).

The ratio
f(x0 + h)− f(x0)

h
is the tangent of the following angle in the triangle (x0, f(x0)), (x0 + h, f(x0 + h)),
and (x0 + h, f(x0)).

x

y

−1 0 1 2 3 4 5
0

1

2

3

h

f(x0 + h)− f(x0)

By taking the limit
h −→ 0⇔ x0 + h −→ x0,

the derivative f ′(x0) of f at x0 is the slope of the line that is tangent to the graph
of f at the point (x0, f(x0)).

Example 1. For the constant function f : R→ R, f(x) = c, for all x ∈ R, we get

f ′(x0) = lim
h−→0

f(x0 + h)− f(x0)

h
= lim
h−→0

c− c
h

= lim
h−→0

0 = 0.

Example 2. For the identity map idR : R→ R, idR(x) = x, for all x ∈ R, we get

idR
′(x0) = lim

h−→0

idR(x0 + h)− idR(x0)

h
= lim
h−→0

x0 + h− x0
h

= lim
h−→0

1 = 1.

Example 3. For the function g : R → R, g(x) = λx, for all x ∈ R, where λ ∈ R,
we get

g′(x0) = lim
h−→0

λ(x0 + h)− λx0
h

= lim
h−→0

λx0 + λh− λx0
h

= lim
h−→0

λ = λ.
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Example 4. For the function sq : R→ R, where sq(x) = x2, for all x ∈ R, we get

sq′(x0) = lim
h−→0

sq(x0 + h)− sq(x0)

h

= lim
h−→0

(x0 + h)2 − x20
h

= lim
h−→0

x20 + 2x0h+ h2 − x20
h

= lim
h−→0

2x0h+ h2

h

= lim
h−→0

h(2x0 + h)

h
= lim
h−→0

(2x0 + h)

= lim
h−→0

2x0 + lim
h−→0

h

= 2x0 + 0

= 2x0.

Example 5. For the inverse function inv : R∗ → R, where

inv(x) =
1

x
,

for all x ∈ R∗, we get

inv′(x0) = lim
h−→0

inv(x0 + h)− inv(x0)

h

= lim
h−→0

1
x0+h

− 1
x0

h

= lim
h−→0

x0−x0−h
(x0+h)x0

h

= lim
h−→0

−h
h · x0(x0 + h)

= lim
h−→0

−1

x0(x0 + h)

= − 1

limh−→0 x0(x0 + h)

= − 1

limh−→0(x20 + x0h)

= − 1

limh−→0 x20 + limh−→0 x0h

= − 1

x20 + 0
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= − 1

x20
.

Example 6. For the exponential function exp : R→ R we get (Exercise)

exp ′(x0) = x0,

for all x0 ∈ R.

Example 7. For the sinus function sin : R→ R we get (Exercise)

sin ′(x0) = cos(x0),

for all x0 ∈ R.

Example 8. For the cosinus function cos : R→ R we get (Exercise)

cos ′(x0) = − sin(x0),

for all x0 ∈ R.

Example 9. The absolute-value function |.| : R → R, where |.|(x) = |x|, for all
x ∈ R, is not differentiable at x0 = 0. Suppose that

lim
h−→0

|x0 + h| − |x0|
h

= l ∈ R.

Let the following sequences of real numbers:

αn =
1

n+ 1
, βn = − 1

n+ 1
, n ∈ N.

We get

1 = lim
n−→∞

1
n+1
1

n+1

= lim
n−→∞

∣∣0 + 1
n+1

∣∣− |0|
1

n+1

= lim
n−→∞

|0 + αn| − |αn|
αn

= l

= lim
n−→∞

|0 + βn| − |βn|
βn

= lim
n−→∞

∣∣0− 1
n+1

∣∣− |0|
− 1
n+1

= lim
n−→∞

−
1

n+1
1

n+1

= −1.

Proposition 2.4.2. If the function f : D → R is differentiable at x0 ∈ D, then
f is continuous at x0.
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Proof. It suffices to show (Exercise 2(i), Sheet 10)

lim
h−→0

f(x0 + h) = f(x0)

This follows from the existence of f ′(x0) and the equality

f(x0 + h)− f(x0) =

[
f(x0 + h)− f(x0)

h

]
h,

where h 6= 0. �

Proposition 2.4.3. Let f, g : D → R be differentiable functions at x0 ∈ D,
and λ ∈ R. Then the functions

f + g, λf, f · g : D → R
are also differentiable at x0, and the following rules hold:

(f + g)′(x0) = f ′(x0) + g′(x0),

(λf)′(x0) = λf ′(x0),

(f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0).

If g(x) 6= 0, for every x ∈ D, then the function

f

g
: D → R

is also differentiable at x0 with(
f

g

)′
(x0) =

f ′(x0) · g(x0)− f(x0) · g′(x0)

g(x0)2
.

Proof. We use the following equalities:

(f + g)(x0 + h)− (f + g)(x0)

h
=
f(x0 + h)− f(x0)

h
+
g(x0 + h)− g(x0)

h
,

(λf)(x0 + h)− (λf)(x0)

h
= λ · f(x0 + h)− f(x0)

h
,

(fg)(x0 + h)− (fg)(x0)

h

=
f(x0 + h)g(x0 + h)− f(x0)g(x0 + h) + f(x0)g(x0 + h)− f(x0)g(x0)

h

=
[f(x0 + h)− f(x0)]g(x0 + h) + f(x0)[g(x0 + h)− g(x0)]

h

=

[
f(x0 + h)− f(x0)

h

]
g(x0 + h) + f(x0)

[
g(x0 + h)− g(x0)

h

]
.

If f(x) = 1, for every x ∈ D, then
1

g(x0+h)
− 1

g(x0)

h
=

1

h

g(x0)− g(x0 + h)

g(x0)g(x0 + h)
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= − 1

g(x0)g(x0 + h)

[
g(x0 + h)− g(x0)

h

]
,

and (
1

g

)′
(x0) =

−g′(x0)

g(x0)2
.

The general case follows from the product-rule:(
f

g

)′
(x0) =

(
f · 1

g

)′
(x0)

= f ′(x0) · 1

g(x0)
+ f(x0) ·

(
1

g

)′
(x0)

= f ′(x0) · 1

g(x0)
+ f(x0) · −g

′(x0)

g(x0)2

=
f ′(x0) · g(x0)− f(x0) · g′(x0)

g(x0)2
.

�

Example 10. Let n ∈ N+ and let fn : R → R defined by fn(x) = xn, for every
x ∈ R. Then

fn
′(x0) = nxn−10 ,

for every x0 ∈ R. If n = 1, then

f1
′(x0) = idR

′(x0) = 1 = 1f1(x0)1−1.

For the induction-step, since

fn+1(x) = xn+1 = xnx = fn(x)idR(x),

from the product-rule we have that

fn+1
′(x0) =

(
fn · idR

)′(x0)

= fn
′(x0)idR(x0) + fn(x0)idR

′(x0)

= fn
′(x0)x0 + fn(x0)1

(I.H.)
= nxn−10 x0 + xn0

= nxn0 + xn0

= (n+ 1)xn0 .

Corollary 2.4.4. Let f, g : D → R be n-times differentiable functions at
x0 ∈ D, and λ ∈ R. If f (n)(x0) denotes the nth-derivative of f at x0, where
f (0) = f , then f + g, λf, f · g : D → R are n-times differentiable functions at x0
and the following equalities hold:

(f + g)(n)(x0) = f (n)(x0) + g(n)(x0),



52 2. REAL-VALUED FUNCTIONS OF A REAL VARIABLE

(λf)(n)(x0) = λf (n)(x0),

(f · g)(n)(x0) =

n∑
k=0

(
n
k

)
f (n−k)(x0) · g(k)(x0).

Proof. Exercise. �

Proposition 2.4.5 (Derivative of the inverse function). Let D ⊆ R be a non-
trivial interval of R (i.e., D has more than one points), f : D → R a continuous
and strictly monotone function and g = f−1 : f(D)→ R its inverse function.

D f(D) D.
f g

g ◦ f = idD

If f is differentiable at x0 ∈ D with f ′(x0) 6= 0, then g is differentiable at y0 = f(x0)
with

g′(y0) =
1

f ′(x0)
=

1

f ′(g(y0))
.

Proof. Let (βn)n∈N ⊆ f(D) \ {y0} such that βn
n−→ y0. If αn = g(βn), for

every n ∈ N, then by the continuity of g at y0 we get αn
n−→ x0. Notice that by

the injectivity of g we have that βn 6= y0 ⇒ αn 6= x0, for every n ∈ N. Hence

g′(y0) = lim
n−→∞

g(βn)− g(y0)

βn − y0
= lim
n−→∞

αn − x0
f(αn)− f(x0)

= lim
n−→∞

1
f(αn)−f(x0)

αn−x0

=
1

limn−→∞
f(αn)−f(x0)

αn−x0

=
1

f ′(x0)
.

�

In the above proof we used the equality

f ′(x0) = lim
x−→x0

f(x)− f(x0)

x− x0
,

for the proof of which we work as in the solution of the Exercise 2(i), Sheet 10.
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Example 11. The function ln : R+∗ → R, where x 7→ ln(x), is the inverse function
of the function exp : R→ R. From the previous proposition we get

ln ′(x0) =
1

exp ′(ln(x0))
=

1

exp(ln(x0))
=

1

x0
.

Proposition 2.4.6 (Chain-rule). Let f : D → R and g : E → R such that
f(D) ⊆ E

D f(D) ⊆ E R.
f g

g ◦ f

If f is differentiable at x0 ∈ D and g is differentiable at y0 = f(x0) ∈ E, then the
composite function g ◦ f : D → R is differentiable at x0 with

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Proof. Let the function h : E → R be defined by

h(e) :=


g(e)−g(y0)
e−y0 , e 6= y0

g′(y0) , e = y0.

Since g is differentiable at y0, we get

lim
e−→y0

h(e) = g′(y0) = h(y0)

i.e., h is continuous at y0. Moreover, we have that

∀e∈E
(
g(e)− g(y0) = h(e)(e− y0)

)
.

If e 6= y0, then we use the definition of h(e), while if e = y0, both therms of the
equality are 0. Hence

(g ◦ f)′(x0) = lim
x−→x0

g(f(x))− g(f(x0))

x− x0

= lim
x−→x0

h(f(x))
[
f(x)− f(x0)

]
x− x0

= lim
x−→x0

h(f(x)) lim
x−→x0

f(x)− f(x0)

x− x0
= h(f(x0))g′(x0)

= h(y0)g′(x0)

= g′(f(x0))g′(x0).

�
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Example 12. Let f : R→ R be differentiable in R and let the function g : R→ R
be defined by

g(x) = f(2019x+ 2020),

for every x ∈ R. Then

g′(x0) = 2019f ′(2019x0 + 2020).

Example 13. Let g : R→ R be defined by

g(x) = sin2(x),

for every x ∈ R. I.e., h = sq ◦ sin. Hence

g′(x0) = 2 sin(x0) sin ′(x0) = 2 sin(x0) cos(x0).

Example 14. Let h : R→ R be defined by

h(x) = cos2(x),

for every x ∈ R. I.e., h = sq ◦ cos. Hence

h′(x0) = 2 cos(x0) cos ′(x0) = 2 cos(x0)[− sin(x0)] = −2 sin(x0) cos(x0).

Example 15. Let a ∈ R and f : R+∗ → R be defined by

f(x) = xa,

for every x ∈ R. Then one can show (Exercise) that

f ′(x0) = axa−10 ,

for every x0 ∈ R+∗.

Let f : C → R, g : D → R, and h : E → R such that f(C) ⊆ D and F (D) ⊆ E

C f(C) ⊆ D g(D) ⊆ E R.
f g h

h ◦ g ◦ f

If f is differentiable at x0 ∈ E, g is differentiable at y0 = f(x0) ∈ E, and h
is differentiable at z0 = g(y0), then one can show (Exercise) that the composite
function h ◦ g ◦ f : C → R is differentiable at x0 with

(h ◦ g ◦ f)′(x0) = h′(g(f(x0))) · g′(f(x0)) · f ′(x0).
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2.5. Some geometric properties of the derivative

Definition 2.5.1. A function f : [a, b]→ R has a local maximum at ξ ∈ [a, b],
if there is ε > 0 such that

∀x∈[a,b]
(
|x− ξ| < ε⇒ f(x) ≤ f(ξ)

)
,

while f has a local minimum at ξ ∈ [a, b], if there is ε > 0 such that

∀x∈[a,b]
(
|x− ξ| < ε⇒ f(x) ≥ f(ξ)

)
.

A function f : [a, b]→ R has a local extremum at ξ ∈ [a, b], if f has a local maximum
at ξ or f has a local minimum at ξ.

A constant function has a (local) maximum [and a (local) minimum] at every
point of its domain. Clearly, a local minimum (maximum) may not be a (global)
minimum (maximum).

Proposition 2.5.2. Let f : (a, b) → R and ξ ∈ [a, b] such that f has a local
extremum at ξ and f is differentiable at ξ. Then f ′(ξ) = 0.

Proof. We suppose that f has a local maximum at ξ and for the case of a
local minimum we proceed similarly. Let ε > 0 such that f(x) ≤ f(ξ), for every
x ∈ [a, b] with |x− ξ| < ε. We have that

f ′(ξ) = lim
h−→0

f(ξ + h)− f(ξ)

h

= lim
h−→0+

f(ξ + h)− f(ξ)

h
:= f ′+(ξ)

= lim
h−→0−

f(ξ + h)− f(ξ)

h
:= f ′+(ξ).

Since for appropriately small h we have that f(ξ + h) − f(ξ) ≤ 0, if h > 0, then
f(ξ+h)−f(ξ)

h ≤ 0, hence f ′+(ξ) ≤ 0, while if h < 0, then f(ξ+h)−f(ξ)
h ≥ 0, hence

f ′−(ξ) ≥ 0. Consequently, f ′(ξ) = 0. �

If a differentiable function f at ξ satisfies f ′(ξ) = 0, this does not imply, in
general, that f has a local extremum at ξ. E.g., if f : R→ R is defined by f(x) = x3,
for every x ∈ R, then f ′(0) = 0, while f has not a local extremum at 0.
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-2 -1 1 2 5

1

2

5

x

y

Proposition 2.5.3 (Rolle’s theorem). Let f : [a, b] → R, where a < b, a
continuous function with f(a) = f(b). Let also f be differentiable in the open
interval (a, b). Then there is c ∈ (a, b) such that f ′(c) = 0.

f(a)

a

f(b)

b

f(c)

c
x

y

Proof. If f is constant, then we can take as c any element of (a, b). If f is
not constant, then there is x0 ∈ (a, b) with f(x0) > f(a) or f(x0) < f(a). Let
f(x0) > f(a) is the case. Since f is a continuous function on [a, b], it has a global
minimum at some ξ ∈ [a, b]. Since x0 ∈ (a, b), we get ξ ∈ (a, b). By Proposition 2.5.2
we have that f ′(ξ) = 0. We proceed similarly, if f(x0) < f(a). �
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Corollary 2.5.4 (Mean value theorem). Let f : [a, b] → R, where a < b, a
continuous function, which is also differentiable in the open interval (a, b). Then
there is c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

f(a)

a

f(b)

b

f(c)

c
x

y

Proof. Let the function F : [a, b]→ R defined by

F (x) = f(x)−
[
f(b)− f(a)

b− a

]
(x− a).

for every x ∈ [a, b]. Clearly, F is continuous on [a, b] and differentiable in (a, b) with

F ′(x) = f ′(x)− f(b)− f(a)

b− a
,

for every x ∈ (a, b). Moreover, F (a) = f(a) = F (b), hence by Rolle’s theorem there
is c ∈ (a, b) such that F ′(c) = 0. By the above formula for F ′(x) we get

F ′(c) = 0⇔ f ′(c) =
f(b)− f(a)

b− a
.

�

The geometric meaning of the mean value theorem is that there is a point
(c, f(c)) in the graph of f such that the line tangent at (c, f(c)) is parallel to the
segment from (a, f(a)) to (b, f(b)). Notice that if f satisfies the hypotheses of the
mean value theorem and f(a) = f(b), then Rolle’s theorem follows from the mean
value theorem.
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Corollary 2.5.5. Let f : [a, b] → R, where a < b, a continuous function,
which is also differentiable in the open interval (a, b). Let m,M ∈ R such that

∀x∈(a,b)
(
m ≤ f ′(x) ≤M

)
.

Then for every x1, x2 ∈ [a, b] with x1 ≤ x2 we have that

m(x2 − x1) ≤ f(x2)− f(x1) ≤M(x2 − x1).

Proof. If x1 = x2, then all terms in the required inequalities are 0, hence equal
to each other. Let x1 < x2. Since the restriction f|[x1,x2] of f to the subinterval
[x1, x2] of [a, b] is continuous on [x1, x2] and differentiable in (x1, x2), by the mean
value theorem there is c ∈ (x1, x2) such that

m ≤ f ′(c) =
f(x2)− f(x1)

x2 − x1
≤M,

and what we want to show follows now immediately. �

Corollary 2.5.6. Let f : [a, b] → R, where a < b, a continuous function,
which is also differentiable in the open interval (a, b). If f ′(x) = 0, for every
x ∈ (a, b), then f is constant on [a, b].

Proof. By our hypothesis we have that

∀x∈(a,b)
(
0 ≤ f ′(x) ≤ 0

)
.

Let x1, x2 ∈ [a, b]. By the previous corollary we get

0 = 0(x2 − x1) ≤ f(x2)− f(x1) ≤ 0(x2 − x1) = 0,

hence f(x1) = f(x2). �

2.6. The Riemann integral

Definition 2.6.1. A function φ : [a, b] → R, where a < b, is called a step-
function, if there is a partition (Unterteilung)

a = x0 < x1 < . . . < xn−1 < xn = b

of the interval [a, b], such that φ is constant in every sub-interval (xi−1, xi), where
i ∈ {1, . . . , n}. Let φ(x) := ci, for every x ∈ (xi−1, xi). The values of φ at the
points x0, x1, . . . , xn of the partition are arbitrary real numbers. Let T [a, b] the

set of all step-function φ : [a, b] → R. The integral
∫ b
a
φ(x)dx of a step-function

φ ∈ T [a, b] is define by ∫ b

a

φ(x)dx =

n∑
i=1

ci(xi − xi−1).

Proposition 2.6.2. The integral
∫ b
a
φ(x)dx of a step-function φ ∈ T [a, b] is

independent from the partition of [a, b].
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Proof. Let the following partitions of [a, b]:

(P ) : a = x0 < x1 < . . . < xn−1 < xn = b,

(Q) : a = y0 < y1 < . . . < ym−1 < ym = b,

and let

φ(x) = ci, x ∈ (xi−1, xi), i ∈ {1, . . . , n},

φ(y) = dj , y ∈ (yj−1, yj), j ∈ {1, . . . ,m}.
We show that

n∑
i=1

ci(xi − xi−1) :=

∫
P

φ(x)dx =

∫
Q

φ(y)dy :=

m∑
j=1

dj(yj − yj−1).

We suppose first that

P ≤ Q :⇔ ∀i∈{1,...,n}∃k:{1,...,n}→{1,...,m}
(
xi = yki

)
.

In this case we have that

xi−1 = yki−1
< yki−1+1 < . . . < yki = xi,

and

dj = ci, for every j with ki−1 < j < ki.

Then we get ∫
Q

φ(y)dy =

m∑
j=1

dj(yj − yj−1)

=

n∑
i=1

ki∑
j=ki−1+1

ci(yj − yj−1)

=

n∑
i=1

ci(xi − xi−1)

=

∫
P

φ(x)dx.

Suppose next that P,Q are arbitrary partitions of [a, b]. Then P ∪ Q is a new
partition of [a, b] such that

P ≤ P ∪Q & Q ≤ P ∪Q.

By the previous case we get∫
P∪Q

φ(z)dz =

∫
P

φ(x)dx &

∫
P∪Q

φ(z)dz =

∫
Q

φ(x)dx,

hence
∫
P
φ(x)dx =

∫
Q
φ(y)dy. �
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From the geometric point of view, the integral
∫ b
a
φ(x)dx of a step-function φ

on [a, b] is the algebraic sum of the areas between the x-axis and the graph of φ.
Let the partition

a = x0 < x1 = b

of the interval [a, b]. The constant function φc : [a, b] → R, where φc(x) = c, for
every x ∈ [a, b], is a step-function with∫ b

a

φc(x)dx =

1∑
i=1

c(x1 − x0) = c(b− a).

If φ, ψ ∈ T [a, b] and λ ∈ R, it is easy to show that

(i) φ+ ψ ∈ T [a, b] and∫ b

a

(
φ+ ψ

)
x)dx =

∫ b

a

φ(x)dx+

∫ b

a

ψ(x)dx,

(ii) λφ ∈ T [a, b] and ∫ b

a

(
λφ)(x)dx = λ

∫ b

a

φ(x)dx,

(iii) φ ≤ ψ ⇒
∫ b

a

φ(x)dx ≤
∫ b

a

φ(x)dx,

where
φ ≤ ψ :⇔ ∀x∈[a,b]

(
φ(x) ≤ ψ(x)

)
.

Let f : [a, b]→ R an arbitrary bounded function i.e., there are m,M ∈ R such that

m ≤ f(x) ≤M, x ∈ [a, b].

If φm ∈ T [a, b] is the constant function with value m on [a, b] and if φM ∈ T [a, b]
is the constant function with value M on [a, b], then

φm ≤ f ≤ φM .
Let the sets

A(f) =

{∫ b

a

φ(x)dx | φ ∈ T [a, b] & φ ≥ f
}
,

B(f) =

{∫ b

a

φ(x)dx | φ ∈ T [a, b] & φ ≤ f
}
.

A(f) is a non-empty subset of R, because φM ∈ T [a, b] with φM ≥ f and

M(b− a) =

∫ b

a

φM (x)dx ∈ A(f).

A(f) is a bounded below (nach unten beschränkte) subset of R, because for every∫ b
a
φ(x)dx ∈ A(f) we have that

φ ≥ f ≥ φm ⇒
∫ b

a

φ(x)dx ≥
∫ b

a

φm(x)dx = m(b− a).
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Similarly, B(f) is a non-empty subset of R, because φm ∈ T [a, b] with φm ≤ f and

m(b− a) =

∫ b

a

φm(x)dx ∈ B(f).

B(f) is also a bounded above (nach oben beschränkte) subset of R, because for

every
∫ b
a
φ(x)dx ∈ B(f) we have that

φ ≤ f ≤ φM ⇒
∫ b

a

φ(x)dx ≤
∫ b

a

φM (x)dx = M(b− a).

Definition 2.6.3 (Supremum, Infimum). Let A ⊆ R. A number s ∈ R is called
supremum (infimum) of A, if s is the least upper bound (gratest lower bound) of
A. The real number s is the least upper bound of A, if the following conditions are
satisfied:

(i) s is an upper bound of A (a ∈ A⇒ a ≤ s).
(ii) If s′ is another upper bound of A, then s ≤ s′.
Similarly, the real number t is the gratest lower bound of A, if the following condi-
tions are satisfied:

(i) t is a lower bound of A (a ∈ A⇒ a ≥ t).
(ii) If t′ is another lower bound of A, then t′ ≤ t.
Clearly, the least upper bound (greatest lower bound) of a are uniquely determined.
For them we use the notation

sup(A) [bzw. inf(A)].

For example, we have that

sup(0, 1) = 1 & inf(0, 1) = 0.

Theorem 2.6.4. A non-empty and bounded above (below) subset A ⊆ R has a
supremum (infimum).

Proof. With the use of the Completeness Axiom (see [1], pp. 89-90). �

Definition 2.6.5 (Upper-integral, Lower-integral). Let f : [a, b] → R be a
bounded function. We define∫ b

a

f(x)dx = inf A(f) = inf

{∫ b

a

φ(x)dx | φ ∈ T [a, b] & φ ≥ f
}
,∫ b

a

f(x)dx = supB(f) = sup

{∫ b

a

φ(x)dx | φ ∈ T [a, b] & φ ≤ f
}
.

For every step-function φ ∈ T [a, b] we have that (Exercise)∫ b

a

φ(x)dx =

∫ b

a

φ(x)dx =

∫ b

a

φ(x)dx.
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Let the Dirichlet-Function Dir : [0, 1]→ R on [0, 1], defined by

Dir(x) :=

{
1 , x ∈ Q ∩ [0, 1]
0 , x ∈ I ∩ [0, 1],

One can show (Exercise) that∫ 1

0

Dir(x)dx = 1 &

∫ 1

0

Dir(x)dx = 0,

hence ∫ 1

0

Dir(x)dx 6=
∫ 1

0

Dir(x)dx.

Definition 2.6.6. A bounded function f : [a, b] → R is called Riemann-
integrable, or simply integrable, if∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

In this case we write ∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

A step-function is Riemann-integrable, while the Dirichlet-Function on [0, 1] is
not.

Proposition 2.6.7. (i) A continuous function f : [a, b] → R is Riemann-
integrable.

(ii) A monotone function f : [a, b]→ R is Riemann-integrable.

Proof. See [1], pp. 198-199. �

Proposition 2.6.8. Let f, g : [a, b]→ R be integrable functions and λ ∈ R.

(i) The function f + g : [a, b]→ R is integrable and∫ b

a

(
f + g

)
x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

(ii) The function λf : [a, b]→ R is integrable and∫ b

a

(
λf
)
x)dx = λ

∫ b

a

f(x)dx.

(iii) f ≤ g ⇒
∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx,

where

f ≤ g :⇔ ∀x∈[a,b]
(
f(x) ≤ g(x)

)
.
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(iv) The |f | : [a, b]→ R is integrable and∣∣∣∣ ∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Proof. We use the corresponding properties of the step-functions. For the
details see [1], pp. 199-201. �

Proposition 2.6.9. Let a < c < b and f : [a, c]→ R. Then f ist integrable if
and only if its restrictions f|[a,b] on [a, b] and f|[b,c] on [b, c] are integrable, and∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx.

Proof. We use the corresponding propertiy of the step-functions. For the
details see [1], p. 207. �

Definition 2.6.10. Let a < b and f : [a, b] → R a bounded function. We
define ∫ a

a

f(x)dx = 0,

and ∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

2.7. Integration and Differentiation

Proposition 2.7.1. Let f : [a, b]→ R be a continuous function and c ∈ [a, b].
If x ∈ [a, b], let

F (x) =

∫ x

c

f(t)dt.

The function F : [a, b] → R is differentiable and F ′ = f . We call F the indefinite
integral of f .

Proof. See [1], p. 209. �

Definition 2.7.2. A differentiable function F : [a, b]→ R is a primitive func-
tion of f : [a, b]→ R, if F ′ = f.

The indefinite integral of f is a primitive function of f .

Proposition 2.7.3. Let F : [a, b]→ R be a primitive function of f : [a, b]→ R.
A function G : [a, b] → R is a primitive function of f if and only if F − G is a
constant.

Proof. (i) Let F −G = c, where c ∈ R. Then G′ = (F − c)′ = F ′ = f .
(ii) If G is a primitive function of f , then G′ = f = F ′. Hence, (F −G)′ = 0. By
Corollary 2.5.6 we get F −G is constant. �
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Theorem 2.7.4 (Fundamental theorem of Differential and Integral Calculus
(FTDIC)). Let f : [a, b]→ R be a continuous function and F a primitive function
of f . Then ∫ b

a

f(x)dx = F (b)− F (a).

Proof. For every x ∈ [a, b] let

G(x) =

∫ x

a

f(t)dt.

Since F is a primitive function of f , by Proposition 2.7.3 there is c ∈ R such that

F −G = c.

Hence we have that

F (b)− F (a) = (G(b) + c)− (G(a) + c)

= G(b)−G(a)

=

∫ b

a

f(t)dt−
∫ a

a

f(t)dt

=

∫ b

a

f(t)dt− 0

=

∫ b

a

f(t)dt.

�

We use the notation:

F (x)

∣∣∣∣b
a

:= F (b)− F (a).

Hence the equality of Theorem 2.7.4 is written also as∫ b

a

f(x)dx = F (x)

∣∣∣∣b
a

.

Examples of using (FTDIC):∫ 1

0

1dx =

∫ 1

0

(idR)′dx = idR(x)

∣∣∣∣1
0

= idR(0)− idR(1) = 1− 0 = 1.

∫ 1

0

xdx =

∫ 1

0

(
1

2
x2
)
′dx =

(
1

2
x2
)∣∣∣∣1

0

=
1

2
12 − 1

2
02 =

1

2
.

∫ 1

0

x2dx =

∫ 1

0

(
1

3
x3
)
′dx =

(
1

3
x3
)∣∣∣∣1

0

=
1

3
13 − 1

3
03 =

1

3
.
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0

xndx =

∫ 1

0

(
1

n+ 1
xn+1

)
′dx =

(
1

n+ 1
xn+1

)∣∣∣∣1
0

=

=
1

n+ 1
1n+1 − 1

n+ 1
0n+1 =

1

n+ 1
.∫ 2

1

1

x
dx =

∫ 2

1

[ln(x)]′dx = ln(x)

∣∣∣∣2
1

:= ln(2)− ln(1) = ln(2)− 0 = ln(2).

If x < 0, then by the chain rule we get

[ln(−x)]′ =
1

−x
(−1) =

1

x
.

Hence ∫ −1
−2

1

x
dx = ln(−x)

∣∣∣∣−1
−2

:= ln(1)− ln(2) = 0− ln(2) = − ln(2).

We write the two previous cases in one, as follows:∫
dx

x
= ln(|x|), 0 is not in the interval of the integration.

As an application of (FTDIC) and the chain rule we have that∫ b

a

g′(t)

g(t)
dt = ln

(
|g(t)|

)∣∣∣∣b
a

= ln
(
|g(b)|

)
− ln

(
|g(a)|

)
,

where g : [a, b]→ R is a continuously differentiable function i.e., g′ is a continuous

function (hence the function g′(t)
g(t) is integrable), such that g(t) 6= 0, for every

t ∈ [a, b].

Proposition 2.7.5 (Substitution rule). Let f : [a′, b′] → R be a continuous
function and g : [a, b]→ [a′, b′] a continuously differentiable function. Then∫ b

a

f(g(t))g′(t)dt =

∫ g(b)

g(a)

f(x)dx.

Proof. Let F : [a′, b′] → R be a primitive function of f . For the composite
function F ◦ g : [a, b]→ R the chain rule gives

(F ◦ g)′(t) = F ′(g(t))g′(t) = f(g(t))g′(t).

By Theorem 2.7.4 we have that∫ b

a

f(g(t))g′(t)dt = (F ◦ g)(t)

∣∣∣∣b
a

= (F ◦ g)(b)− (F ◦ g)(a)

= F (g(b))− F (g(a))

=

∫ g(b)

g(a)

f(x)dx.
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�

Example 1: If f(x) = 1
x , where x 6= 0, and g : [a, b]→ R is as in the last example

before Proposition 2.7.5, then we have that∫ b

a

g′(t)

g(t)
dt =

∫ b

a

f(g(t))g′(t)dt

=

∫ g(b)

g(a)

f(x)dx

=

∫ g(b)

g(a)

1

x
dx

= ln
(
|x|
)∣∣∣∣g(b)
g(a)

= ln
(
|g(b)|

)
− ln

(
|g(a)|

)
.

Example 2: If c ∈ R, then∫ b

a

f(t+ c)dt =

∫ b+c

a+c

f(x)dx.

If g(t) = t+ c, for every t ∈ R, then g′(t) = 1 and∫ b

a

f(t+ c)dt =

∫ b

a

f(g(t))g′(t)dt

=

∫ g(b)

g(a)

f(x)dx

=

∫ b+c

a+c

f(x)dx.

Example 3: If c 6= 0, then∫ b

a

f(ct)dt =
1

c

∫ bc

ac

f(x)dx.

If g(t) = ct, for every t ∈ R, then g′(t) = c and∫ b

a

f(ct)dt =
1

c

∫ b

a

f(g(t))g′(t)dt

=
1

c

∫ g(b)

g(a)

f(x)dx

=
1

c

∫ bc

ac

f(x)dx.
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Proposition 2.7.6. Let f, g : [a, b] → R be continuously differentiable func-
tions. Then ∫ b

a

f(x)g′(x)dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

g(x)f ′(x)dx.

Proof. If F = f · g, then

F ′(x) = f ′(x)g(x) + f(x)g′(x)⇔ f(x)g′(x) = F ′(x)− f ′(x)g(x),

for every x ∈ [a, b]. Hence∫ b

a

f(x))g′(x)dx =

∫ b

a

[F ′(x)− f ′(x)g(x)]dx

=

∫ b

a

F ′(x)dx−
∫ b

a

f ′(x)g(x)dx

= F (x)

∣∣∣∣b
a

−
∫ b

a

g(x)f ′(x)dx

= f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

g(x)f ′(x)dx.

�

Example 1. If a, b > 0, then∫ b

a

ln(x)dx =

∫ b

a

ln(x)x′dx

= x ln(x)

∣∣∣∣b
a

−
∫ b

a

ln ′(x)xdx

= x ln(x)

∣∣∣∣b
a

−
∫ b

a

1

x
xdx

= x ln(x)

∣∣∣∣b
a

−
∫ b

a

dx

= x ln(x)

∣∣∣∣b
a

− x
∣∣∣∣b
a

= [x ln(x)− x]

∣∣∣∣b
a

= [x(ln(x)− 1)]

∣∣∣∣b
a

.

Example 2. Let the integral

I =

∫
ex cos(x)dx.
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We have that

I =

∫
(ex)′ cos(x)dx

= ex cos(x)−
∫
ex[− sin(x)]dx

= ex cos(x) +

∫
ex sin(x)dx

= ex cos(x) + J.

Moreover, we have that

J =

∫
ex sin(x)dx

=

∫
(ex)′ sin(x)dx

= ex sin(x)−
∫
ex cos(x)dx

= ex sin(x)− I.
Hence

I = ex cos(x) + ex sin(x)− I ⇔ I =
ex

2
[cos(x) + sin(x)].
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