Mathematics for Natural Scientists I

Iosif Petrakis

Fakultät für Geowissenschaften, Ludwig-Maximilians-Universität München Winter term 2019/2020

Contents

Chapter	1. Number systems	1
1.1.	Sets	1
1.2.	Functions	5
1.3.	Induction on \mathbb{N}	7
1.4.	The algebraic and the ordering axioms for the set of real numbers	10
1.5.	Sequences of real numbers	16
1.6.	The completeness axiom	22
1.7.	Infinite series of real numbers	27
Chapter	2. Real-valued functions of a real variable	33
2.1.	The graph of a real-valued function of a real variable	33
2.2.	Continuity	37
2.3.	Elementary Functions	43
2.4.	Differentiation	46
2.5.	Some geometric properties of the derivative	55
2.6.	The Riemann integral	58
2.7.	Integration and Differentiation	63
Bibliography		69

i

CHAPTER 1

Number systems

In this chapter we study some basic properties of the following number systems: the natural numbers \mathbb{N} , the integers \mathbb{Z} , the rational numbers \mathbb{Q} , and the real numbers \mathbb{R} . First we need to give a short introduction to the fundamental notions of a set and of a function between sets.

1.1. Sets

DEFINITION 1.1.1. A formula ϕ is a mathematical expression. Let ϕ, ψ be formulas. The *implication* " ϕ implies ψ " is denoted by

 $\phi \Rightarrow \psi$.

The *conjunction* " ϕ and ψ " is denoted by

 $\phi \wedge \psi$, or by $\phi \& \psi$.

The equivalence " ϕ if and only if ψ " is denoted by

 $\phi \Leftrightarrow \psi$

and it is the conjunction $\phi \Rightarrow \psi \& \psi \Rightarrow \phi$. The *negation* "not ϕ " is denoted by $\neg \phi$. The *disjunction* " ϕ or ψ " is denoted by

 $\phi \lor \psi$.

Let $\phi(x)$ be a formula i.e., the variable x occurs in ϕ . The formula

$$\exists_x(\phi(x))$$

is read as "there exists x such that $\phi(x)$ holds", and the formula

$$\forall_x(\phi(x))$$

is read as "for all x we have that $\phi(x)$ holds".

To prove $\phi \Rightarrow \psi$, we suppose ϕ and we prove ψ . If ϕ is false, then the implication $\phi \Rightarrow \psi$ is true, in a trivial way. To prove $\phi \& \psi$, we prove ϕ and we prove ψ . To prove $\phi \Leftrightarrow \psi$, we prove $\phi \Rightarrow \psi$ and we prove $\psi \Rightarrow \phi$. To prove $\neg \phi$, we suppose ϕ and we reach a contradiction, like $\psi \& \neg \psi$, for some formula ψ . To prove $\phi \lor \psi$, we prove ϕ , or we prove ψ . Sometimes, to prove $\phi \lor \psi$, we prove $\neg (\neg \phi \& \neg \psi)$. To prove $\exists_x(\phi(x))$, we find x and we prove $\phi(x)$. Sometimes, to prove $\exists_x(\phi(x))$, we

prove $\neg \neg [\exists_x (\phi(x))]$. To prove $\forall_x (\phi(x))$, we suppose an arbitrary x and we prove $\phi(x)$. Some basic examples of formulas appear in the next definition.

DEFINITION 1.1.2. A set [Menge] X is a collection of mathematical objects. A mathematical object x that is a member of X is called an *element* of X, and we write

 $x \in X.$

If y is a mathematical object that is not an element of X, we write

 $y \notin X$

instead of $\neg(y \in X)$. The set that has no elements is called the *empty* set [leere Menge] and it is denoted by \emptyset . Let X and Y be sets. We say that X and Y are *equal*, in symbols X = Y, if they have the same elements i.e.,

$$\forall_x (x \in X \Leftrightarrow x \in Y)$$

We say that X is a *subset* [Teilmenge] of Y, in symbols $X \subseteq Y$, if every element of X is an element of Y i.e.,

$$\forall_x (x \in X \Rightarrow x \in Y).$$

If $X \subseteq Y$ and there is $y \in Y$ such that $y \notin X$, then we say that X is a proper subset [echte Teilmenge] of Y. In this case we write $X \subsetneq Y$. If X is a set, the collection $\mathcal{P}(X)$ of all subsets of X is called the *powerset* [Potenzmenge] of X.

Very often we use the symbols $\{\}$ to denote the elements of a set. E.g., the *set* of natural numbers [natürliche Zahlen] \mathbb{N} is denoted by

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$$

The set of integers [ganze Zahlen] \mathbb{Z} is denoted by

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\},\$$

and

$$\mathbb{N} \subsetneq \mathbb{Z}.$$

If X is a set, we can define a subset X_P of X through a property P(x) on X by collecting all elements of X such that P(x) holds. In this case we write

$$X_P = \{x \in X \mid P(x)\}$$

E.g., the set Even of even natural numbers [gerade Zahlen] is defined as follows:

 $\mathsf{Even} = \{ n \in \mathbb{N} \mid P(n) \}, \quad P(n) :\Leftrightarrow \exists_{m \in \mathbb{N}} (n = 2m),$

$$\exists_{m \in \mathbb{N}} (n = 2m) :\Leftrightarrow \exists_m (m \in \mathbb{N} \& n = 2m).$$

Clearly, Even $\subsetneq \mathbb{N}$. The set Odd of odd natural numbers [ungerade Zahlen] is defined as follows:

$$\mathsf{Odd} = \{ n \in \mathbb{N} \mid Q(n) \}, \quad Q(n) :\Leftrightarrow \exists_{m \in \mathbb{N}} (n = 2m + 1).$$

Notice that two sets X, Y are equal if they are subsets of each other i.e.,

$$X = Y \Leftrightarrow X \subseteq Y \& Y \subseteq X.$$

DEFINITION 1.1.3. Let X, Y be sets. The intersection [Schnittmenge] $X \cap Y$ of X and Y is the set of all mathematical objects that are elements both of X and Y i.e.,

$$X \cap Y = \{ z \mid z \in X \& z \in Y \}.$$

The union [Vereinigungsmenge] $X \cup Y$ of X and Y is the set of all mathematical objects that are elements either of X or of Y i.e.,

$$X \cup Y = \{ z \mid z \in X \lor z \in Y \}.$$

If $A \subseteq X$, the *complement* [Komplement] A' of A in X is the set of all elements of X that do not belong to A i.e.,

$$A' = \{ x \in X \mid x \notin A \}.$$

It is easy to see that

 $\operatorname{Odd} \cap \operatorname{Even} = \emptyset \& \operatorname{Odd} \cup \operatorname{Even} = \mathbb{N} \& \operatorname{Odd}' = \operatorname{Even} \& \operatorname{Even}' = \operatorname{Odd}.$

PROPOSITION 1.1.4. If X is a set and A, B, C are subsets of X, the following hold:

(i) $\emptyset \subseteq X$ and $X \subseteq X$.

(ii) $A \cap A = A$ and $A \cup A = A$.

(iii) $A \cap B = B \cap A$ and $A \cup B = B \cup A$.

(iv) $(A \cap B) \cap C = A \cap (B \cap C)$ and $(A \cup B) \cup C = A \cup (B \cup C)$.

(v) $(A \cap B) \cup A = A$ and $(A \cup B) \cap A = A$.

(vi) $A \subseteq B \Leftrightarrow A \cap B = A$ and $A \subseteq B \Leftrightarrow A \cup B = B$.

(vii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

PROOF. (i) For $\emptyset \subseteq X$ we need to show that

 $\forall_x (x \in \emptyset \Rightarrow x \in X).$

Let x such that $x \in \emptyset$. Since this is impossible by the definition of \emptyset , we conclude, in a trivial way, that the implication $x \in \emptyset \Rightarrow x \in X$ holds. Since x is arbitrary, the proof is completed. For $X \subseteq X$ we work similarly, and we use the fact that the implication $x \in X \Rightarrow x \in X$ holds.

(v) We show only $(A \cup B) \cap A = A$. For that we show first that $(A \cup B) \cap A \subseteq A$. If $b \in (A \cup B) \cap A$, we show that $b \in A$. By the definition of intersection we have that $b \in (A \cup B)$ and $b \in A$. Hence we get the required $b \in A$. Next we show that $A \subseteq (A \cup B) \cap A$. If $a \in A$, we show that $a \in (A \cup B) \cap A$ i.e., $a \in A \cup B$ and $a \in A$. Both inclusions follow trivially from the hypothesis $a \in A$. (ii)-(iv) and (vi) -(vii) is an exercise.

 \Box

PROPOSITION 1.1.5. If X is a set and $A, B \subseteq X$, the following hold:

(i) $\emptyset' = X$ and $X' = \emptyset$.

(ii) $A \cap A' = \emptyset$ and $A \cup A' = X$.

1. NUMBER SYSTEMS

 $(iii) \ (A')' = A.$

- $(iv) \ (A \cap B)' = A' \cup B'.$
- $(v) \ (A \cup B)' = A' \cap B'.$
- $(vi) \ A \subseteq B \Leftrightarrow B' \subseteq A'.$

PROOF. (i) By the definition of the complement of a subset we have that

 $\emptyset' = \{ x \in X \mid x \notin \emptyset \} = X,$

$$X' = \{ x \in X \mid x \notin X \} = \emptyset.$$

For (ii) we use the logical principle $\phi \lor \neg \phi$ (Principle of the Excluded Middle, PEM), and for (iii) the principle $\neg \neg \phi \Rightarrow \phi$ (Double Negation Shift, DNS).

PROPOSITION 1.1.6. If X is a set and $A, B \subseteq X$, the difference A - B between A and B is the set of all elements in A that are not in B i.e.,

$$A - B = \{ x \in X \mid x \in A \& x \notin B \}.$$

If $C \subseteq X$, the following hold:

$$(i) A - B = A \cap B'$$

- (*ii*) $(A B) C = A (B \cup C)$.
- (*iii*) $A (B C) = (A B) \cup (A \cap C).$
- $(iv) (A \cup B) C = (A C) \cup (B C).$
- $(v) \ A (B \cup C) = (A B) \cap (A C).$

PROOF. Exercise.

PROPOSITION 1.1.7. If X is a set and $A, B \subseteq X$, the symmetric difference $A \bigtriangleup B$ of A and B is defined by

$$A \bigtriangleup B = (A - B) \cup (B - A).$$

- If $C \subseteq X$, the following hold:
- (i) $A \bigtriangleup \emptyset = A$ and $A \bigtriangleup A = \emptyset$.
- (*ii*) $A \bigtriangleup B = B \bigtriangleup A$.

 $(iii) \ A \bigtriangleup (B \bigtriangleup C) = (A \bigtriangleup B) \bigtriangleup C.$

 $(iv) \ A \cap (B \vartriangle C) = (A \cap C) \vartriangle (A \cap C).$

PROOF. Exercise.

DEFINITION 1.1.8. If X, Y are sets, their product $X \times Y$ is the set of all pairs (x, y) with $x \in X$ and $y \in Y$ i.e.,

$$X \times Y = \{ (x, y) \mid x \in X \& y \in Y \},\$$

where if $(x, y), (x', y') \in X \times Y$, we have that

$$(x,y) = (x',y') \Leftrightarrow x = x' \& y = y'.$$

4

1.2. Functions

DEFINITION 1.2.1. If X, Y are sets, a function $f : X \to Y$ from X to Y is a rule that associates to every element $x \in X$ a unique element $f(x) \in Y$, which is called the *value* of f at x. To denote that f maps x to f(x) we also write

$$x \mapsto f(x).$$

The set X is called the *domain* [Definitionsmenge] of f, and Y is the *range* of [Zielmenge] of f. The *image* [Wertemenge] Im(f) of f is the set of values of f i.e.,

$$\operatorname{Im}(f) = \{ y \in Y \mid \exists_{x \in X} (y = f(x)) \}$$

If
$$g: X \to Y$$
, then $f = g$, if f and g are equal on every input $x \in X$ i.e.,
 $f = g \Leftrightarrow \forall_{x \in X} (f(x) = g(x)).$

By the uniqueness hypothesis in the Definition 1.2.1 a function $f: X \to Y$ satisfies for every $x, x' \in X$ the implication

$$x = w \Rightarrow f(x) = f(w)$$

i.e., it "maps equal inputs to equal outputs". Clearly, $\text{Im}(f) \subseteq Y$. Let e.g., $f : \mathbb{N} \to \mathbb{N}$ be defined by

$$n \mapsto 2n$$
.

By definition, f(0) = 0, f(1) = 2, and f(50) = 100. Clearly, Im(f) = Even.

DEFINITION 1.2.2. A function $f: X \to Y$ is called an *injection*, or injective [injektiv], if for every $x, x' \in X$ we have that

$$f(x) = f(w) \Rightarrow x = w.$$

Moreover, f is called a *surjection*, or surjective [surjektiv], if Im(f) = Y. A function f is called a *bijection*, or bijective [bijektiv], if it is both an injection and a surjection.

It is easy to see that f is injective, if for every $x, x' \in X$ it satisfies

$$x \neq w \Rightarrow f(x) \neq f(w)$$

i.e., if f "maps unequal inputs to unequal outputs". The function $n \mapsto 2n$ is injective, since $2n = 2m \Rightarrow n = m$, for every $n, m \in \mathbb{N}$, but it is not surjective, since $\operatorname{Im}(f) = \operatorname{Even} \subsetneq \mathbb{N}$. If X is a set, the *identity map* [identische Abbildung] $\operatorname{id}_X : X \to X$ is defined by the rule

$$x \mapsto x.$$

Clearly, id_X is a bijection. Let $g: \mathbb{Z} \to \mathbb{N}$ be defined by

$$g(z) := \begin{cases} z & , z \ge 0\\ -z & , z < 0. \end{cases}$$

Then g is surjective, since g(n) = n, for every $n \in \mathbb{N}$, but g is not injective, since e.g., g(-1) = g(1) = 1. If X, Y are sets, and $y_0 \in Y$, let $\hat{y}_0 : X \to Y$ be defined by

$$x \mapsto y_0$$

for every $x \in X$, is the *constant* function from X to Y with constant value y_0 .

DEFINITION 1.2.3. Let X, Y, Z be sets, $f : X \to Y$ and $g : Y \to Z$. The composition $g \circ f : X \to Z$ of f and g is defined, for every $x \in X$, by

$$(g \circ f)(x) = g(f(x))$$
$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$
$$g \circ f$$

Since g and f respect equality, the composition $g \circ f$ also respects equality i.e., if $x, w \in X$, such that x = w, then f(x) = f(w) and hence

$$(g \circ f)(x) = g(f(x)) = g(f(w)) = (g \circ f)(w)$$

If $f: \mathbb{N} \to \mathbb{N}$ is defined by f(n) = n+1, for every $n \in \mathbb{N}$, and if $g: \mathbb{N} \to \mathbb{N}$ is defined by $g(n) = n^2$, for every $n \in \mathbb{N}$, then $g \circ f: \mathbb{N} \to \mathbb{N}$, and for every $n \in \mathbb{N}$

$$(g \circ f)(n) = g(f(n)) = (n+1)^2$$

PROPOSITION 1.2.4. Let X, Y, Z, W be sets, and let $f : X \to Y, g : Y \to Z$, and $h : Z \to W$. The following hold: (i) $f \circ id_X = f$

$$X \xrightarrow{\operatorname{id}_X} X \xrightarrow{f} Y.$$

(ii) id_Y $\circ f = f$

$$X \xrightarrow{f} Y \xrightarrow{\operatorname{id}_Y} Y.$$

 $(iii)\ h\circ (g\circ f)=(h\circ g)\circ f$

$$X \xrightarrow{f} Y \xrightarrow{g \circ f} Z \xrightarrow{g \circ f} W$$

PROOF. (i) By the definition of the equality of functions we need to show that $\forall_{x \in X} ((f \circ id_X)(x) = f(x)).$

If $x \in X$, then $(f \circ id_X)(x) = f(id_X(x)) = f(x)$. Since x is an arbitrary element of X, we conclude that $f \circ id_X = f$.

(ii) and (iii) Exercise.

1.3. Induction on \mathbb{N}

The induction principle on \mathbb{N} is a fundamental tool in proving properties for *all* natural numbers. All induction principles mentioned in this section are equivalent.

Induction principle IND on \mathbb{N} : Let $\phi(n)$ be a formula on \mathbb{N} such that the following conditions are satisfied:

(i) $\phi(0)$ holds.

(*ii*) For every $n \in \mathbb{N}$, if $\phi(n)$ holds, then $\phi(n+1)$ holds i.e.,

$$\forall_{n \in \mathbb{N}} (\phi(n) \Rightarrow \phi(n+1)).$$

Then we can infer that $\phi(n)$ holds, for every $n \in \mathbb{N}$ i.e.,

$$\forall_{n\in\mathbb{N}}(\phi(n)).$$

Let \mathbb{N}^+ be the set of non-zero natural numbers i.e.,

$$\mathbb{N}^+ = \{1, 2, 3, \ldots\}.$$

Induction principle IND⁺ on \mathbb{N}^+ : Let $\theta(n)$ be a formula on \mathbb{N}^+ such that the following conditions are satisfied:

(i) $\theta(1)$ holds.

(*ii*) For every $n \in \mathbb{N}^+$, if $\theta(n)$ holds, then $\theta(n+1)$ holds i.e.,

$$\forall_{n\in\mathbb{N}^+} \big(\theta(n) \Rightarrow \theta(n+1)\big).$$

Then we can infer that $\theta(n)$ holds, for every $n \in \mathbb{N}^+$ i.e.,

$$\forall_{n \in \mathbb{N}^+} (\theta(n)).$$

PROPOSITION 1.3.1. The induction principle IND on \mathbb{N} implies the induction principle IND^+ on \mathbb{N}^+ .

PROOF. Let $\theta(n)$ be a formula on \mathbb{N}^+ such that the conditions of IND^+ are satisfied. Let $\phi(n)$ be the following formula on \mathbb{N}

$$\phi(n) :\Leftrightarrow \theta(n+1).$$

By definition $\phi(0) :\Leftrightarrow \theta(1)$, which holds by our hypothesis on θ . Let $n \in \mathbb{N}$ such that $\phi(n) :\Leftrightarrow \theta(n+1)$. By our hypothesis on θ we get $\theta((n+1)+1) :\Leftrightarrow \phi(n+1)$, hence by IND we get

$$\forall_{n\in\mathbb{N}} \big(\phi(n) \big) :\Leftrightarrow \forall_{n\in\mathbb{N}} \big(\theta(n+1) \big) \Leftrightarrow \forall_{n\in\mathbb{N}^+} \big(\theta(n) \big).$$

PROPOSITION 1.3.2. The induction principle IND^+ on \mathbb{N}^+ implies the induction principle IND on \mathbb{N} .

PROOF. Exercise.

As an example of using IND⁺, let us prove the following formula:

$$\forall_{n \in \mathbb{N}^+} \left(1 + 2 + \ldots + n = \frac{n(n+1)}{2} \right)$$

If $\theta(n)$ is the formula on \mathbb{N}^+

$$\theta(n):\Leftrightarrow 1+2+\ldots+n=\frac{n(n+1)}{2},$$

then by the principle IND^+ it suffices to show

$$\theta(1):\Leftrightarrow 1=\frac{1(1+1)}{2},$$

which holds trivially, and if $n \in \mathbb{N}^+$ we need to show the following implication:

$$\theta(n) \Rightarrow \theta(n+1) \qquad \text{ i.e.,} \qquad$$

$$\left[1+2+\ldots+n=\frac{n(n+1)}{2}\right] \Rightarrow \left[1+2+\ldots+n+(n+1)=\frac{(n+1)(n+2)}{2}\right]$$

For that we suppose that

For that we suppose that

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

holds, and then we show the equality

$$1 + 2 + \ldots + n + (n + 1) = \frac{(n + 1)(n + 2)}{2}$$

as follows:

$$1 + 2 + \ldots + n + (n + 1) = [1 + 2 + \ldots + n] + (n + 1)$$
$$= \frac{n(n + 1)}{2} + (n + 1)$$
$$= \frac{n(n + 1)}{2} + \frac{2(n + 1)}{2}$$
$$= \frac{n(n + 1) + 2(n + 1)}{2}$$
$$= \frac{(n + 1)(n + 2)}{2}.$$

If $a_1, a_2, \ldots a_n \in \mathbb{N}$ we define their sum

$$\sum_{k=1}^n a_k = a_1 + a_2 + \dots a_k$$

For example, we have that

$$\sum_{k=1}^{5} 2 = 2 + 2 + 2 + 2 + 2 = 10,$$
$$\sum_{k=1}^{n} m = nm,$$
$$\sum_{k=1}^{n} n = n^{2}.$$

What we showed above is also written as

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

PROPOSITION 1.3.3. Let $f : \mathbb{N}^+ \to \mathbb{N}^+$ with a = f(1), and for every $n, m \in \mathbb{N}^+$ f(n+m) = f(n)f(m).

$$f(n+m) = f(n)f(m)$$

Then

$$\forall_{n \in \mathbb{N}^+} \left(f(n) = a^n \right).$$

PROOF. We use the induction principle IND^+ on \mathbb{N}^+ for the formula

$$\theta(n) :\Leftrightarrow f(n) = a^n.$$

Clearly, $\theta(1) :\Leftrightarrow f(1) = a^1 = a$, which holds by the definition of a. If $n \in \mathbb{N}^+$, we show the implication

$$\theta(n) \Rightarrow \theta(n+1)$$

i.e., the implication

$$\left[f(n) = a^n\right] \Rightarrow \left[f(n+1) = a^{n+1}\right].$$

By the hypothesis on f we get

$$f(n + 1) = f(n)f(1) = a^n f(1) = a^n a = a^{n+1}.$$

Induction principle IND[<] on N: Let $\phi(n)$ be a formula on N such that the following conditions are satisfied:

(i) $\phi(0)$ holds.

(*ii*) For every $n \in \mathbb{N}^+$, if $\phi(0)$ and $\phi(1)$ and ... and $\phi(n-1)$ hold, then $\phi(n)$ holds:

$$\forall_{n\in\mathbb{N}^+}\bigg(\big[\phi(0)\ \&\ \phi(1)\ \&\ \dots\ \&\ \phi(n-1)\big]\Rightarrow\phi(n)\bigg).$$

Then we can infer that $\phi(n)$ holds, for every $n \in \mathbb{N}$ i.e.,

$$\forall_{n\in\mathbb{N}}(\phi(n)).$$

PROPOSITION 1.3.4. The induction principle IND on \mathbb{N} implies the induction principle IND[<] on \mathbb{N} .

PROOF. Let $\phi(n)$ be a formula on \mathbb{N} such that the hypotheses (i) and (ii) of IND[<] are satisfied. We show that the hypotheses (i) and (ii) of IND are satisfied, hence the conclusion of IND, which is also the required conclusion of IND[<], follows. The hypothesis (i) of IND is the hypothesis (i) of IND[<]. For the proof of the hypothesis (ii) of IND we suppose $n \in \mathbb{N}$ such that $\phi(n)$, and we show $\phi(n + 1)$. Suppose that $\neg(\phi(n+1))$. By the hypothesis (ii) of IND[<] there is some $m_1 < n + 1$ such that $\neg(\phi(m_1))$ (if for all m < n + 1 we had that $\phi(m)$ holds, then by the hypothesis (ii) of IND[<] we would get $\phi(n + 1)$ too). By a similar argument there is some $m_2 < m_1$ such that $\neg(\phi(m_2))$. By repeating this step k number of times, where $k \leq (n+1)$, we get $m_k = 0$, and $\neg(\phi(m_k))$ i.e., $\neg(\phi(0))$. Since we supposed that $\phi(0)$ holds, we reached a contradiction. Hence, our initial hypothesis $\neg(\phi(n+1))$ is false, therefore $\phi(n+1)$ holds.

PROPOSITION 1.3.5. The induction principle $IND^{<}$ on \mathbb{N} implies the induction principle IND on \mathbb{N} .

PROOF. Exercise.

1.4. The algebraic and the ordering axioms for the set of real numbers

We denote by \mathbb{R} the set of real numbers [reele Zahlen] that satisfies the following lists of axioms:

(I) Axioms for addition.

(II) Axioms for multiplication.

(III) Distributivity axiom of multiplication over addition.

(IV) Axioms for order and the Archimedean axiom.

(V) The completeness axiom.

(I) Axioms for addition: There is a function $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$(x,y) \mapsto x+y$$

such that the following axioms are satisfied:

 $(A_1) x + (y+z) = (x+y) + z$, for every $x, y, z \in \mathbb{R}$.

 (A_2) There is an element 0 of \mathbb{R} such that 0 + x = x, for every $x \in \mathbb{R}$.

 (A_3) For every $x \in \mathbb{R}$ there is some $y \in \mathbb{R}$ such that x + y = 0.

 $(A_4) x + y = y + x$, for every $x, y \in \mathbb{R}$.

Notice that the number 0 in (A_2) is uniquely determined. Let $0' \in \mathbb{R}$ such that 0' + x = x, for every $x \in \mathbb{R}$. If we take x = 0, then by (A_2) and (A_4) we get

$$0 = 0' + 0 = 0 + 0' = 0'$$

The number y in (A_3) is uniquely determined. Let $y'\in\mathbb{R}$ such that x+y'=0. We have that

$$y = 0 + y = (x + y') + y = (y' + x) + y = y' + (x + y) = y' + 0 = y'.$$

We denote this unique element y by -x, and we define

$$z - x = z + (-x).$$

We also use the notation

$$\sum_{i=1}^n x_i = x_1 + \ldots + x_n.$$

(II) Axioms for multiplication: There is a function $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$(x,y) \mapsto x \cdot y$$

such that the following axioms are satisfied:

 $(M_1) \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$, for every $x, y, z \in \mathbb{R}$.

 (M_2) There is an element $1 \neq 0$ of \mathbb{R} such that $1 \cdot x = x$, for every $x \in \mathbb{R}$.

 (M_3) For every $x \in \mathbb{R}$, such that $x \neq 0$, there is some $y \in \mathbb{R}$ such that $x \cdot y = 1$. $(M_4) \ x \cdot y = y \cdot x$, for every $x, y \in \mathbb{R}$.

Notice that the number 1 in (M_2) , and the number y in (M_3) are uniquely determined. We denote this unique element y by $x^{-1} = \frac{1}{x}$, and we define

$$\frac{z}{x} = z \cdot \frac{1}{x}$$

We also use the notation

$$\prod_{i=1}^n x_i = x_1 \cdot \ldots \cdot x_n.$$

For simplicity we often write xy instead of $x \cdot y$. If $a \in \mathbb{R}$ and $n \in \mathbb{N}^+$, we define

$$a^n := \begin{cases} a & , n = 1 \\ a^{n-1}a & , n > 1 \end{cases}$$

Hence,

$$a^n = \prod_{i=1}^n a.$$

If $a \neq 0$, we define

$$a^0 = 1$$

It is easy to show by IND that for all $m,n\in\mathbb{N}$ we have that

$$a^{m+n} = a^m a^n$$

If $n \in \mathbb{N}$, we define

$$a^{-n} = (a^{-1})^n = \left(\frac{1}{a}\right)^n.$$

One can show that for all $m, n \in \mathbb{Z}$ we have that $a^{m+n} = a^m a^n$.

(III) Distributivity axiom of multiplication over addition: (D) $x \cdot (y+z) = x \cdot y + x \cdot z$, for every $x, y, z \in \mathbb{R}$.

COROLLARY 1.4.1. If $x, y, z, w \in \mathbb{R}$, the following hold.

- $(i) \ 0 \cdot x = 0.$
- $(ii) \ (-x)y = -(xy).$
- $(iii) \ (-x)(-y) = xy.$
- (iv) -(x+y) = -x y.
- (v) If $x, y \neq 0$, then $xy \neq 0$, and $(xy)^{-1} = x^{-1}y^{-1}$.
- (vi) If $z, w \neq 0$, then

$$\frac{x}{z}\frac{y}{w} = \frac{xy}{zw} \quad \& \quad \frac{x}{z} + \frac{y}{w} = \frac{xw + yz}{zw}.$$

(vii) If $x \neq 0$ and xy = xz, then y = z.

PROOF. Exercise.

By (D) and using the induction principle IND⁺ we can show the distributivity of multiplication over an arbitrary sum i.e.,

$$\forall_{n \in \mathbb{N}^+} \left(x \sum_{i=1}^n y_i = \sum_{i=1}^n x y_i \right).$$

Similarly we can show that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j = \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{j=1}^{m} y_j\right) = \left(\sum_{j=1}^{m} y_j\right) \left(\sum_{i=1}^{n} x_i\right) = \sum_{j=1}^{m} \sum_{i=1}^{n} y_j x_i.$$

(IV) Axioms for order: There is a subset P of \mathbb{R} , which is called the set of *positive* reals such that the following axioms are satisfied: (O_1) For every $x \in \mathbb{R}$ we have that

 $x \in P \quad \lor \quad x = 0 \quad \lor \quad -x \in P,$

and these cases are mutually exclusive i.e., if $x \in P$, then $x \neq 0$ and $-x \notin P$, and if x = 0, then $x \notin P$ and $-x \notin P$, while if $-x \in P$, then $x \notin P$ and $x \neq 0$. (O₂) If $x, y \in P$, then $x + y \in P$ and $x \cdot y \in P$.

DEFINITION 1.4.2. Let $x, y \in \mathbb{R}$. We say that x is *negative* if $-x \in P$. Let

$$\begin{split} x > 0 \Leftrightarrow x \in P, \\ x > y \Leftrightarrow x - y > 0, \\ y < x \Leftrightarrow x > y, \\ x < 0 \Leftrightarrow (-x) > 0, \\ x \le y \Leftrightarrow x < y \ \lor \ x = y. \end{split}$$

COROLLARY 1.4.3. If $x, y, z \in \mathbb{R}$, the following hold.

(i) $1 \in P$.

(ii) For every $n \in \mathbb{N}^+$ we have that $n \cdot 1 \in P$.

(iii) If x, y are negative, then $xy \in P$.

(iv) If x > 0 and y < 0, then xy < 0.

(v) If $x \neq 0$, then $x^2 > 0$.

(vi) If x > 0, then $\frac{1}{x} > 0$.

(vii) If x < y and y < z, then x < z.

(viii) If x < y and $z \in \mathbb{R}$, then x + z < y + z.

(ix) If x < y and z > 0, then xz < yz.

(x) If x < y and x, y > 0, then $\frac{1}{y} < \frac{1}{x}$.

(xi) If xy = 0, then x = 0 or y = 0.

PROOF. (i) By (O_1) we have that $1 \in P$, or 1 = 0, or $-1 \in P$. Since by (M_2) $1 \neq 0$, we have that $1 \in P$ or $-1 \in P$. Suppose that $-1 \in P$. Then by (O_2) we get $(-1)(-1) = 1^2 = 1 \in P$. Since the cases $1 \in P$ and $-1 \in P$ cannot hold together, we get a contradiction. Hence $1 \in P$ is the only true case.

(ii) It follows with the use of IND^+ . The case n = 1 is just (i).

(iii) By definition $-x, -y \in P$, and by (O_2) we get $(-x)(-y) = xy \in P$.

(iv) By definition $-y \in P$, hence by (iii) we get $x(-y) = -xy \in P$, hence xy < 0. (v) If $x \neq 0$, then by (O_1) we have that $x \in P$ or $(-x) \in P$. In the first case, by (O_2) we get $xx = x^2 \in P$, and in the second, again by (O_2) , we get $xx = x^2 = (-x)(-x) \in P$.

(vi) - (xi) Exercise.

Let $a \in \mathbb{R}$ such that $a \neq 0$. If there is some $x \in \mathbb{R}$ such that $x^2 = a$, then a > 0. If there are $yx, y \in \mathbb{R}$ such that $x^2 = y^2 = a$, then by the Corollary 1.4.3(x) we have that

$$x^{2} - y^{2} = 0 \Leftrightarrow (x - y)(x + y) = 0 \Leftrightarrow x = y \lor x = -y.$$

Hence, if there is x such that $x^2 = a$, then the equation $x^2 = a$ has exactly two solutions x and -x. In this case we call the unique positive solution to the equation

 $x^2 = a$ the square root \sqrt{a} of a. Notice that we cannot prove yet that every positive real number has a square root. We also define

$$\sqrt{0}=0.$$

If $x \in \mathbb{R}$, then $\sqrt{x^2}$ always exists, and it is either x, if $x \ge 0$, or -x, if x < 0. Let the function

$$|.|:\mathbb{R}\to\mathbb{R}$$

$$x \mapsto |x| = \sqrt{x^2},$$

where |x| is called the *absolute value* of x.

PROPOSITION 1.4.4. If $x, y \in \mathbb{R}$, the following hold. (i) If $x, y \ge 0$ and \sqrt{x}, \sqrt{y} exist, then \sqrt{xy} exists and

$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$

Moreover, we have that

$$x \le y \Rightarrow \sqrt{x} \le \sqrt{y}.$$

 $\begin{array}{ll} (ii) \ |x| \geq 0. \\ (iii) \ x \leq |x|. \\ (iv) \ |x| = |-x|. \\ (v) \ |x| = 0 \Leftrightarrow x = 0. \\ (vi) \ |xy| = |x||y|. \\ (vii) \ |x|^2 = x^2. \\ (viii) \ [Triangle \ inequality] \ |x+y| \leq |x|+|y|. \end{array}$

PROOF. We show only (vi) and the rest is an exercise. We have that

$$|x+y|^{2} = \left(\sqrt{(x+y)^{2}}\right)^{2}$$

= $(x+y)^{2}$
= $x^{2} + 2xy + y^{2}$
 $\stackrel{(iii)}{\leq} x^{2} + 2|xy| + y^{2}$
 $\stackrel{(vi)}{=} x^{2} + 2|x||y| + y^{2}$
= $(|x| + |y|)^{2}$,

hence by the second implication of the case (i), and by taking the square roots, we get the required inequality. $\hfill \Box$

1.4. THE ALGEBRAIC AND THE ORDERING AXIOMS FOR THE SET OF REAL NUMBERS

The Archimedean Axiom (Arch): The order relation < of reals satisfies the following axiom

(Arch)
$$\forall_{x,y \in \mathbb{R}} \left([x > 0 \& y > 0] \Rightarrow \exists_{n \in \mathbb{N}} (nx > y) \right).$$

COROLLARY 1.4.5. $\forall_{x \in \mathbb{R}} \exists_{n \in \mathbb{N}} \exists_{m \in \mathbb{N}} (x < n \& -m < x).$

PROOF. If x = 0, we can take n = m = 1. If x > 0, by (Arch) on x and 1, there is $n \in \mathbb{N}$ such that n > x. Consequently, if m = n, we get -m = -n < 0 < x. If x < 0, then by the previous case there are $n, m \in \mathbb{N}$ such that -x < n & -m < (-x), hence x < m & -n < x.

We also write the formula of the previous corollary as follows

 $\forall_{x \in \mathbb{R}} \exists_{n, m \in \mathbb{N}} (x < n \& -m < x).$

The formula

$$\exists_{x \in X} (\phi(x))$$

expresses that there exists a unique $x \in X$ such that $\phi(x)$. I.e.,

$$\exists_{!x \in X} (\phi(x)) :\Leftrightarrow \exists_{x \in X} \left(\phi(x) \& \forall_{y \in X} (\phi(y) \Rightarrow y = x) \right)$$

If $x, y, z \in \mathbb{R}$, we use abbreviations like the following:

$$x \leq y < z : \Leftrightarrow x \leq y \& y < z.$$

COROLLARY 1.4.6. $\forall_{x \in \mathbb{R}} \exists_{k \in \mathbb{Z}} (k \leq x < k+1).$

PROOF. If x = 0, we take k = 0. If x > 0, by the previous corollary there is some n > x. Let n_0 be the smallest element of \mathbb{N} such that x < n (we can find n_0 by checking for the predecessors m of n if m > x). Since $n_0 > x > 0$, we have that $n_0 \ge 1$, and since by its definition n_0 is the smallest natural number > x, we get $n_0 - 1 \le x$. If x < 0, then by the previous case there is $k \in \mathbb{Z}$ such that $k \le (-x) < k + 1$. If k = -x, then -k = x < -k + 1. If k < -x, then -(k+1) < x < -k i.e., $-k - 1 \le x < -k = (-k - 1) + 1$.

To show the uniqueness of k we work as follows. Let $l \in \mathbb{Z}$ such that $l \leq x < l+1$. Suppose that l < k. Then $l+1 \leq k$, and

$$l \le x < l+1 \le k \le x$$

i.e., we reached the contradiction x < x. Hence $l \ge k$. If we suppose k < l, we get similarly a contradiction, hence $k \ge l$. By the inequalities $l \ge k$ and $k \ge l$ we conclude that k = l.

We use the symbol $\lfloor x \rfloor$ for this unique $k \in \mathbb{Z}$, and we call $\lfloor x \rfloor$ the *floor* of x.

COROLLARY 1.4.7.
$$\forall_{x \in \mathbb{R}} \exists_{m \in \mathbb{Z}} (m-1 < x \leq m).$$

PROOF. We use the Corollary 1.4.6.

We use the symbol $\lceil x \rceil$ for this unique $m \in \mathbb{Z}$, and we call $\lceil x \rceil$ the *ceiling* of x. We also use an abbreviation of the following form

$$\forall_{\varepsilon>0} \big(\phi(\varepsilon) \big) :\Leftrightarrow \forall_{\varepsilon \in \mathbb{R}} \big(\varepsilon > 0 \Rightarrow \phi(\varepsilon) \big).$$

COROLLARY 1.4.8. $\forall_{\varepsilon>0} \exists_{n \in \mathbb{N}^+} \left(\frac{1}{n} < \varepsilon\right).$

PROOF. Exercise.

We can show inductively the *Bernoulli inequality*: if a > -1, then

$$\forall_{n \in \mathbb{N}} \big((1+a)^n \ge 1 + na \big).$$

COROLLARY 1.4.9. Let $a \in \mathbb{R}$. The following hold.

(i) If a > 1, then $\forall_{x \in \mathbb{R}} \exists_{n \in \mathbb{N}} (a^n > x)$.

(*ii*) If
$$0 < a < 1$$
, then $\forall_{\varepsilon > 0} \exists_{n \in \mathbb{N}} (a^n < \varepsilon)$.

PROOF. Exercise (use the Bernoulli inequality).

1.5. Sequences of real numbers

DEFINITION 1.5.1. Let X be a set. A sequence of elements of X is a function $\alpha : \mathbb{N} \to X$. We also use the notations

$$(\alpha_n)_{n\in\mathbb{N}}, \text{ or } (\alpha_n)_{n=0}^{\infty}$$

for α , where

$$\alpha_n = \alpha(n).$$

Sometimes we may also use the notation

$$(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \dots).$$

An element α_n of a sequence α is called the *n*-th *term* of α . A sequence of reals is a function $\alpha : \mathbb{N} \to \mathbb{R}$.

(i) If $x \in \mathbb{R}$, the constant sequence with value x is the function $\alpha : \mathbb{N} \to \mathbb{R}$ with

 $\alpha_n = x$, for every $n \in \mathbb{N}$.

This sequence looks as follows:

$$(x, x, x, \ldots)$$

(ii) The sequence $\beta : \mathbb{N} \to \mathbb{R}$, defined by

$$\beta_n = \frac{1}{n+1}, \quad \text{for every } n \in \mathbb{N},$$

looks as follows:

$$\left(1,\frac{1}{2},\frac{1}{3},\dots\right).$$

16

(iii) The sequence $\gamma : \mathbb{N} \to \mathbb{R}$, defined by

 $\gamma_n = (-1)^n$, for every $n \in \mathbb{N}$,

looks as follows:

$$(1, -1, 1, -1, 1, -1, 1, \dots).$$

(iv) The sequence $\delta : \mathbb{N} \to \mathbb{R}$, defined by

$$\delta_n = \frac{n}{n+1}, \quad \text{for every } n \in \mathbb{N},$$

looks as follows:

$$\left(0,\frac{1}{2},\frac{2}{3},\frac{3}{4},\dots\right)$$

(v) The sequence $\zeta : \mathbb{N} \to \mathbb{R}$, defined by

$$\zeta_n = \frac{n}{2^n}, \quad \text{for every } n \in \mathbb{N},$$

looks as follows:

$$\left(0, \frac{1}{2}, \frac{2}{4} = \frac{1}{2}, \frac{3}{2^3} = \frac{3}{8}, \frac{4}{2^4} = \frac{1}{4}, \dots\right).$$

(vi) The sequence of the Fibonacci numbers $Fib : \mathbb{N} \to \mathbb{R}$ is defined recursively as follows

$$\mathtt{Fib}_{n} := \begin{cases} 0 & , n = 0 \\ 1 & , n = 1 \\ \mathtt{Fib}_{n-1} + \mathtt{Fib}_{n-2} & , n \ge 2, \end{cases}$$

and it looks as follows:

$$(0, 1, 1, 2, 3, 5, 8, 13, 21, \dots).$$

DEFINITION 1.5.2. Let $\alpha : \mathbb{N} \to \mathbb{R}$ be a sequence of real numbers, and let $x \in \mathbb{R}$. We say that α converges to x, or x is the *limit* of α , if

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall_{n \ge N_{\varepsilon}} (|\alpha_n - x| < \varepsilon).$$

In this case we use the notations

$$\alpha_n \xrightarrow{n} x$$
, or $\lim_{n \to \infty} \alpha_n = x$, or $\lim \alpha_n = x$.

A sequence of reals α is called *convergent* if there is some $x \in \mathbb{R}$, such that α converges to x. We say that α is a *divergent* sequence, if there is no $x \in \mathbb{R}$ such that α converges to x. A sequence of reals α is called *bounded*, if

$$\exists_{M>0} \forall_{n \in \mathbb{N}} (|\alpha_n| \le M)$$

In this case we say that M is a bound of α , or α is bounded by M.

Since

$$|\alpha_n - x| < \varepsilon \Leftrightarrow -\varepsilon < \alpha_n - x < \varepsilon \Leftrightarrow x - \varepsilon < \alpha_n < x + \varepsilon,$$

a sequence α converges to $x \in \mathbb{R}$, if for every ε -interval around x, eventually (i.e., after some index N_{ε}) all terms α_n of α lie there.

PROPOSITION 1.5.3 (Uniqueness of limit). If $\alpha : \mathbb{N} \to \mathbb{R}$ is a sequence of real numbers, and $x, y \in \mathbb{R}$, then

$$\left[\alpha_n \xrightarrow{n} x \& \alpha_n \xrightarrow{n} y\right] \Rightarrow x = y.$$

PROOF. Let $\varepsilon > 0$. Since $\alpha_n \xrightarrow{n} x$ and $\alpha_n \xrightarrow{n} y$, there are $N_{\frac{\varepsilon}{2}} \in \mathbb{N}$ and $M_{\frac{\varepsilon}{2}} \in \mathbb{N}$, such that

$$\forall_{n \ge N_{\varepsilon}} \left(|\alpha_n - x| < \frac{\varepsilon}{2} \right) \quad \& \quad \forall_{n \ge M_{\varepsilon}} \left(|\alpha_n - y| < \frac{\varepsilon}{2} \right).$$

Hence for all $n \geq \max\{N_{\frac{\varepsilon}{2}}, M_{\frac{\varepsilon}{2}}\}$ we have that

$$|x-y| = |x-\alpha_n + \alpha_n - y| \le |x-\alpha_n| + |\alpha_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

If $x \neq y$, then if we take $\varepsilon = \frac{|x-y|}{2}$, and since the above holds for every $\varepsilon > 0$, we get the contradiction

$$|x-y| < \frac{|x-y|}{2},$$

hence x = y is the case.

PROPOSITION 1.5.4. If $\alpha : \mathbb{N} \to \mathbb{R}$ is a sequence of real numbers that converges to some $x \in \mathbb{R}$, then α is bounded.

PROOF. Since $\alpha_n \xrightarrow{n} x$, there is some $N_1 \in \mathbb{N}$ such that

$$\forall_{n\geq N_1} (|\alpha_n - x| < 1).$$

Since

$$|\alpha_n| = |\alpha_n - x + x| \le |\alpha_n - x| + |x| < 1 + |x|,$$

we get

$$\forall_{n \ge N_1} \left(|\alpha_n| < 1 + |x| \right).$$

hence the following real number

$$M = \max\{|\alpha_1|, \dots, |\alpha_{N_1-1}|, 1+|x|\}$$

is a bound of the sequence α .

If $\alpha, \beta, \gamma, \delta$, and ζ are the sequences defined above, the following hold. (i) $\alpha_n \xrightarrow{n} x$: If $\varepsilon > 0$, let $N_{\varepsilon} = 0$. Then

$$\forall_{n\geq 0} \left(|\alpha_n - x| = |x - x| = 0 < \varepsilon \right)$$

(ii) $\beta_n \xrightarrow{n} 0$: If $\varepsilon > 0$, then by the Corollary 1.4.8 there exists $N_{\varepsilon} \in \mathbb{N}^+$, such that $\frac{1}{N_{\varepsilon}} < \varepsilon$. Then

$$\forall_{n \ge N_{\varepsilon} - 1} \left(|\beta_n - 0| = |\beta_n| = \frac{1}{n+1} \le \frac{1}{N_{\varepsilon}} < \varepsilon \right).$$

18

(iii) The sequence γ is divergent (although it is bounded by 1). Suppose that there is $x \in \mathbb{R}$, such that $\gamma_n \xrightarrow{n} x$. Hence there is some $N_1 \in \mathbb{N}$ such that

$$\forall_{n \ge N_1} (|\gamma_n - x| = |(-1)^n - x| < 1).$$

Hence, for every $n \ge N_1$ we get

$$2 = |(-1)^{n+1} - (-1)^n| = |\gamma_{n+1} - \gamma_n| = |\gamma_{n+1} - x + x - \gamma_n| \leq |\gamma_{n+1} - x| + |x - \gamma_n| < 1 + 1 = 2,$$

which is a contradiction.

(iv) $\delta_n \xrightarrow{n} 1$: Exercise.

(v) $\zeta_n \xrightarrow{n} 0$: Exercise.

PROPOSITION 1.5.5. Let $(\alpha_n)_{n\in\mathbb{N}}$, $(\beta_n)_{n\in\mathbb{N}}$ be sequences of reals, and $\lambda, x, y \in \mathbb{R}$. We define the sequences $(\alpha + \beta)_{n\in\mathbb{N}}$, $(\alpha \cdot \beta)_{n\in\mathbb{N}}$, $(\lambda\alpha)_{n\in\mathbb{N}}$ and $(\frac{1}{\beta})_{n\in\mathbb{N}}$, if $\beta_n \neq 0$, for every $n \in \mathbb{N}$, as follows:

$$(\alpha + \beta)_n = \alpha_n + \beta_n,$$

$$(\alpha \cdot \beta)_n = \alpha_n \cdot \beta_n,$$

$$(\lambda \alpha)_n = \lambda \alpha_n,$$

$$\left(\frac{1}{\beta}\right)_n = \frac{1}{\beta_n},$$

for every $n \in \mathbb{N}$. If $\alpha_n \xrightarrow{n} x$ and $\beta_n \xrightarrow{n} y$, the following hold:

- $(i) \ (\alpha + \beta)_n \xrightarrow{n} x + y.$
- $(ii) \ (\alpha \cdot \beta)_n \xrightarrow{n} x \cdot y.$
- (*iii*) $(\lambda \alpha)_n \xrightarrow{n} \lambda x$.
- (iv) If $y \neq 0$, then there is $n_0 \in \mathbb{N}$ such that $\beta_n \neq 0$, for all $n \geq n_0$, and

$$\left(\frac{1}{\beta}\right)_{n+n_0} \xrightarrow{n} \frac{1}{y},$$

and

$$\left(\frac{\alpha}{\beta}\right)_{n+n_0} \xrightarrow{n} \frac{x}{y}.$$

PROOF. By definition of convergence of a sequence we have that

$$\begin{aligned} \forall_{\varepsilon>0} \exists_{N_{\varepsilon}^{\alpha} \in \mathbb{N}} \forall_{n \geq N_{\varepsilon}^{\alpha}} (|\alpha_{n} - x| < \varepsilon). \\ \forall_{\varepsilon>0} \exists_{N_{\varepsilon}^{\beta} \in \mathbb{N}} \forall_{n \geq N_{\varepsilon}^{\beta}} (|\beta_{n} - x| < \varepsilon). \end{aligned}$$

(i) By the triangle inequality we have that

$$\begin{aligned} (\alpha + \beta)_n - (x + y) &|= |\alpha_n + \beta_n - x - y| \\ &= |(\alpha_n - x) + (\beta_n - y)| \\ &\leq |\alpha_n - x)| + |\beta_n - y| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon, \end{aligned}$$

for all $n \ge N_{\varepsilon}^{\alpha+\beta} = \max\{N_{\frac{\varepsilon}{2}}^{\alpha}, N_{\frac{\varepsilon}{2}}^{\beta}\}.$ (ii) If M > 0 is a bound of the convergent sequence α , then by the triangle inequality we have that

$$\begin{aligned} |(\alpha \cdot \beta)_n - xy| &= |\alpha_n \beta_n - xy| \\ &= |\alpha_n \beta_n - \alpha_n y + \alpha_n y - xy| \\ &= |(\alpha_n \beta_n - \alpha_n y) + (\alpha_n y - xy)| \\ &\leq |\alpha_n (\beta_n - y)| + |(\alpha_n - x)y| \\ &= |\alpha_n||\beta_n - y| + |\alpha_n - x||y| \\ &\leq M|\beta_n - y| + |\alpha_n - x||y| \\ &\leq M\frac{\varepsilon}{2M} + |y|\frac{\varepsilon}{2(|y|+1)} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon, \end{aligned}$$

 $\text{for all } n \geq N_{\varepsilon}^{\alpha \cdot \beta} = \max\{N_{\varepsilon}^{\beta}, N_{\varepsilon}^{\alpha \frac{\varepsilon}{2M}}, N_{\varepsilon}^{\alpha \frac{\varepsilon}{2(|y|+1)}}\}.$ (iii) Exercise.

(iv) By the convergence $\beta_n \xrightarrow{n} y$ we have that

$$|\beta_n - y| < \frac{|y|}{2},$$

for every $n \ge n_0 = N_{\frac{|y|}{2}}^{\beta}$. Hence, for every $n \ge n_0$ we get

$$-|\beta_n - y| > -\frac{|y|}{2}$$

Since for every $x, y \in \mathbb{R}$ we have shown (Blatt 3, Exercise 4(ii)) that

$$|x - y| \ge ||x| - |y|| \ge |x| - |y|,$$

we get for every $n \ge n_0$

$$\begin{aligned} |\beta_n| &= |y - (y - \beta_n)| \\ &\geq ||y| - |\beta_n - y|| \\ &\geq |y| - |\beta_n - y| \\ &\geq |y| - \frac{|y|}{2} \\ &= \frac{|y|}{2} \\ &> 0. \end{aligned}$$

Moreover, we have that

$$\begin{pmatrix} \frac{1}{\beta} \end{pmatrix}_n - \frac{1}{y} \middle| = \left| \frac{1}{\beta_n} - \frac{1}{y} \right|$$

$$= \left| \frac{y - \beta_n}{\beta_n y} \right|$$

$$= \frac{1}{|\beta_n||y|} |\beta_n - y|$$

$$\le \frac{2}{|y|} \frac{1}{|y|} \left(\frac{\varepsilon |y|^2}{2} \right)$$

$$= \varepsilon,$$

for all $n \ge \max\{n_0, N_{\frac{\varepsilon|y|^2}{2}}^{\beta}\}$. For the convergence

$$\left(\frac{\alpha}{\beta}\right)_{n+n_0} \stackrel{n}{\longrightarrow} \frac{x}{y}$$

we use the previous convergence and the case (ii).

Let the sequence α defined by

$$\alpha_n = \frac{4n^2 + 14n}{n^2 - 2},$$

for every $n \in \mathbb{N}$. Since for n > 0 we have that

$$\alpha_n = \frac{n^2(4+14\frac{1}{n})}{n^2(1-2\frac{1}{n^2})} = \frac{4+14\frac{1}{n}}{1-2\frac{1}{n^2}},$$

and $\frac{1}{n} \xrightarrow{n} 0$ and hence $\frac{1}{n^2} = \frac{1}{n} \frac{1}{n} \xrightarrow{n} 0$, we get $14\frac{1}{n} \xrightarrow{n} 0$, $-2\frac{1}{n^2} \xrightarrow{n} 0$, and hence $\alpha_n \xrightarrow{n} 4$.

PROPOSITION 1.5.6. Let $(\alpha_n)_{n \in \mathbb{N}}$, $(\beta_n)_{n \in \mathbb{N}}$ be sequences of reals, and $x, y \in \mathbb{R}$. If $\alpha_n \xrightarrow{n} x$ and $\beta_n \xrightarrow{n} y$, and if

$$\alpha_n \leq \beta_n,$$

for every $n \in \mathbb{N}$, then $x \leq y$.

PROOF. Suppose that $\varepsilon = x - y > 0$. For every $n \ge N_{\frac{\varepsilon}{2}}^{\alpha}$ we have that

$$|\alpha_n - x| < \frac{\varepsilon}{2} \Leftrightarrow -\frac{\varepsilon}{2} < \alpha_n - x < \frac{\varepsilon}{2} \Leftrightarrow x - \frac{\varepsilon}{2} < \alpha_n < x + \frac{\varepsilon}{2},$$

hence

$$\alpha_n > x - \frac{x-y}{2} = \frac{x+y}{2}.$$

For every $n \ge N_{\frac{\varepsilon}{2}}^{\beta}$ we have that

$$|\beta_n - y| < \frac{\varepsilon}{2} \Leftrightarrow -\frac{\varepsilon}{2} < \beta_n - y < \frac{\varepsilon}{2} \Leftrightarrow y - \frac{\varepsilon}{2} < \beta_n < y + \frac{\varepsilon}{2},$$

hence

$$\beta_n < y + \frac{x - y}{2} = \frac{x + y}{2}.$$

Hence for every $n\geq \max\{N_{\frac{\varepsilon}{2}}^{\beta},N_{\frac{\varepsilon}{2}}^{\beta}\}$ we get

$$\beta_n < \frac{x+y}{2} < \alpha_n$$

which is a contradiction. Hence $x \leq y$ is the case.

1.6. The completeness axiom

All axioms (I), (II), (III) and (IV) are satisfied also by the set of rational numbers \mathbb{Q} . The axiom discussed in this section is the most important axiom for the set of the real numbers \mathbb{R} , and, as expected, it is not satisfied by \mathbb{Q} .

LEMMA 1.6.1. If $k, l \in \mathbb{N}$, the following hold:

- $(i) \ k \in {\tt Even} \Rightarrow k^2 \in {\tt Even}.$
- $(ii) \ k \in \operatorname{Odd} \Rightarrow k^2 \in \operatorname{Odd}.$
- $(iii) \ k^2 \in \texttt{Even} \Rightarrow k \in \texttt{Even}.$
- $(iv) \ k^2 \in \operatorname{Odd} \Rightarrow k \in \operatorname{Odd}.$
- $(v) \ k \in \mathtt{Even} \Rightarrow kl \in \mathtt{Even}.$
- $(vi) \ k, l \in \mathsf{Odd} \Rightarrow kl \in \mathsf{Odd}.$

PROOF. (i) If k = 2n, for some $n \in \mathbb{N}$, then $k^2 = (2n)^2 = 4n^2 = 2(2n^2) \in \text{Even}$. (ii) If k = 2n + 1, for some $n \in \mathbb{N}$, then $k^2 = (2n + 1)^2 = 4n^2 + 4n + 1 = 2[2n^2 + 2n] + 1 \in \text{Odd}$.

(iii) If $k^2 \in \text{Even}$ and $k \in \text{Odd}$, then by (ii) $k^2 \in \text{Odd}$ too, which is a contradiction. (iv) If $k^2 \in \text{Odd}$ and $k \in \text{Even}$, then by (i) $k^2 \in \text{Even}$ too, which is a contradiction. (v)-(vi) are left to the reader as a simple exercise.

LEMMA 1.6.2. There is no rational number q such that $q^2 = 2$.

PROOF. Let $p \in \mathbb{Q}$ such that $p^2 = 2$. Moreover, let

$$p = \frac{k}{l},$$

where without loss of generality p > 0 and k, l are natural numbers, which are not both of them even (why?). If $k^2 = 2l^2$, then $k^2 \in \text{Even}$, hence $k \in \text{Even}$. Let k = 2m, for some $m \in \mathbb{N}^+$. Since $k^2 = 4m^2 = 2l^2$, we get $l^2 = 2m^2$, hence $l^2 \in \text{Even}$, therefore $l \in \text{Even}$, a fact which contradicts our hypothesis on k and l.

DEFINITION 1.6.3. A sequence $(\alpha_n)_{n \in \mathbb{N}}$ of reals in called a *Cauchy-sequence*, if

$$\forall_{\varepsilon>0} \exists_{C_{\varepsilon} \in \mathbb{N}^+} \forall_{n,m \ge C_{\varepsilon}} (|\alpha_n - \alpha_m| < \varepsilon).$$

PROPOSITION 1.6.4. If $(\alpha_n)_{n \in \mathbb{N}}$ is a convergent sequence, then $(\alpha_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence.

PROOF. If $x \in \mathbb{R}$ such that $\alpha_n \xrightarrow{n} x$, we have that

$$|\alpha_n - \alpha_m| = |\alpha_n - x + x - \alpha_m| \le |\alpha_n - x| + |x - \alpha_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

for all $n, m \ge N_{\frac{\varepsilon}{2}} = C_{\varepsilon}.$

Completeness axiom (CA): If $(\alpha_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence of reals, then $(\alpha_n)_{n \in \mathbb{N}}$ is convergent.

Next we use CA to prove the existence of the square root of a positive real number.

THEOREM 1.6.5. Let $a, b \in \mathbb{R}$ such that a > 0 and b > 0. Let the sequence $(\alpha_n)_{n \in \mathbb{N}}$ be defined by

$$\alpha_0 = b,$$

$$\alpha_{n+1} = \frac{1}{2} \left(\alpha_n + \frac{a}{\alpha_n} \right).$$

The following hold:

(i) $\alpha_n > 0$, for all $n \in \mathbb{N}$.

(ii) $\alpha_n^2 \ge a$, for all $n \ge 1$.

(*iii*) $\alpha_{n+1} \leq \alpha_n$, for all $n \geq 1$.

(iv) If $(\beta_n)_{n \in \mathbb{N}^+}$ is the sequence of reals defined by

$$\beta_n = \frac{a}{\alpha_n}, \quad n \in \mathbb{N}^+,$$

then

- (a) $\beta_n^2 \leq a$, for every $n \geq 1$,
- (b) $\beta_n \leq \alpha_m$, for every $n, m \geq 1$, and
- (c) For every $n \ge 1$ we have that

$$\alpha_n - \beta_n \le \frac{1}{2^{n-1}} (\alpha_1 - \beta_1).$$

- (v) The sequence $(\alpha_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence.
- (vi) If $x \in \mathbb{R}$ such that $\alpha_n \xrightarrow{n} x$, then $x \ge 0$ and $x^2 = a$.

PROOF. (i) We use the induction principle IND.

(ii) We show that

$$\alpha_n^2 - a = \frac{1}{4} \left(\alpha_{n-1} + \frac{a}{\alpha_{n-1}} \right)^2 - a \ge 0.$$

(iii) Using (i) and (ii) we show that

$$\alpha_n - \alpha_{n+1} \ge 0.$$

(iv)(a) By (ii) we have that

$$\alpha_n^2 \geq a \Rightarrow \frac{a}{\alpha_n^2} \leq 1,$$

hence

$$\beta_n^2 = \frac{a^2}{\alpha_n^2} = \frac{a}{\alpha_n^2} a \le 1 \cdot a = a.$$

(iv)(b) By (iii) we have that

$$\alpha_{n+1} \le \alpha_n \Rightarrow \frac{1}{\alpha_{n+1}} \ge \frac{1}{\alpha_n} \stackrel{a \ge 0}{\Rightarrow} \beta_{n+1} = \frac{a}{\alpha_{n+1}} \ge \frac{a}{\alpha_n} = \beta_n$$

i.e., for every $n \ge 1$ we have that

(1.1)
$$\beta_{n+1} \ge \beta_n.$$

Let $n, m \ge 1$. Suppose first that $n \ge m$. By (ii) for every $n \ge 1$ we have that

(1.2)
$$\beta_n = \frac{a}{\alpha_n} \le \alpha_n.$$

By (iii) we have that

$$\alpha_n \le \alpha_{n-1} \le \ldots \le \alpha_m,$$

hence by the Equation 1.2 we get

$$\beta_n \leq \alpha_n \leq \alpha_{n-1} \leq \ldots \leq \alpha_m.$$

Suppose next that $n \leq m$. By the Equations 1.1 and 1.2 we get

$$\beta_n \leq \beta_{n+1} \leq \ldots \leq \beta_m \leq \alpha_m.$$

(iv)(c) We use the induction principle IND^+ . If n = 1, then

$$\alpha_1 - \beta_1 = \frac{1}{2^0} (\alpha_1 - \beta_1).$$

If n > 1, then by the Equation 1.1 we have that

$$\beta_{n+1} \ge \beta_n \Rightarrow -\beta_{n+1} \le -\beta_n,$$

hence

$$\begin{aligned} \alpha_{n+1} - \beta_{n+1} &\leq \alpha_{n+1} - \beta_n \\ &= \frac{1}{2} (\alpha_n + \beta_n) - \beta_n \\ &= \frac{1}{2} (\alpha_n - \beta_n) \\ &\leq \frac{1}{2} \left[\frac{1}{2^{n-1}} (\alpha_1 - \beta_1) \right] \\ &= \frac{1}{2^n} (\alpha_1 - \beta_1). \end{aligned}$$

(v) We calculate the absolute value $|\alpha_n - \alpha_m|$. Suppose first that $n \leq m$. By (iii) we get $|\alpha_n - \alpha_m| = \alpha_n - \alpha_m$. By the cases (iv)(b) and (iv)(c) we have that

$$|\alpha_n - \alpha_m| = \alpha_n - \alpha_m \le \alpha_n - \beta_n \le \frac{1}{2^{n-1}}(\alpha_1 - \beta_1).$$

Suppose next that $n \ge m$. By (iii) we get $|\alpha_n - \alpha_m| = \alpha_m - \alpha_n$. By the cases (iv)(b) and (iv)(c) we have that

$$|\alpha_n - \alpha_m| = \alpha_m - \alpha_n \le \alpha_m - \beta_m \le \frac{1}{2^{m-1}}(\alpha_1 - \beta_1)$$

Suppose that $\alpha_1 \neq \beta_1 \Leftrightarrow \alpha_1 - \beta_1 > 0$, since $\alpha_1 \geq \beta_1$. If $\zeta_n = \frac{1}{2^{n-1}}$, for every $n \geq 1$, then $\zeta_n \xrightarrow{n} 0$, and for every $n, m \geq N_{\frac{\varepsilon}{\alpha_1 - \beta_1}}^{\zeta} = C_{\varepsilon}$ we have that

$$|\alpha_n - \alpha_m| < \varepsilon$$

i.e., $(\alpha_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence. Notice that if $\alpha_1 - \beta_1 = 0$, then what we want follows trivially. In this case we have that

$$\alpha_1 = \frac{a}{\alpha_1} \Leftrightarrow \alpha_1^2 = a,$$

and by the case (iv)(c) we have that

$$0 \le |\alpha_n - \beta_n| \le \frac{1}{2^{n-1}}(\alpha_1 - \beta_1) = 0$$

i.e., $\alpha_n = \beta_n$, for every $n \ge 1$, hence $\alpha_n^2 = a$, for every $n \ge 1$, and by (i) $(\alpha_n)_{n\ge 1}$ is the constant sequence \sqrt{a} .

(vi) We show that $\beta_n \xrightarrow{n} x$. Since

$$|\beta_n - x| \le |\beta_n - \alpha_n| + |\alpha_n - x|,$$

and since by (iv)(c) $|\beta_n - \alpha_n| \xrightarrow{n} 0$, we get $\beta_n \xrightarrow{n} x$. Hence $x^2 = (\lim \beta_n) \cdot (\lim \beta_n)$

$$\begin{aligned} x^{2} &= \left(\lim_{n \to \infty} \beta_{n}\right) \cdot \left(\lim_{n \to \infty} \beta_{n}\right) \\ &= \lim_{n \to \infty} \beta_{n}^{2} \\ \stackrel{(iv)(a)}{\leq} a \\ \stackrel{(iii)}{\leq} \lim_{n \to \infty} \alpha_{n}^{2} \\ &= \left(\lim_{n \to \infty} \alpha_{n}\right) \cdot \left(\lim_{n \to \infty} \alpha_{n}\right) \\ &= x \cdot x \\ &= x^{2}. \end{aligned}$$

From the inequalities $x^2 \leq a \leq x^2$ we conclude that $x^2 = a$.

As a consequence of the previous theorem, if we define the sequence

$$\alpha_0 = 1,$$

$$\alpha_{n+1} = \frac{1}{2} \left(\alpha_n + \frac{2}{\alpha_n} \right),$$

then

$$\alpha_n \xrightarrow{n} \sqrt{2}.$$

Using this sequence we can show that the set \mathbb{Q} of rational numbers does not satisfy CA (Exercise). As a generalization of the previous theorem, CA implies the existence of the k-th root of a positive real, for every $k \geq 2$.

THEOREM 1.6.6. Let $k \in \mathbb{N}$ such that $k \geq 2$, and let $a, b \in \mathbb{R}$ such that a > 0and b > 0. Let the sequence $(\alpha_n)_{n \in \mathbb{N}}$ be defined by

$$\alpha_0 = b,$$

$$\alpha_{n+1} = \frac{1}{k} \left((k-1)\alpha_n + \frac{a}{\alpha_n^{k-1}} \right)$$

The following hold:

(i) $\alpha_n > 0$, for all $n \in \mathbb{N}$.

- (v) The sequence $(\alpha_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence.
- (vi) If $x \in \mathbb{R}$ such that $\alpha_n \xrightarrow{n} x$, then $x \ge 0$ and $x^k = a$.

DEFINITION 1.6.7. The set \mathbb{I} of *irrational* real numbers is defined by

$$\mathbb{I} = \{ x \in \mathbb{R} \mid x \notin \mathbb{Q} \}$$

i.e., $\mathbb I$ is the complement of $\mathbb Q$ in $\mathbb R.$

Clearly, $\sqrt{2}, \sqrt{3} \in \mathbb{I}$.

1.7. Infinite series of real numbers

DEFINITION 1.7.1. Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. The sequence $(\sigma_n)_{n \in \mathbb{N}}$ of *partial sums* of $(\alpha_n)_{n \in \mathbb{N}}$ is defined by

$$\sigma_n = \sum_{k=0}^n \alpha_k = \alpha_0 + \alpha_1 + \ldots + \alpha_n,$$

for every $n \in \mathbb{N}$. If $(\sigma_n)_{n \in \mathbb{N}}$ converges to a real number x, we write

$$x = \lim_{n \to \infty} \sigma_n = \sum_{n=0}^{\infty} \alpha_n.$$

If $(\sigma_n)_{n\in\mathbb{N}}$ converges, we write

$$\sum_{n=0}^{\infty} \alpha_n \in \mathbb{R}.$$

If $(\sigma_n)_{n \in \mathbb{N}}$ is divergent, we write

$$\sum_{n=0}^{\infty} \alpha_n \notin \mathbb{R}.$$

Note that if $n \ge m$, then

$$\sigma_n - \sigma_m = \left(\sum_{k=0}^n \alpha_k\right) - \left(\sum_{k=0}^m \alpha_k\right)$$
$$= \left(\alpha_0 + \alpha_1 + \dots + \alpha_m + \alpha_{m+1} + \dots + \alpha_n\right) - \left(\alpha_0 + \alpha_1 + \dots + \alpha_m\right)$$
$$= \alpha_{m+1} + \dots + \alpha_n$$
$$= \sum_{k=m+1}^n \alpha_k.$$

As a special case we get

$$\sigma_n - \sigma_{n-1} = \left(\sum_{k=0}^n \alpha_k\right) - \left(\sum_{k=0}^{n-1} \alpha_k\right)$$
$$= \left(\alpha_0 + \alpha_1 + \ldots + \alpha_{n-1} + \alpha_n\right) - \left(\alpha_0 + \alpha_1 + \ldots + \alpha_{n-1}\right)$$
$$= \alpha_n.$$

If $\alpha_n = 0$, for every $n \in \mathbb{N}$, then for the corresponding sequence of partial sums we have that

$$\sigma_n = \sum_{k=0}^n \alpha_k = 0 + 0 + \ldots + 0 = 0,$$

hence

$$\sum_{n=0}^{\infty} \alpha_n = 0$$

If $x \neq 0$, and $\alpha_n = x$, for every $n \in \mathbb{N}$, then for the corresponding sequence of partial sums we have that

$$\sigma_n = \sum_{k=0}^n \alpha_k = x + x + \ldots + x = (n+1)x.$$

By the Archimedean axiom we get that the sequence $(\sigma_n)_{n\in\mathbb{N}}$ is unbounded, hence

$$\sum_{n=0}^{\infty} \alpha_n \notin \mathbb{R}.$$

If $(\alpha_n)_{n \in \mathbb{N}}$ is a sequence of real numbers, each term α_n can be written as a *telescoping sum*:

$$\alpha_n = \alpha_0 + (\alpha_1 - \alpha_0) + (\alpha_2 - \alpha_1) + \dots + (\alpha_n - \alpha_{n-1})$$

= $\alpha_0 + \sum_{k=1}^n (\alpha_k - \alpha_{k-1})$
= $\alpha_0 + \sum_{k=0}^{n-1} (\alpha_{k+1} - \alpha_k).$

We can use this writing of α_n to calculate an infinite series as follows. Suppose that we need to calculate

$$\sum_{n=1}^{\infty} \gamma_n,$$

for some sequence $(\gamma_n)_{n \in \mathbb{N}}$ of real numbers.

Step 1. Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that for every $k \geq 1$

$$\gamma_k = \alpha_k - \alpha_{k-1}.$$

Step 2. By the above writing of α_n as a telescoping sum we get

$$\sum_{k=1}^{n} \gamma_k = \sum_{k=1}^{n} (\alpha_k - \alpha_{k-1}) = \alpha_n - \alpha_0.$$

Step 3. If $x \in \mathbb{R}$ such that $\lim_{n \to \infty} \alpha_n = x$, then

$$\sum_{n=1}^{\infty} \gamma_n = \lim_{n \to \infty} \left(\sum_{k=0}^n \gamma_k \right)$$

$$= \lim_{n \to \infty} (\alpha_n - \alpha_0)$$

= $\lim_{n \to \infty} \alpha_n - \lim_{n \to \infty} \alpha_0$
= $x - \alpha_0$.

Example. Suppose that we need to find

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

Since

$$\gamma_k = \frac{1}{k(k+1)} = \frac{k}{k+1} - \frac{k-1}{k} = \alpha_k - \alpha_{k-1},$$

where

$$\alpha_n = \frac{n}{n+1}, \quad n \in \mathbb{N},$$

and since $\alpha_0 = 0$ and $x = \lim_{n \to \infty} \alpha_n = 1$, we get

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 - 0 = 1.$$

The following result is an immediate consequence of the Proposition 1.5.5.

PROPOSITION 1.7.2. Let $(\alpha_n)_{n\in\mathbb{N}}$, $(\beta_n)_{n\in\mathbb{N}}$ be sequences of real numbers, and let $\lambda, \mu \in \mathbb{R}$. If

$$\sum_{n=0}^{\infty} \alpha_n \in \mathbb{R} \quad \& \quad \sum_{n=0}^{\infty} \beta_n \in \mathbb{R},$$

then

$$\sum_{n=0}^{\infty} \left(\lambda \alpha_n + \mu \beta_n \right) \in \mathbb{R}, \quad and$$
$$\sum_{n=0}^{\infty} \left(\lambda \alpha_n + \mu \beta_n \right) = \lambda \left(\sum_{n=0}^{\infty} \alpha_n \right) + \mu \left(\sum_{n=0}^{\infty} \beta_n \right).$$

As a corollary of the above proposition, from the previous example we get

$$\sum_{n=1}^{\infty} \frac{5}{n(n+1)} = 5\left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\right) = 5 \cdot 1 = 5.$$

PROPOSITION 1.7.3 (Infinite geometric series). If $x \in \mathbb{R}$ such that |x| < 1, then

$$\sum_{n=0}^{\infty} x^n \in \mathbb{R} \quad \& \quad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

PROOF. If $n \in \mathbb{N}$, then

$$(1-x)\left(\sum_{k=0}^{n} x^k\right) = 1 - x^{n+1}.$$

Since $x \neq 1$, we get

$$\sigma_n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Since |x| < 1, by the Exercise 4(ii)(a) of Sheet 4 we have that $\lim_{n \to \infty} x^{n+1} = 0$, hence

$$\lim_{n \to \infty} \sigma_n = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

As a corollary of the previous proposition, we get

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1,$$

since

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2,$$

hence

$$2 = \left(\frac{1}{2}\right)^0 + \sum_{n=1}^\infty \frac{1}{2^n} = 1 + \sum_{n=1}^\infty \frac{1}{2^n}.$$

PROPOSITION 1.7.4 (Cauchy-criterion of convergence). Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. The sequence $(\sigma_n)_{n\in\mathbb{N}}$ of partial sums of $(\alpha_n)_{n\in\mathbb{N}}$ converges if and only if

$$\forall_{\varepsilon>0} \exists_{C_{\varepsilon}\in\mathbb{N}} \forall_{n\geq m\geq C_{\varepsilon}} \left(\left| \sum_{k=m+1}^{n} \alpha_{k} \right| < \varepsilon \right).$$

PROOF. By the Proposition 1.6.4 and the Completeness axiom the sequence of partial sums $(\sigma_n)_{n\in\mathbb{N}}$ converges if and only of $(\sigma_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence. By definition this means that for every $\varepsilon > 0$ there is $C_{\varepsilon} \in \mathbb{N}$ such that for all $n \ge m \ge C_{\varepsilon}$ we have that

$$|\sigma_n - \sigma_m| = \left|\sum_{k=m+1}^n \alpha_k\right| < \varepsilon.$$

PROPOSITION 1.7.5 (Criterion of non-convergence of an infinite series). Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. If the sequence $(\sigma_n)_{n\in\mathbb{N}}$ of partial sums of $(\alpha_n)_{n\in\mathbb{N}}$ converges, then $\lim_{n\to\infty} \alpha_n = 0$.

PROOF. By the Cauchy-criterion of convergence we have that

$$\forall_{\varepsilon>0} \exists_{C_{\varepsilon} \in \mathbb{N}} \forall_{n \ge C_{\varepsilon}+1} \bigg(\bigg| \sum_{k=n-1}^{n} \alpha_k \bigg| = |\alpha_n| < \varepsilon \bigg).$$

Now we have one more explanation, why for $x \neq 0$

$$\sum_{n=0}^{\infty} x \notin \mathbb{R}$$

since the constant sequence x does not converge to 0. The converse to the Proposition 1.7.5 does not hold, in general. One can show that

$$\sum_{n=0}^{\infty} \frac{1}{n} = \infty, \quad \text{although} \quad \lim_{n \to \infty} \frac{1}{n} = 0.$$

DEFINITION 1.7.6. Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. The sequence $(\sigma_n)_{n \in \mathbb{N}}$ of partial sums of $(\alpha_n)_{n \in \mathbb{N}}$ converges *absolutely* if

$$\sum_{n=0}^{\infty} |\alpha_n| \in \mathbb{R}.$$

PROPOSITION 1.7.7. If $(\alpha_n)_{n \in \mathbb{N}}$ is a sequence of real numbers, then

$$\sum_{n=0}^{\infty} |\alpha_n| \in \mathbb{R} \Rightarrow \sum_{n=0}^{\infty} \alpha_n \in \mathbb{R}.$$

PROOF. Exercise.

PROPOSITION 1.7.8 (Comparison test). If $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ are sequences of real numbers, such that

$$\forall_{n\in\mathbb{N}} (|\alpha_n| \leq \beta_n), \quad and \quad \sum_{n=0}^{\infty} \beta_n \in \mathbb{R},$$

then

$$\sum_{n=0}^{\infty} |\alpha_n| \in \mathbb{R}.$$

PROOF. By the Cauchy-criterion of convergence we have that

$$\forall_{\varepsilon>0} \exists_{C_{\varepsilon}^{\beta} \in \mathbb{N}} \forall_{n \ge m \ge C_{\varepsilon}^{\beta}} \left(\left| \sum_{k=m+1}^{n} \beta_{k} \right| < \varepsilon \right).$$

If we define $C_{\varepsilon}^{|\alpha|} = C_{\varepsilon}^{\beta}$, then for every $n \ge m \ge C_{\varepsilon}^{|\alpha|}$ we get

$$\sum_{k=m+1}^{n} |\alpha_k| \le \sum_{k=m+1}^{n} \beta_k \le \left| \sum_{k=m+1}^{n} \beta_k \right| < \varepsilon,$$

31

hence by the Cauchy-criterion of convergence again we get $\sum_{n=0}^{\infty} |\alpha_n| \in \mathbb{R}$. \Box

As a corollary of the comparison test we show (exercise) that

$$\sum_{n=1}^{\infty} \frac{1}{n^k} \in \mathbb{R}, \quad k \ge 2.$$

PROPOSITION 1.7.9 (Quotient-criterion). Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of real numbers, such that $\alpha_n \neq 0$, for every $n \geq n_0$, and some $n_0 \in \mathbb{N}$. Let $\theta \in \mathbb{R}$ such that

(i) $0 < \theta < 1$, and (ii) for every $n \ge n_0$, it holds

Then

$$\left|\frac{\alpha_{n+1}}{\alpha_n}\right| \le \theta.$$
$$\sum_{n=0}^{\infty} |\alpha_n| \in \mathbb{R}.$$

PROOF. Since

$$\sum_{n=0}^{\infty} |\alpha_n| = \sum_{k=0}^{n_0 - 1} |\alpha_k| + \sum_{k=n_0}^{\infty} |\alpha_k|,$$

it suffices to show that

$$\sum_{k=n_0}^{\infty} |\alpha_k| \in \mathbb{R}.$$

Because of this, we suppose without loss of generality that $\alpha_n \neq 0$, for every $n \in \mathbb{N}$ i.e., $n_0 = 0$. Because of (ii), a simple induction shows that

$$\forall_{n\in\mathbb{N}} (|\alpha_n| \le |\alpha_0|\theta^n).$$

Since

$$\sum_{n=0}^{\infty} |\alpha_0| \theta^n = |\alpha_0| \left(\sum_{n=0}^{\infty} \theta^n\right) = |\alpha_0| \frac{1}{1-\theta},$$

what we want follows from the comparison test.

CHAPTER 2

Real-valued functions of a real variable

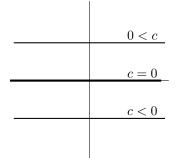
In this chapter we study the continuity, the differentiability and the integration of functions defined on a subset of \mathbb{R} with values in \mathbb{R} . We can picture these functions through the representation of their graph in the Euclidean plane \mathbb{R}^2 . First we study the notion of a continuous function $f: D \subseteq \mathbb{R} \to \mathbb{R}$. As it is indicated by the term continuous, the graph of a continuous function is a continuous curve in the plane \mathbb{R}^2 .

2.1. The graph of a real-valued function of a real variable

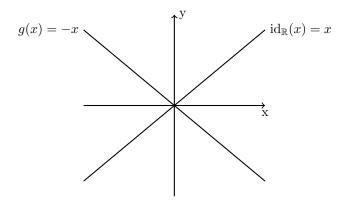
DEFINITION 2.1.1. A real-valued function of a real variable is a function $f : D \to \mathbb{R}$, where D is a subset of \mathbb{R} . The graph Gr(f) of f is defined by

$$\operatorname{Gr}(f) = \{ (x, y) \in D \times \mathbb{R} \mid y = f(x) \}.$$

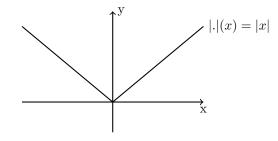
Example 1. If $c \in \mathbb{R}$, let the constant function c is the function $f_c : D \to \mathbb{R}$, defined by $f_c(x) = c$, for every $x \in \mathbb{R}$. If $D = \mathbb{R}$, the graph of f_c is a straight line parallel to the axis of x's, the position of which depends on the value of c, as it is shown in the following figure.



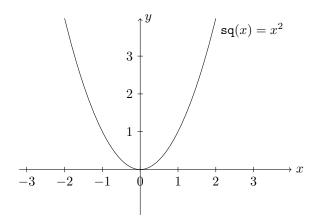
Example 2. The *identity function* $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$, where $x \mapsto x$, for every $x \in \mathbb{R}$, has as graph the following diagonal line, while the graph of the function $g : \mathbb{R} \to \mathbb{R}$, defined by g(x) = -x, for every $x \in \mathbb{R}$, is the line symmetric to the graph of $id_{\mathbb{R}}$, with respect to the horizontal axis.



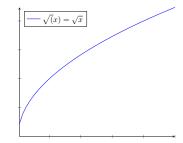
Example 3. The absolute value function $|.| : \mathbb{R} \to \mathbb{R}$, defined by $x \mapsto |x|$, for every $x \in \mathbb{R}$, has as graph the following curve



Example 4. The square function $sq : \mathbb{R} \to \mathbb{R}$, defined by $sq(x) = x^2$, for every $x \in \mathbb{R}$, has as graph the following curve



Example 5. The function $\sqrt{x}: \mathbb{R}^+ \to \mathbb{R}$, defined by \sqrt{x} , for every $x \in \mathbb{R}^+$, has as graph the following curve



Example 6. The *Dirichlet function* $Dir : \mathbb{R} \to \mathbb{R}$ is defined by

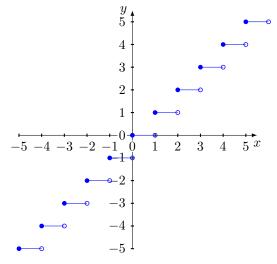
$$\operatorname{Dir}(x) := \left\{ \begin{array}{ll} 1 & , \, x \in \mathbb{Q} \\ 0 & , \, x \in \mathbb{I}, \end{array} \right.$$

and its graph cannot be represented by a continuous curve in the plane.

Example 7. The *floor function* $\lfloor . \rfloor : \mathbb{R} \to \mathbb{R}$ is defined by $x \mapsto \lfloor x \rfloor$, for every $x \in \mathbb{R}$, where $\lfloor x \rfloor$ is the unique integer such that

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

The graph of the floor function is pictured in the following figure.



DEFINITION 2.1.2. Let $D \subseteq \mathbb{R}$, $f, g : D \to \mathbb{R}$, and $\lambda \in \mathbb{R}$. Let the functions $f + g, \lambda f, f \cdot g : D \to \mathbb{R}$, defined by

$$(f+g)(x) = f(x) + g(x),$$
$$(\lambda f)(x) = \lambda f(x),$$
$$(f \cdot g)(x) = f(x) \cdot g(x),$$

for every $x \in D$, respectively. If

$$D_g^* = \{ x \in D \mid g(x) \neq 0 \},$$

we define the function $\frac{f}{g}: D_g^* \to \mathbb{R}$, where

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)},$$

for every $x \in D_q^*$.

Example 8. The function $\frac{1}{sq}$: $\mathbb{R}^* \to \mathbb{R}$, where $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \neq 0\}$, is defined by

$$\left(\frac{1}{\mathtt{sq}}\right)(x) = \frac{1}{x^2},$$

for every $x \in \mathbb{R}^*$.

Example 9. A polynomial p is a function $p : \mathbb{R} \to \mathbb{R}$, where

$$p = \sum_{k=0}^{n} a_k \operatorname{id}_{\mathbb{R}}^k$$

= $a_0 \operatorname{id}_{\mathbb{R}}^0 + a_1 \operatorname{id}_{\mathbb{R}}^1 + \dots a_n \operatorname{id}_{\mathbb{R}}^n$
= $a_0 + a_1 \operatorname{id}_{\mathbb{R}} + a_2 \operatorname{id}_{\mathbb{R}}^2 + \dots + a_n \operatorname{id}_{\mathbb{R}}^n$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$. If $a_n \neq 0$, the number *n* is called the *degree* of *p*. If $x \in \mathbb{R}$, then by definition we get

$$p(x) = \left(\sum_{k=0}^{n} a_k \mathrm{id}_{\mathbb{R}}^k\right)(x)$$

= $\left(a_0 + a_1 \mathrm{id}_{\mathbb{R}} + a_2 \mathrm{id}_{\mathbb{R}}^2 + \ldots + a_n \mathrm{id}_{\mathbb{R}}^n\right)(x)$
= $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$.

The identity function $id_{\mathbb{R}}$ is a polynomial of degree 1 ($a_0 = 0$ and $a_1 = 1$), while the function $h(x) = x^2$ is a polynomial of degree 2 ($a_0 = a_1 = 0$ and $a_2 = 1$).

Example 10. If $p = \sum_{k=0}^{n} a_k \operatorname{id}_{\mathbb{R}}^k$ and $q = \sum_{k=0}^{m} b_k \operatorname{id}_{\mathbb{R}}^k$ are polynomials, the *rational function* R_{pq} is a function $R_{pq} : D_q^* \to \mathbb{R}$, defined by

$$R_{pq}(x) = \frac{p(x)}{q(x)}$$
$$= \frac{\left(\sum_{k=0}^{n} a_k \mathrm{id}_{\mathbb{R}}^k\right)(x)}{\left(\sum_{k=0}^{m} b_k \mathrm{id}_{\mathbb{R}}^k\right)(x)}$$

2.2. CONTINUITY

$$=\frac{a_0+a_1x+a_2x^2+\ldots+a_nx^n}{b_0+b_1x+b_2x^2+\ldots+b_mx^m},$$

where

 $D_q^* = \{ x \in \mathbb{R} \mid b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m \neq 0 \}.$ The next definition is a special case of the Definition 1.2.3.

DEFINITION 2.1.3. Let $D, E \subseteq \mathbb{R}$, and let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$, such that $\operatorname{Im}(f) = \{f(x) \mid x \in D\} \subseteq E.$

The composition $g \circ f : D \to \mathbb{R}$ of f and g is defined, for every $x \in D$, by

$$(g \circ f)(x) = g(f(x))$$
$$D \xrightarrow{f} E \xrightarrow{g} \mathbb{R}.$$
$$g \circ f$$

Example 11. If $sq(x) = x^2$, then $(\sqrt{\circ sq})(x) = \sqrt{(sq(x))} = \sqrt{x^2} = |x|$

$$\mathbb{R} \xrightarrow{\mathbf{sq}} \mathbb{R}^+ \xrightarrow{\sqrt{}} \mathbb{R}.$$

$$\swarrow \circ \mathbf{sq} = |.|$$

2.2. Continuity

DEFINITION 2.2.1. Let $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, and $x_0, l \in \mathbb{R} \cup \{-\infty, +\infty\}$. Let also the set

$$\mathbb{F}(\mathbb{N},\mathbb{R}) = \{\alpha : \mathbb{N} \to \mathbb{R}\}\$$

(i) Let $D(x_0)$ be the set of all sequences in D that converge to x_0 i.e.,

$$D(x_0) = \{ (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{F}(\mathbb{N}, \mathbb{R}) \mid \forall_{n \in \mathbb{N}} (\alpha_n \in D) \& \lim_{n \to \infty} \alpha_n = x_0 \}.$$

If the set $D(x_0)$ is non-empty, we say that x_0 is an *accumulation-point* of D. If x_0 is an accumulation-point of D, we define

$$\lim_{x \longrightarrow x_0} f(x) = l :\Leftrightarrow \forall_{(\alpha_n)_{n \in \mathbb{N}} \in D(x_0)} \left(\lim_{n \longrightarrow \infty} f(\alpha_n) = l \right)$$

i.e.,

$$\left[\lim_{n \to \infty} \alpha_n = x_0\right] \Rightarrow \left[\lim_{n \to \infty} f(\alpha_n) = l\right],$$

for every sequence of real numbers $(\alpha_n)_{n \in \mathbb{N}}$ in D. (ii) If $x_0 \in \mathbb{R}$, let the set

$$D^+(x_0) = \{(x_n)_{n \in \mathbb{N}} \in \mathbb{F}(\mathbb{N}, \mathbb{R}) \mid \forall_{n \in \mathbb{N}} (\alpha_n \in D \& \alpha_n > x_0) \& \lim_{n \to \infty} \alpha_n = x_0 \}.$$

If the set $D^+(x_0)$ is non-empty, we define

$$\lim_{x \longrightarrow x_0^+} f(x) = l :\Leftrightarrow \forall_{(\alpha_n)_{n \in \mathbb{N}} \in D^+(x_0)} \bigg(\lim_{n \longrightarrow \infty} f(\alpha_n) = l \bigg).$$

(iii) If $x_0 \in \mathbb{R}$, let the set

$$D^{-}(x_{0}) = \{(\alpha_{n})_{n \in \mathbb{N}} \in \mathbb{F}(\mathbb{N}, \mathbb{R}) \mid \forall_{n \in \mathbb{N}} (\alpha_{n} \in D \& \alpha_{n} < x_{0}) \& \lim_{n \longrightarrow \infty} \alpha_{n} = x_{0}\}$$

If the set $D^-(x_0)$ is non-empty, we define

$$\lim_{x \longrightarrow x_0^-} f(x) = l :\Leftrightarrow \forall_{(\alpha_n)_{n \in \mathbb{N}} \in D^-(x_0)} \bigg(\lim_{n \longrightarrow \infty} f(\alpha_n) = l \bigg).$$

(iv) Let D be unbounded above i.e.,

$$\forall_{n \in \mathbb{N}} \exists_{x \in D} (x \ge n).$$

For such a set D we define

$$D(+\infty) = \{ (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{F}(\mathbb{N}, \mathbb{R}) \mid \forall_{n \in \mathbb{N}} (\alpha_n \in D) \& \lim_{n \to \infty} \alpha_n = +\infty \},\$$

and

$$\lim_{x \to +\infty} f(x) = l :\Leftrightarrow \forall_{(\alpha_n)_{n \in \mathbb{N}} \in D(+\infty)} \bigg(\lim_{n \to \infty} f(\alpha_n) = l \bigg).$$

(v) Let D be unbounded below i.e.,

$$\forall_{n \in \mathbb{N}} \exists_{x \in D} (x \le -n).$$

For such a set D we define

3

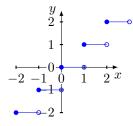
$$D(-\infty) = \{ (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{F}(\mathbb{N}, \mathbb{R}) \mid \forall_{n \in \mathbb{N}} (\alpha_n \in D) \& \lim_{n \to \infty} \alpha_n = -\infty \},$$

and

$$\lim_{z \to -\infty} f(x) = l :\Leftrightarrow \forall_{(\alpha_n)_{n \in \mathbb{N}} \in D(-\infty)} \bigg(\lim_{n \to \infty} f(\alpha_n) = l \bigg).$$

If $x_0 \in D$, then x_0 is an accumulation-point of D, since the constant sequence x_0 is in $D(x_0)$.

Example 1. If we consider the floor function (Example 7 in the previous section),



then

$$\lim_{\longrightarrow 0^+} \lfloor x \rfloor = 0 \quad \& \quad \lim_{x \longrightarrow 0^-} \lfloor x \rfloor = -1,$$

since if $(\alpha_n)_{n\in\mathbb{N}} \in \mathbb{R}^+(0)$, then by definition $\alpha_n > 0$, for every $n \in \mathbb{N}$, and since $\lim_{n \to \infty} \alpha_n = 0$, then for every $n \ge n_0$, for some $n_0 \in \mathbb{N}$, we have that $\alpha_n \in (0, 1]$, hence $\lfloor \alpha_n \rfloor = 0$, for every $n \ge n_0$. Hence

$$\lim_{n \to \infty} \lfloor \alpha_n \rfloor = \lim_{n \to \infty} 0 = 0.$$

Similarly, if $(\alpha_n)_{n\in\mathbb{N}} \in \mathbb{R}^-(0)$, then by definition $\alpha_n < 0$, for every $n \in \mathbb{N}$, and since $\lim_{n \to \infty} \alpha_n = 0$, then for every $n \ge n_0$, for some $n_0 \in \mathbb{N}$, we have that $\alpha_n \in (-1, 0]$, hence $\lfloor \alpha_n \rfloor = -1$, for every $n \ge n_0$. Hence

$$\lim_{n \to \infty} \lfloor \alpha_n \rfloor = \lim_{n \to \infty} -1 = -1.$$

DEFINITION 2.2.2. Let D be a subset of \mathbb{R} and $x_0 \in D$. A function $f: D \to \mathbb{R}$ is continuous at x_0 , if

$$\lim_{x \longrightarrow x_0} f(x) = f(x_0)$$

The function f is called *continuous on* D, if it is continuous at very point in D.

By the Definition 2.2.1 $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ if and only if

$$\left[\lim_{n \to \infty} \alpha_n = x_0\right] \Rightarrow \left[\lim_{n \to \infty} f(\alpha_n) = f(x_0)\right],$$

for every sequence of real numbers $(\alpha_n)_{n \in \mathbb{N}}$ in *D*. The Examples 1-5 of real functions in the previous section are continuous functions on their domain of definition, while the Examples 6 and 7 are not.

PROPOSITION 2.2.3. Let $D \subseteq \mathbb{R}$, $x_0 \in D$, $f, g: D \to \mathbb{R}$, and $\lambda \in \mathbb{R}$.

(I) Suppose that f, g are continuous at x_0 .

(i) The functions $f + g, \lambda f, f \cdot g : D \to \mathbb{R}$, defined in the Definition 2.1.2, are continuous at x_0 .

(ii) If $g(x_0) \neq 0 \Leftrightarrow x_0 \in D_g^*$, the function $\frac{f}{g} : D_g^* \to \mathbb{R}$, defined also in the Definition 2.1.2, is continuous at x_0 .

(II) (i) If f, g are continuous on D, then the functions $f + g, \lambda f, f \cdot g : D \to \mathbb{R}$ are also continuous on D.

(ii) If f, g are continuous on D_g^* , the function $\frac{f}{g}: D_g^* \to \mathbb{R}$ is continuous on D_g^* .

PROOF. (I)(i) Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of reals in D such that $\lim_{n \to \infty} \alpha_n = x_0$. By the Proposition 1.5.5 we get

$$\lim_{n \to \infty} (f+g)(\alpha_n) = \lim_{n \to \infty} \left[f(\alpha_n) + g(\alpha_n) \right]$$
$$= \lim_{n \to \infty} f(\alpha_n) + \lim_{n \to \infty} g(\alpha_n)$$
$$= f(x_0) + g(x_0)$$

$$= (f+g)(x_0),$$

$$\lim_{n \to \infty} (\lambda f)(\alpha_n) = \lim_{n \to \infty} \lambda f(\alpha_n) = \lambda \lim_{n \to \infty} f(\alpha_n) = \lambda f(x_0) = (\lambda f)(x_0),$$

and

$$\lim_{n \to \infty} (f \cdot g)(\alpha_n) = \lim_{n \to \infty} [f(\alpha_n) \cdot g(\alpha_n)]$$
$$= \lim_{n \to \infty} f(\alpha_n) \cdot \lim_{n \to \infty} g(\alpha_n)$$
$$= f(x_0) \cdot g(x_0)$$
$$= (f \cdot g)(x_0).$$

(I)(ii) Let $(\beta_n)_{n\in\mathbb{N}}$ be a sequence of reals in D_g^* such that $\lim_{n\to\infty} \beta_n = x_0$. By the Proposition 1.5.5 we get

$$\lim_{n \to \infty} \left(\frac{f}{g}\right)(\beta_n) = \lim_{n \to \infty} \frac{f(\beta_n)}{g(\beta_n)} = \frac{\lim_{n \to \infty} f(\beta_n)}{\lim_{n \to \infty} g(\beta_n)} = \frac{f(x_0)}{g(x_0)} = \left(\frac{f}{g}\right)(x_0).$$

(II)(i) and (II)(ii) follow immediately from (I)(i) and (I)(ii), respectively.

By the previous proposition the real functions in the Examples 8-10 of the previous section are continuous functions on their domain of definition.

PROPOSITION 2.2.4. Let $D, E \subseteq \mathbb{R}$, $x_0 \in D$ and $y_0 \in E$, and let $f : D \to \mathbb{R}$ and $g : E \to \mathbb{R}$, such that $\operatorname{Im}(f) = \{f(x) \mid x \in D\} \subseteq E$ and $y_0 = f(x_0)$. The following hold:

(i) If f is continuous at x_0 and g is continuous at y_0 , the composition $g \circ f : D \to \mathbb{R}$ is continuous at x_0 .

(ii) If f is continuous on D and g is continuous on E, the composition $g \circ f$ is continuous on D.

PROOF. (i) Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence of reals in D such that $\lim_{n\to\infty} \alpha_n = x_0$. By the definition of continuity of f at x_0 and of g at y_0 we have that

$$\lim_{n \to \infty} f(\alpha_n) = f(x_0) = y_0 \quad \& \quad \lim_{n \to \infty} g(f(\alpha_n)) = g(y_0) = g(f(x_0)).$$

Hence,

n

$$\lim_{n \to \infty} (g \circ f)(\alpha_n) = \lim_{n \to \infty} g(f(\alpha_n))$$
$$= g(f(x_0))$$
$$= (g \circ f)(x_0).$$

(ii) It follows immediately from (i).

Example. Since the function $\mathbf{sq}(x) = x^2$ is continuous on \mathbb{R} and the function $\sqrt{}$ is continuous on \mathbb{R}^+ (Exercise), by the previous proposition we have that the absolute value-function is continuous on \mathbb{R} [recall that $(\sqrt{\circ} \mathbf{sq})(x) = \sqrt{(\mathbf{sq}(x))} = \sqrt{x^2} = |x|$]

$$\mathbb{R} \xrightarrow{\mathbf{sq}} \mathbb{R}^+ \xrightarrow{\sqrt{}} \mathbb{R}.$$

$$\sqrt{\circ \mathbf{sq}} = |.|$$

THEOREM 2.2.5 (Intermediate value theorem). Let $a, b \in \mathbb{R}$ such that a < b, and let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b]. If f(a)f(b) < 0, then there exists $x_0 \in [a,b]$ such that $f(x_0) = 0$.

PROOF. See [1], p. 106.

Notice that the condition f(a)f(b) < 0 above is equivalent to

[f(a) < 0 & f(b) > 0] or [f(a) > 0 & f(b) < 0].

COROLLARY 2.2.6. Let $a, b \in \mathbb{R}$ such that a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b]. If $c \in \mathbb{R}$ such that f(a) < c < f(b), then there exists $x_0 \in [a, b]$ such that $f(x_0) = c$.

PROOF. Let the function $g:[a,b] \to \mathbb{R}$, defined by

$$g(x) = f(x) - c,$$

for every $x \in [a, b]$. Since g(a) = f(a) - c < 0 and g(b) = f(b) - c > 0, by the Theorem 2.2.5 there exists $x_0 \in [a, b]$ such that

$$g(x_0) = 0 \Leftrightarrow f(x_0) - c = 0 \Leftrightarrow f(x_0) = c.$$

COROLLARY 2.2.7. Let $p : \mathbb{R} \to \mathbb{R}$ a polynomial function of odd degree i.e., there is $n \in \mathbb{N}$ such that

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} + x^{2n+1},$$

for every $x \in \mathbb{R}$. Then there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = 0$.

PROOF. If $x \neq 0$, we have that

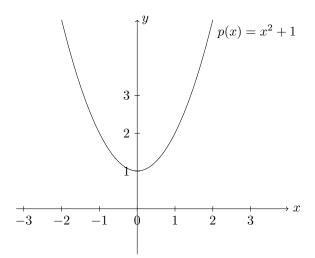
$$p(x) = x^{2n+1} \left(\frac{a_0}{x^{2n+1}} + \frac{a_1}{x^{2n}} + \frac{a_2}{x^{2n-1}} + \dots + \frac{a_{2n}}{x} + 1 \right).$$

Then we get

$$\lim_{x \to +\infty} p(x) = +\infty \quad \& \quad \lim_{x \to -\infty} p(x) = -\infty$$

Hence we can find a < 0 < b such that p(a) < 0 < p(b). Since p is continuous on \mathbb{R} , it is also continuous on a, b], hence by the Theorem 2.2.5 there is $x_0 \in \mathbb{R}$ such that $p(x_0) = 0$.

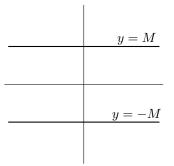
Notice that there is a polynomial function of even degree without any roots i.e., $p(x) \neq 0$, for every $x \in \mathbb{R}$. Consider for example the polynomial function $p(x) = x^2 + 1$, where $x \in \mathbb{R}$. This is also evident by the graph of p.



DEFINITION 2.2.8. A real function $f:D\to\mathbb{R}$ is called *bounded*, if there is $M\in\mathbb{R}$ such that M>0 and

$$\forall_{x \in D} \big(|f(x)| \le M \big).$$

The geometric interpretation of a bounded function f with bound M > 0 is that its graph Gr(f) is between the horizontal lines y = M and y = -M.



A continuous function defined on an unbounded interval can be unbounded. E.g., the above function $p(x) = x^2 + 1$ is defined on \mathbb{R} and its graph cannot be between any two horizontal lines. If a continuous function though, is defined on a bounded set, it is always a bounded function.

THEOREM 2.2.9. Let $a, b \in \mathbb{R}$ such that a < b, and let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b]. Then there exists $x_0, x_1 \in [a,b]$ such that $f(x_0) = m$, $f(x_1) = M$, and

$$\forall_{x \in [a,b]} \big(m \le f(x) \le M \big).$$

PROOF. See [1], p. 110.

2.3. Elementary Functions

PROPOSITION 2.3.1. For every $x \in \mathbb{R}$ the exponential series

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

 $converges \ absolutely.$

PROOF. We use the quotient-criterion (Proposition 1.7.9). Let

$$\alpha_n = \frac{x^n}{n!}.$$

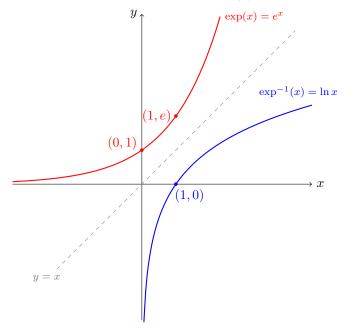
For every $x \neq 0$ and $n \geq 2|x|$ we have that

$$\left|\frac{\alpha_{n+1}}{\alpha_n}\right| = \left|\frac{x^{n+1}n!}{x^n(n+1)!}\right| = \frac{|x|}{n+1} \le \frac{1}{2}.$$

With the help of the exponential series we define the famous number e of Euler

$$e = \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \dots$$

and the exponential function $\exp : \mathbb{R} \to \mathbb{R}$ with $\exp(x) = e^x$, for every $x \in \mathbb{R}$.



PROPOSITION 2.3.2. For every $x, y \in \mathbb{R}$ the following hold:

- (i) $\exp(x+y) = \exp(x)\exp(y)$.
- $(ii) \exp(x) > 0.$
- (*iii*) $\exp(-x) = \frac{1}{\exp(x)}$.
- $(iv) \exp(k) = e^k$, for every $k \in \mathbb{Z}$.

PROOF. See [1], p. 80.

Basic limit 1. Next we explain why

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1$$

From the definition of $\exp(x)$ we have that

$$\exp(x) - 1 = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) - 1 = \sum_{n=1}^{\infty} \frac{x^n}{n!},$$

hence, if $x \neq 0$ we have that

$$\frac{\exp(x) - 1}{x} = \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^n}{n!}$$
$$= \frac{1}{x} \left(\frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right)$$
$$= 1 + \left(\frac{x^1}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots \right),$$

which converges to 1, as x converges to 0.

The exponential function exp is continuous and strictly increasing $(x < y \Rightarrow \exp(x) < \exp(y))$, and maps \mathbb{R} bijectively onto

$$\mathbb{R}^{+*} = \{ x \in \mathbb{R} \mid x > 0 \}.$$

Its inverse function

$$\ln: \mathbb{R}^{+*} \to \mathbb{R} \quad x \mapsto \ln(x)$$

is also continuous and strictly monotone, and it is called the *natural logarithmic function*. By definition we have that

$$\exp(\ln(x)) = e^{\ln(x)} = x,$$
$$\ln(\exp(x)) = \ln e^x = x,$$

and since exp and ln are injective functions we have that

$$\exp(x) = \exp(y) \Rightarrow x = y, \quad x, y \in \mathbb{R},$$

$$\ln(x) = \ln(y) \Rightarrow x = y, \quad x, y \in \mathbb{R}^+.$$

It is then easy to show (Exercise) that

$$\ln(x \cdot y) = \ln(x) + \ln(y),$$

44

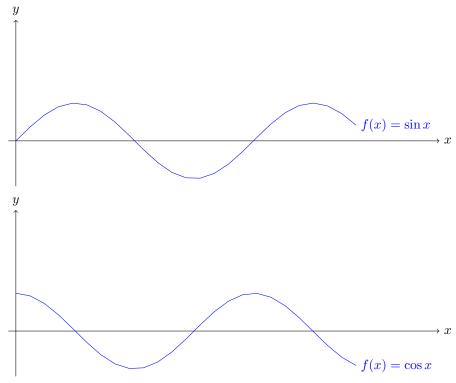
for every $x, y \in \mathbb{R}^{+*}$. Instead of $\ln(x)$, one also writes $\log(x)$. For every $x \in \mathbb{R}$ the infinite series

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots,$$
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \dots$$

are absolutely convergent (see [1], p. 140). Their absolute convergence follows from the absolute convergence of the infinite exponential series. The functions

$$\sin: \mathbb{R} \to \mathbb{R} \quad x \mapsto \sin(x), \quad \& \quad \cos: \mathbb{R} \to \mathbb{R} \quad x \mapsto \cos(x)$$

are shown to be continuous on \mathbb{R} .



The real number $\frac{\pi}{2}$ is the unique root of the function cos in the interval [0, 2] (see [1], pp. 142-143). Based on the previous definitions it is not trivial to show the fundamental equality

$$\sin(x)^2 + \cos(x)^2 = 1.$$

Basic limit 2. Next we explain why

$$\lim_{x \longrightarrow 0} \frac{\sin(x)}{x} = 1$$

From the definition of sin(x) we have that

$$\frac{\sin(x)}{x} = \frac{1}{x} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
$$= \frac{1}{x} \left(\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots \right)$$
$$= 1 - \frac{x^2}{3!} + \frac{x^4}{5!} \mp \dots,$$

which converges to 1, as x converges to 0.

The *tangent function* is defined on the set

$$D_{\tan} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

through the rule

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

The *cotangent function* is defined on the set

$$D_{\rm cot} = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$$

through the rule

$$\cot(x) = \frac{\cos(x)}{\sin(x)}.$$

One can show that

$$\cot(x) = \tan\left(\frac{\pi}{2} - x\right).$$

2.4. Differentiation

DEFINITION 2.4.1. Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ a real function. We say that f is differentiable at $x_0 \in D$, is the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. For the calculation of this limit we consider sequences $(\alpha_n)_{n\in\mathbb{N}}$ of real numbers such that $\lim_{n\to\infty} h_n = 0$ and

$$[h_n \neq 0 \& x_0 + h_n \in D], \text{ for all } n \in \mathbb{N}.$$

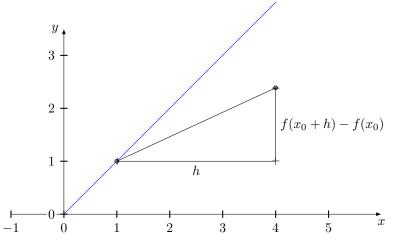
The limit $f'(x_0)$ is called the *derivative* of f at x_0 . The function f is called *differentiable in D*, if f is differentiable at every point $x \in D$. We also use the notations

$$\frac{df(x_0)}{dx}$$
, or $\frac{df}{dx}(x_0)$ for $f'(x_0)$.

The ratio

$$\frac{f(x_0+h) - f(x_0)}{h}$$

is the tangent of the following angle in the triangle $(x_0, f(x_0)), (x_0 + h, f(x_0 + h)),$ and $(x_0 + h, f(x_0)).$



By taking the limit

$$h \longrightarrow 0 \Leftrightarrow x_0 + h \longrightarrow x_0,$$

the derivative $f'(x_0)$ of f at x_0 is the slope of the line that is tangent to the graph of f at the point $(x_0, f(x_0))$.

Example 1. For the constant function $f : \mathbb{R} \to \mathbb{R}$, f(x) = c, for all $x \in \mathbb{R}$, we get

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

Example 2. For the identity map $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}, id_{\mathbb{R}}(x) = x$, for all $x \in \mathbb{R}$, we get

$$\operatorname{id}_{\mathbb{R}}'(x_0) = \lim_{h \to 0} \frac{\operatorname{id}_{\mathbb{R}}(x_0 + h) - \operatorname{id}_{\mathbb{R}}(x_0)}{h} = \lim_{h \to 0} \frac{x_0 + h - x_0}{h} = \lim_{h \to 0} 1 = 1$$

Example 3. For the function $g : \mathbb{R} \to \mathbb{R}, g(x) = \lambda x$, for all $x \in \mathbb{R}$, where $\lambda \in \mathbb{R}$, we get

$$g'(x_0) = \lim_{h \longrightarrow 0} \frac{\lambda(x_0 + h) - \lambda x_0}{h} = \lim_{h \longrightarrow 0} \frac{\lambda x_0 + \lambda h - \lambda x_0}{h} = \lim_{h \longrightarrow 0} \lambda = \lambda.$$

Example 4. For the function $sq : \mathbb{R} \to \mathbb{R}$, where $sq(x) = x^2$, for all $x \in \mathbb{R}$, we get

$$sq'(x_0) = \lim_{h \to 0} \frac{sq(x_0 + h) - sq(x_0)}{h}$$
$$= \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h}$$
$$= \lim_{h \to 0} \frac{x_0^2 + 2x_0h + h^2 - x_0^2}{h}$$
$$= \lim_{h \to 0} \frac{2x_0h + h^2}{h}$$
$$= \lim_{h \to 0} \frac{h(2x_0 + h)}{h}$$
$$= \lim_{h \to 0} (2x_0 + h)$$
$$= \lim_{h \to 0} 2x_0 + \lim_{h \to 0} h$$
$$= 2x_0 + 0$$
$$= 2x_0.$$

Example 5. For the inverse function $inv : \mathbb{R}^* \to \mathbb{R}$, where

$$\texttt{inv}(x) = \frac{1}{x},$$

for all $x \in \mathbb{R}^*$, we get

$$\begin{split} \operatorname{inv}'(x_0) &= \lim_{h \to 0} \frac{\operatorname{inv}(x_0 + h) - \operatorname{inv}(x_0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{1}{x_0 + h} - \frac{1}{x_0}}{h} \\ &= \lim_{h \to 0} \frac{\frac{x_0 - x_0 - h}{h}}{h} \\ &= \lim_{h \to 0} \frac{-h}{h \cdot x_0(x_0 + h)} \\ &= \lim_{h \to 0} \frac{-1}{x_0(x_0 + h)} \\ &= -\frac{1}{\lim_{h \to 0} x_0(x_0 + h)} \\ &= -\frac{1}{\lim_{h \to 0} x_0(x_0 + h)} \\ &= -\frac{1}{\lim_{h \to 0} x_0(x_0^2 + x_0 h)} \\ &= -\frac{1}{\lim_{h \to 0} x_0^2 + \lim_{h \to 0} x_0 h} \\ &= -\frac{1}{x_0^2 + 0} \end{split}$$

2.4. DIFFERENTIATION

$$= -\frac{1}{x_0^2}.$$

Example 6. For the exponential function $\exp : \mathbb{R} \to \mathbb{R}$ we get (Exercise)

$$\exp'(x_0) = x_0,$$

for all $x_0 \in \mathbb{R}$.

Example 7. For the sinus function $\sin : \mathbb{R} \to \mathbb{R}$ we get (Exercise)

$$\sin'(x_0) = \cos(x_0),$$

for all $x_0 \in \mathbb{R}$.

Example 8. For the cosinus function $\cos : \mathbb{R} \to \mathbb{R}$ we get (Exercise)

$$\cos'(x_0) = -\sin(x_0),$$

for all $x_0 \in \mathbb{R}$.

Example 9. The absolute-value function $|.| : \mathbb{R} \to \mathbb{R}$, where |.|(x) = |x|, for all $x \in \mathbb{R}$, is not differentiable at $x_0 = 0$. Suppose that

$$\lim_{h \longrightarrow 0} \frac{|x_0 + h| - |x_0|}{h} = l \in \mathbb{R}.$$

Let the following sequences of real numbers:

$$\alpha_n = \frac{1}{n+1}, \quad \beta_n = -\frac{1}{n+1}, \quad n \in \mathbb{N}.$$

We get

$$\begin{split} 1 &= \lim_{n \longrightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n+1}} \\ &= \lim_{n \longrightarrow \infty} \frac{\left|0 + \frac{1}{n+1}\right| - |0|}{\frac{1}{n+1}} \\ &= \lim_{n \longrightarrow \infty} \frac{\left|0 + \alpha_n\right| - |\alpha_n|}{\alpha_n} \\ &= l \\ &= \lim_{n \longrightarrow \infty} \frac{\left|0 + \beta_n\right| - |\beta_n|}{\beta_n} \\ &= \lim_{n \longrightarrow \infty} \frac{\left|0 - \frac{1}{n+1}\right| - |0|}{-\frac{1}{n+1}} \\ &= \lim_{n \longrightarrow \infty} -\frac{\frac{1}{n+1}}{\frac{1}{n+1}} \\ &= -1. \end{split}$$

PROPOSITION 2.4.2. If the function $f: D \to \mathbb{R}$ is differentiable at $x_0 \in D$, then f is continuous at x_0 .

PROOF. It suffices to show (Exercise 2(i), Sheet 10)

$$\lim_{h \longrightarrow 0} f(x_0 + h) = f(x_0)$$

This follows from the existence of $f'(x_0)$ and the equality

$$f(x_0 + h) - f(x_0) = \left[\frac{f(x_0 + h) - f(x_0)}{h}\right]h,$$

where $h \neq 0$.

PROPOSITION 2.4.3. Let $f, g: D \to \mathbb{R}$ be differentiable functions at $x_0 \in D$, and $\lambda \in \mathbb{R}$. Then the functions

$$f+g,\lambda f,f\cdot g:D\to\mathbb{R}$$

are also differentiable at x_0 , and the following rules hold:

$$(f + g)'(x_0) = f'(x_0) + g'(x_0),$$

$$(\lambda f)'(x_0) = \lambda f'(x_0),$$

$$f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

 $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g$ If $g(x) \neq 0$, for every $x \in D$, then the function

$$\frac{f}{g}: D \to \mathbb{R}$$

is also differentiable at x_0 with

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}.$$

PROOF. We use the following equalities:

$$\begin{aligned} \frac{(f+g)(x_0+h) - (f+g)(x_0)}{h} &= \frac{f(x_0+h) - f(x_0)}{h} + \frac{g(x_0+h) - g(x_0)}{h}, \\ \frac{(\lambda f)(x_0+h) - (\lambda f)(x_0)}{h} &= \lambda \cdot \frac{f(x_0+h) - f(x_0)}{h}, \\ \frac{(fg)(x_0+h) - (fg)(x_0)}{h} &= \frac{f(x_0+h)g(x_0+h) - f(x_0)g(x_0+h) + f(x_0)g(x_0+h) - f(x_0)g(x_0)}{h} \\ &= \frac{[f(x_0+h) - f(x_0)]g(x_0+h) + f(x_0)[g(x_0+h) - g(x_0)]}{h} \\ &= \left[\frac{f(x_0+h) - f(x_0)}{h}\right]g(x_0+h) + f(x_0)\left[\frac{g(x_0+h) - g(x_0)}{h}\right]. \end{aligned}$$

If f(x) = 1, for every $x \in D$, then

$$\frac{\overline{g(x_0+h)} - \overline{g(x_0)}}{h} = \frac{1}{h} \frac{g(x_0) - g(x_0+h)}{g(x_0)g(x_0+h)}$$

$$= -\frac{1}{g(x_0)g(x_0+h)} \left[\frac{g(x_0+h) - g(x_0)}{h} \right],$$

and

$$\left(\frac{1}{g}\right)'(x_0) = \frac{-g'(x_0)}{g(x_0)^2}.$$

The general case follows from the product-rule:

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix}'(x_0) = \left(f \cdot \frac{1}{g}\right)'(x_0)$$

$$= f'(x_0) \cdot \frac{1}{g(x_0)} + f(x_0) \cdot \left(\frac{1}{g}\right)'(x_0)$$

$$= f'(x_0) \cdot \frac{1}{g(x_0)} + f(x_0) \cdot \frac{-g'(x_0)}{g(x_0)^2}$$

$$= \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}.$$

Example 10. Let $n \in \mathbb{N}^+$ and let $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x^n$, for every $x \in \mathbb{R}$. Then

$$f_n'(x_0) = n x_0^{n-1},$$

for every $x_0 \in \mathbb{R}$. If n = 1, then

$$f_1'(x_0) = \mathrm{id}_{\mathbb{R}}'(x_0) = 1 = 1f_1(x_0)^{1-1}.$$

For the induction-step, since

$$f_{n+1}(x) = x^{n+1} = x^n x = f_n(x) \mathrm{id}_{\mathbb{R}}(x),$$

from the product-rule we have that

$$f_{n+1}'(x_0) = (f_n \cdot \mathrm{id}_{\mathbb{R}})'(x_0)$$

= $f_n'(x_0)\mathrm{id}_{\mathbb{R}}(x_0) + f_n(x_0)\mathrm{id}_{\mathbb{R}}'(x_0)$
= $f_n'(x_0)x_0 + f_n(x_0)1$
 $\stackrel{(I.H.)}{=} nx_0^{n-1}x_0 + x_0^n$
= $nx_0^n + x_0^n$
= $(n+1)x_0^n$.

COROLLARY 2.4.4. Let $f,g: D \to \mathbb{R}$ be n-times differentiable functions at $x_0 \in D$, and $\lambda \in \mathbb{R}$. If $f^{(n)}(x_0)$ denotes the nth-derivative of f at x_0 , where $f^{(0)} = f$, then $f + g, \lambda f, f \cdot g: D \to \mathbb{R}$ are n-times differentiable functions at x_0 and the following equalities hold:

$$(f+g)^{(n)}(x_0) = f^{(n)}(x_0) + g^{(n)}(x_0),$$

$$(\lambda f)^{(n)}(x_0) = \lambda f^{(n)}(x_0),$$

$$(f \cdot g)^{(n)}(x_0) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x_0) \cdot g^{(k)}(x_0).$$

PROOF. Exercise.

PROPOSITION 2.4.5 (Derivative of the inverse function). Let $D \subseteq \mathbb{R}$ be a nontrivial interval of \mathbb{R} (i.e., D has more than one points), $f: D \to \mathbb{R}$ a continuous and strictly monotone function and $g = f^{-1}: f(D) \to \mathbb{R}$ its inverse function.

$$D \xrightarrow{f} f(D) \xrightarrow{g} D.$$
$$g \circ f = \mathrm{id}_D$$

If f is differentiable at $x_0 \in D$ with $f'(x_0) \neq 0$, then g is differentiable at $y_0 = f(x_0)$ with

$$g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(g(y_0))}$$

PROOF. Let $(\beta_n)_{n \in \mathbb{N}} \subseteq f(D) \setminus \{y_0\}$ such that $\beta_n \xrightarrow{n} y_0$. If $\alpha_n = g(\beta_n)$, for every $n \in \mathbb{N}$, then by the continuity of g at y_0 we get $\alpha_n \xrightarrow{n} x_0$. Notice that by the injectivity of g we have that $\beta_n \neq y_0 \Rightarrow \alpha_n \neq x_0$, for every $n \in \mathbb{N}$. Hence

$$g'(y_0) = \lim_{n \to \infty} \frac{g(\beta_n) - g(y_0)}{\beta_n - y_0}$$
$$= \lim_{n \to \infty} \frac{\alpha_n - x_0}{f(\alpha_n) - f(x_0)}$$
$$= \lim_{n \to \infty} \frac{1}{\frac{f(\alpha_n) - f(x_0)}{\alpha_n - x_0}}$$
$$= \frac{1}{\lim_{n \to \infty} \frac{f(\alpha_n) - f(x_0)}{\alpha_n - x_0}}$$
$$= \frac{1}{f'(x_0)}.$$

In the above proof we used the equality

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

for the proof of which we work as in the solution of the Exercise 2(i), Sheet 10.

52

Example 11. The function $\ln : \mathbb{R}^{+*} \to \mathbb{R}$, where $x \mapsto \ln(x)$, is the inverse function of the function exp : $\mathbb{R} \to \mathbb{R}$. From the previous proposition we get

$$\ln'(x_0) = \frac{1}{\exp'(\ln(x_0))} = \frac{1}{\exp(\ln(x_0))} = \frac{1}{x_0}.$$

PROPOSITION 2.4.6 (Chain-rule). Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ such that $f(D) \subseteq E$

$$D \xrightarrow{f} f(D) \subseteq E \xrightarrow{g} \mathbb{R}.$$

$$g \circ f$$

If f is differentiable at $x_0 \in D$ and g is differentiable at $y_0 = f(x_0) \in E$, then the composite function $g \circ f : D \to \mathbb{R}$ is differentiable at x_0 with

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

PROOF. Let the function $h: E \to \mathbb{R}$ be defined by

$$h(e) := \begin{cases} \frac{g(e) - g(y_0)}{e - y_0} & , e \neq y_0 \\ g'(y_0) & , e = y_0. \end{cases}$$

Since g is differentiable at y_0 , we get

$$\lim_{e \longrightarrow y_0} h(e) = g'(y_0) = h(y_0)$$

i.e., h is continuous at y_0 . Moreover, we have that

$$\forall_{e \in E} \big(g(e) - g(y_0) = h(e)(e - y_0) \big).$$

If $e \neq y_0$, then we use the definition of h(e), while if $e = y_0$, both therms of the equality are 0. Hence

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

= $\lim_{x \to x_0} \frac{h(f(x))[f(x) - f(x_0)]}{x - x_0}$
= $\lim_{x \to x_0} h(f(x)) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$
= $h(f(x_0))g'(x_0)$
= $h(y_0)g'(x_0)$
= $g'(f(x_0))g'(x_0).$

Example 12. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable in \mathbb{R} and let the function $g : \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = f(2019x + 2020),$$

for every $x \in \mathbb{R}$. Then

$$g'(x_0) = 2019f'(2019x_0 + 2020).$$

Example 13. Let $g : \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \sin^2(x),$$

for every $x \in \mathbb{R}$. I.e., $h = \mathbf{sq} \circ \sin$. Hence

$$g'(x_0) = 2\sin(x_0)\sin'(x_0) = 2\sin(x_0)\cos(x_0).$$

Example 14. Let $h : \mathbb{R} \to \mathbb{R}$ be defined by

$$h(x) = \cos^2(x),$$

for every $x \in \mathbb{R}$. I.e., $h = \mathbf{sq} \circ \cos$. Hence

$$h'(x_0) = 2\cos(x_0)\cos'(x_0) = 2\cos(x_0)[-\sin(x_0)] = -2\sin(x_0)\cos(x_0).$$

Example 15. Let $a \in \mathbb{R}$ and $f : \mathbb{R}^{+*} \to \mathbb{R}$ be defined by

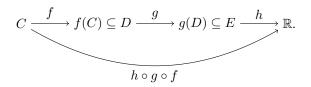
$$f(x) = x^a$$

for every $x \in \mathbb{R}$. Then one can show (Exercise) that

$$f'(x_0) = a x_0^{a-1},$$

for every $x_0 \in \mathbb{R}^{+*}$.

Let $f: C \to \mathbb{R}, g: D \to \mathbb{R}$, and $h: E \to \mathbb{R}$ such that $f(C) \subseteq D$ and $F(D) \subseteq E$



If f is differentiable at $x_0 \in E$, g is differentiable at $y_0 = f(x_0) \in E$, and h is differentiable at $z_0 = g(y_0)$, then one can show (Exercise) that the composite function $h \circ g \circ f : C \to \mathbb{R}$ is differentiable at x_0 with

$$(h \circ g \circ f)'(x_0) = h'(g(f(x_0))) \cdot g'(f(x_0)) \cdot f'(x_0).$$

2.5. Some geometric properties of the derivative

DEFINITION 2.5.1. A function $f:[a,b] \to \mathbb{R}$ has a *local maximum* at $\xi \in [a,b]$, if there is $\varepsilon > 0$ such that

$$\forall_{x \in [a,b]} \left(|x - \xi| < \varepsilon \Rightarrow f(x) \le f(\xi) \right),$$

while f has a local minimum at $\xi \in [a, b]$, if there is $\varepsilon > 0$ such that

$$\forall_{x\in[a,b]} (|x-\xi| < \varepsilon \Rightarrow f(x) \ge f(\xi)).$$

A function $f : [a, b] \to \mathbb{R}$ has a *local extremum* at $\xi \in [a, b]$, if f has a local maximum at ξ or f has a local minimum at ξ .

A constant function has a (local) maximum [and a (local) minimum] at every point of its domain. Clearly, a local minimum (maximum) may not be a (global) minimum (maximum).

PROPOSITION 2.5.2. Let $f : (a, b) \to \mathbb{R}$ and $\xi \in [a, b]$ such that f has a local extremum at ξ and f is differentiable at ξ . Then $f'(\xi) = 0$.

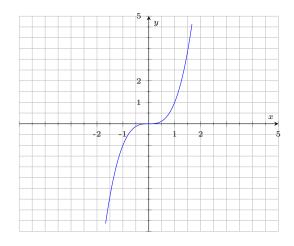
PROOF. We suppose that f has a local maximum at ξ and for the case of a local minimum we proceed similarly. Let $\varepsilon > 0$ such that $f(x) \leq f(\xi)$, for every $x \in [a, b]$ with $|x - \xi| < \varepsilon$. We have that

$$f'(\xi) = \lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h}$$

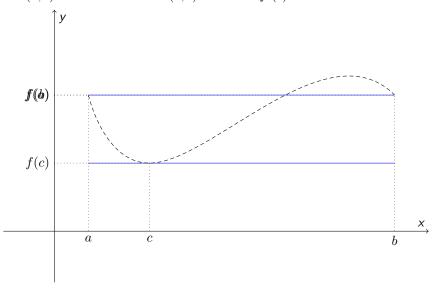
= $\lim_{h \to 0^+} \frac{f(\xi + h) - f(\xi)}{h} := f'_+(\xi)$
= $\lim_{h \to 0^-} \frac{f(\xi + h) - f(\xi)}{h} := f'_+(\xi)$

Since for appropriately small h we have that $f(\xi + h) - f(\xi) \leq 0$, if h > 0, then $\frac{f(\xi+h)-f(\xi)}{h} \leq 0$, hence $f'_+(\xi) \leq 0$, while if h < 0, then $\frac{f(\xi+h)-f(\xi)}{h} \geq 0$, hence $f'_-(\xi) \geq 0$. Consequently, $f'(\xi) = 0$.

If a differentiable function f at ξ satisfies $f'(\xi) = 0$, this does not imply, in general, that f has a local extremum at ξ . E.g., if $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3$, for every $x \in \mathbb{R}$, then f'(0) = 0, while f has not a local extremum at 0.



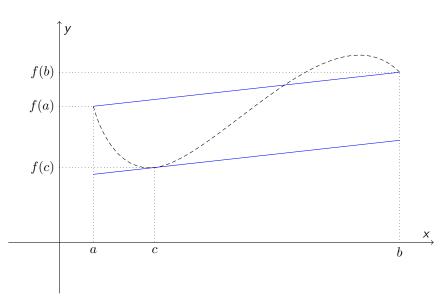
PROPOSITION 2.5.3 (Rolle's theorem). Let $f : [a, b] \to \mathbb{R}$, where a < b, a continuous function with f(a) = f(b). Let also f be differentiable in the open interval (a, b). Then there is $c \in (a, b)$ such that f'(c) = 0.



PROOF. If f is constant, then we can take as c any element of (a, b). If f is not constant, then there is $x_0 \in (a, b)$ with $f(x_0) > f(a)$ or $f(x_0) < f(a)$. Let $f(x_0) > f(a)$ is the case. Since f is a continuous function on [a, b], it has a global minimum at some $\xi \in [a, b]$. Since $x_0 \in (a, b)$, we get $\xi \in (a, b)$. By Proposition 2.5.2 we have that $f'(\xi) = 0$. We proceed similarly, if $f(x_0) < f(a)$.

COROLLARY 2.5.4 (Mean value theorem). Let $f : [a, b] \to \mathbb{R}$, where a < b, a continuous function, which is also differentiable in the open interval (a, b). Then there is $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



PROOF. Let the function $F:[a,b] \to \mathbb{R}$ defined by

$$F(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a).$$

for every $x \in [a, b]$. Clearly, F is continuous on [a, b] and differentiable in (a, b) with

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

for every $x \in (a, b)$. Moreover, F(a) = f(a) = F(b), hence by Rolle's theorem there is $c \in (a, b)$ such that F'(c) = 0. By the above formula for F'(x) we get

$$F'(c) = 0 \Leftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

The geometric meaning of the mean value theorem is that there is a point (c, f(c)) in the graph of f such that the line tangent at (c, f(c)) is parallel to the segment from (a, f(a)) to (b, f(b)). Notice that if f satisfies the hypotheses of the mean value theorem and f(a) = f(b), then Rolle's theorem follows from the mean value theorem.

COROLLARY 2.5.5. Let $f : [a,b] \to \mathbb{R}$, where a < b, a continuous function, which is also differentiable in the open interval (a,b). Let $m, M \in \mathbb{R}$ such that

$$f_{x\in(a,b)}(m \le f'(x) \le M).$$

Then for every $x_1, x_2 \in [a, b]$ with $x_1 \leq x_2$ we have that

 $m(x_2 - x_1) \le f(x_2) - f(x_1) \le M(x_2 - x_1).$

PROOF. If $x_1 = x_2$, then all terms in the required inequalities are 0, hence equal to each other. Let $x_1 < x_2$. Since the restriction $f_{|[x_1,x_2]}$ of f to the subinterval $[x_1,x_2]$ of [a,b] is continuous on $[x_1,x_2]$ and differentiable in (x_1,x_2) , by the mean value theorem there is $c \in (x_1,x_2)$ such that

$$m \le f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le M,$$

ow follows now immediately.

and what we want to show follows now immediately.

COROLLARY 2.5.6. Let $f : [a, b] \to \mathbb{R}$, where a < b, a continuous function, which is also differentiable in the open interval (a, b). If f'(x) = 0, for every $x \in (a, b)$, then f is constant on [a, b].

PROOF. By our hypothesis we have that

$$\forall_{x \in (a,b)} \left(0 \le f'(x) \le 0 \right).$$

Let $x_1, x_2 \in [a, b]$. By the previous corollary we get

$$0 = 0(x_2 - x_1) \le f(x_2) - f(x_1) \le 0(x_2 - x_1) = 0,$$

hence $f(x_1) = f(x_2)$.

2.6. The Riemann integral

DEFINITION 2.6.1. A function $\phi : [a, b] \to \mathbb{R}$, where a < b, is called a *step-function*, if there is a *partition* (*Unterteilung*)

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$$

of the interval [a, b], such that ϕ is constant in every sub-interval (x_{i-1}, x_i) , where $i \in \{1, \ldots, n\}$. Let $\phi(x) := c_i$, for every $x \in (x_{i-1}, x_i)$. The values of ϕ at the points x_0, x_1, \ldots, x_n of the partition are arbitrary real numbers. Let $\mathcal{T}[a, b]$ the set of all step-function $\phi : [a, b] \to \mathbb{R}$. The *integral* $\int_a^b \phi(x) dx$ of a step-function $\phi \in \mathcal{T}[a, b]$ is define by

$$\int_{a}^{b} \phi(x) dx = \sum_{i=1}^{n} c_i (x_i - x_{i-1}).$$

PROPOSITION 2.6.2. The integral $\int_a^b \phi(x) dx$ of a step-function $\phi \in \mathcal{T}[a, b]$ is independent from the partition of [a, b].

PROOF. Let the following partitions of [a, b]:

$$(P): a = x_0 < x_1 < \dots < x_{n-1} < x_n = b,$$

(Q): a = y_0 < y_1 < \dots < y_{m-1} < y_m = b,

and let

$$\phi(x) = c_i, \quad x \in (x_{i-1}, x_i), \quad i \in \{1, \dots, n\},$$

$$\phi(y) = d_j, \quad y \in (y_{j-1}, y_j), \quad j \in \{1, \dots, m\}.$$

We show that

$$\sum_{i=1}^{n} c_i(x_i - x_{i-1}) := \int_P \phi(x) dx = \int_Q \phi(y) dy := \sum_{j=1}^{m} d_j(y_j - y_{j-1}).$$

We suppose first that

$$P \le Q :\Leftrightarrow \forall_{i \in \{1,\dots,n\}} \exists_{k:\{1,\dots,n\} \to \{1,\dots,m\}} \left(x_i = y_{k_i} \right)$$

In this case we have that

$$x_{i-1} = y_{k_{i-1}} < y_{k_{i-1}+1} < \ldots < y_{k_i} = x_i,$$

and

$$d_j = c_i$$
, for every j with $k_{i-1} < j < k_i$

Then we get

$$\int_{Q} \phi(y) dy = \sum_{j=1}^{m} d_{j}(y_{j} - y_{j-1})$$
$$= \sum_{i=1}^{n} \sum_{j=k_{i-1}+1}^{k_{i}} c_{i}(y_{j} - y_{j-1})$$
$$= \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$
$$= \int_{P} \phi(x) dx.$$

Suppose next that P,Q are arbitrary partitions of [a,b]. Then $P\cup Q$ is a new partition of [a,b] such that

$$P \leq P \cup Q \quad \& \quad Q \leq P \cup Q.$$

By the previous case we get

$$\int_{P\cup Q} \phi(z)dz = \int_{P} \phi(x)dx \quad \& \quad \int_{P\cup Q} \phi(z)dz = \int_{Q} \phi(x)dx,$$
 hence $\int_{P} \phi(x)dx = \int_{Q} \phi(y)dy.$

From the geometric point of view, the integral $\int_a^b \phi(x) dx$ of a step-function ϕ on [a, b] is the algebraic sum of the areas between the x-axis and the graph of ϕ .

Let the partition

$$a = x_0 < x_1 = b$$

of the interval [a,b]. The constant function $\phi_c : [a,b] \to \mathbb{R}$, where $\phi_c(x) = c$, for every $x \in [a,b]$, is a step-function with

$$\int_{a}^{b} \phi_{c}(x) dx = \sum_{i=1}^{1} c(x_{1} - x_{0}) = c(b - a).$$

If $\phi, \psi \in \mathcal{T}[a, b]$ and $\lambda \in \mathbb{R}$, it is easy to show that (i) $\phi + \psi \in \mathcal{T}[a, b]$ and

$$\int_{a}^{b} (\phi + \psi) x) dx = \int_{a}^{b} \phi(x) dx + \int_{a}^{b} \psi(x) dx,$$

(*ii*) $\lambda \phi \in \mathcal{T}[a, b]$ and

$$\int_{a}^{b} (\lambda\phi)(x)dx = \lambda \int_{a}^{b} \phi(x)dx,$$
$$\phi \le \psi \Rightarrow \int_{a}^{b} \phi(x)dx \le \int_{a}^{b} \phi(x)dx,$$

where

(iii)

$$\phi \le \psi :\Leftrightarrow \forall_{x \in [a,b]} \big(\phi(x) \le \psi(x) \big)$$

Let $f : [a, b] \to \mathbb{R}$ an arbitrary bounded function i.e., there are $m, M \in \mathbb{R}$ such that $m \le f(x) \le M, \qquad x \in [a, b].$

If $\phi_m \in \mathcal{T}[a, b]$ is the constant function with value m on [a, b] and if $\phi_M \in \mathcal{T}[a, b]$ is the constant function with value M on [a, b], then

 $\phi_m \le f \le \phi_M.$

Let the sets

$$A(f) = \left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in \mathcal{T}[a, b] \& \phi \ge f \right\},$$
$$B(f) = \left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in \mathcal{T}[a, b] \& \phi \le f \right\}.$$

A(f) is a non-empty subset of \mathbb{R} , because $\phi_M \in \mathcal{T}[a, b]$ with $\phi_M \ge f$ and

$$M(b-a) = \int_{a}^{b} \phi_{M}(x) dx \in A(f)$$

A(f) is a *bounded below* (nach unten beschränkte) subset of \mathbb{R} , because for every $\int_a^b \phi(x) dx \in A(f)$ we have that

$$\phi \ge f \ge \phi_m \Rightarrow \int_a^b \phi(x) dx \ge \int_a^b \phi_m(x) dx = m(b-a).$$

Similarly, B(f) is a non-empty subset of \mathbb{R} , because $\phi_m \in \mathcal{T}[a, b]$ with $\phi_m \leq f$ and

$$m(b-a) = \int_{a}^{b} \phi_{m}(x) dx \in B(f)$$

B(f) is also a *bounded above* (nach oben beschränkte) subset of \mathbb{R} , because for every $\int_a^b \phi(x) dx \in B(f)$ we have that

$$\phi \le f \le \phi_M \Rightarrow \int_a^b \phi(x) dx \le \int_a^b \phi_M(x) dx = M(b-a).$$

DEFINITION 2.6.3 (Supremum, Infimum). Let $A \subseteq \mathbb{R}$. A number $s \in \mathbb{R}$ is called *supremum (infimum)* of A, if s is the least upper bound (gratest lower bound) of A. The real number s is the *least upper bound* of A, if the following conditions are satisfied:

(i) s is an upper bound of A ($a \in A \Rightarrow a \leq s$).

(*ii*) If s' is another upper bound of A, then $s \leq s'$.

Similarly, the real number t is the *gratest lower bound* of A, if the following conditions are satisfied:

(i) t is a lower bound of $A \ (a \in A \Rightarrow a \ge t)$.

(*ii*) If t' is another lower bound of A, then $t' \leq t$.

Clearly, the least upper bound (greatest lower bound) of a are uniquely determined. For them we use the notation

$$\sup(A)$$
 [bzw. $\inf(A)$].

For example, we have that

$$\sup(0,1) = 1 \& \inf(0,1) = 0$$

THEOREM 2.6.4. A non-empty and bounded above (below) subset $A \subseteq \mathbb{R}$ has a supremum (infimum).

PROOF. With the use of the Completeness Axiom (see [1], pp. 89-90).

DEFINITION 2.6.5 (Upper-integral, Lower-integral). Let $f:[a,b]\to\mathbb{R}$ be a bounded function. We define

$$\int_{a}^{b} f(x)dx = \inf A(f) = \inf \left\{ \int_{a}^{b} \phi(x)dx \mid \phi \in \mathcal{T}[a,b] \& \phi \ge f \right\},$$
$$\underbrace{\int_{a}^{b} f(x)dx}_{a} = \sup B(f) = \sup \left\{ \int_{a}^{b} \phi(x)dx \mid \phi \in \mathcal{T}[a,b] \& \phi \le f \right\}.$$

For every step-function $\phi \in \mathcal{T}[a, b]$ we have that (Exercise)

$$\overline{\int_{a}^{b}}\phi(x)dx = \underline{\int_{a}^{b}}\phi(x)dx = \int_{a}^{b}\phi(x)dx.$$

Let the Dirichlet-Function $\text{Dir}: [0,1] \to \mathbb{R}$ on [0,1], defined by

$$\mathtt{Dir}(x) := \left\{ \begin{array}{ll} 1 & , x \in \mathbb{Q} \cap [0,1] \\ 0 & , x \in \mathbb{I} \cap [0,1], \end{array} \right.$$

One can show (Exercise) that

$$\overline{\int_0^1} \operatorname{Dir}(x) dx = 1 \quad \& \quad \underline{\int_0^1} \operatorname{Dir}(x) dx = 0,$$

hence

$$\overline{\int_0^1} \operatorname{Dir}(x) dx \neq \underline{\int_0^1} \operatorname{Dir}(x) dx.$$

DEFINITION 2.6.6. A bounded function $f : [a, b] \to \mathbb{R}$ is called *Riemann-integrable*, or simply *integrable*, if

$$\overline{\int_{a}^{b}} f(x)dx = \underline{\int_{a}^{b}} f(x)dx.$$

In this case we write

$$\int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx.$$

A step-function is Riemann-integrable, while the Dirichlet-Function on $\left[0,1\right]$ is not.

PROPOSITION 2.6.7. (i) A continuous function $f : [a, b] \to \mathbb{R}$ is Riemann-integrable.

(ii) A monotone function $f : [a, b] \to \mathbb{R}$ is Riemann-integrable.

PROOF. See [1], pp. 198-199.

PROPOSITION 2.6.8. Let $f, g : [a, b] \to \mathbb{R}$ be integrable functions and $\lambda \in \mathbb{R}$. (i) The function $f + g : [a, b] \to \mathbb{R}$ is integrable and

$$\int_{a}^{b} (f+g)x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

(ii) The function $\lambda f : [a, b] \to \mathbb{R}$ is integrable and

$$\int_{a}^{b} (\lambda f) x) dx = \lambda \int_{a}^{b} f(x) dx.$$
$$f \le g \Rightarrow \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx,$$

where

(iii)

$$f \le g :\Leftrightarrow \forall_{x \in [a,b]} \big(f(x) \le g(x) \big).$$

(iv) The $|f|:[a,b] \to \mathbb{R}$ is integrable and

$$\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$$

PROOF. We use the corresponding properties of the step-functions. For the details see [1], pp. 199-201. $\hfill \Box$

PROPOSITION 2.6.9. Let a < c < b and $f : [a, c] \to \mathbb{R}$. Then f ist integrable if and only if its restrictions $f_{|[a,b]}$ on [a,b] and $f_{|[b,c]}$ on [b,c] are integrable, and

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

PROOF. We use the corresponding property of the step-functions. For the details see [1], p. 207. $\hfill \Box$

DEFINITION 2.6.10. Let a < b and $f : [a, b] \to \mathbb{R}$ a bounded function. We define

$$\int_{a}^{a} f(x)dx = 0,$$

and

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

2.7. Integration and Differentiation

PROPOSITION 2.7.1. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and $c \in [a, b]$. If $x \in [a, b]$, let

$$F(x) = \int_{c}^{x} f(t)dt.$$

The function $F : [a, b] \to \mathbb{R}$ is differentiable and F' = f. We call F the indefinite integral of f.

PROOF. See [1], p. 209.

DEFINITION 2.7.2. A differentiable function $F : [a, b] \to \mathbb{R}$ is a *primitive* function of $f : [a, b] \to \mathbb{R}$, if F' = f.

The indefinite integral of f is a primitive function of f.

PROPOSITION 2.7.3. Let $F : [a, b] \to \mathbb{R}$ be a primitive function of $f : [a, b] \to \mathbb{R}$. A function $G : [a, b] \to \mathbb{R}$ is a primitive function of f if and only if F - G is a constant.

PROOF. (i) Let F - G = c, where $c \in \mathbb{R}$. Then G' = (F - c)' = F' = f. (ii) If G is a primitive function of f, then G' = f = F'. Hence, (F - G)' = 0. By Corollary 2.5.6 we get F - G is constant. THEOREM 2.7.4 (Fundamental theorem of Differential and Integral Calculus (FTDIC)). Let $f : [a, b] \to \mathbb{R}$ be a continuous function and F a primitive function of f. Then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

PROOF. For every $x \in [a, b]$ let

$$G(x) = \int_{a}^{x} f(t)dt.$$

Since F is a primitive function of f, by Proposition 2.7.3 there is $c \in \mathbb{R}$ such that

$$F - G = c.$$

Hence we have that

$$F(b) - F(a) = (G(b) + c) - (G(a) + c)$$
$$= G(b) - G(a)$$
$$= \int_{a}^{b} f(t)dt - \int_{a}^{a} f(t)dt$$
$$= \int_{a}^{b} f(t)dt - 0$$
$$= \int_{a}^{b} f(t)dt.$$

$$F(x)\Big|_a^b := F(b) - F(a).$$

1

Hence the equality of Theorem 2.7.4 is written also as

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b}.$$

Examples of using (FTDIC):

$$\int_0^1 1dx = \int_0^1 (\mathrm{id}_{\mathbb{R}})'dx = \mathrm{id}_{\mathbb{R}}(x)\Big|_0^1 = \mathrm{id}_{\mathbb{R}}(0) - \mathrm{id}_{\mathbb{R}}(1) = 1 - 0 = 1.$$
$$\int_0^1 xdx = \int_0^1 \left(\frac{1}{2}x^2\right)'dx = \left(\frac{1}{2}x^2\right)\Big|_0^1 = \frac{1}{2}1^2 - \frac{1}{2}0^2 = \frac{1}{2}.$$
$$\int_0^1 x^2dx = \int_0^1 \left(\frac{1}{3}x^3\right)'dx = \left(\frac{1}{3}x^3\right)\Big|_0^1 = \frac{1}{3}1^3 - \frac{1}{3}0^3 = \frac{1}{3}.$$

$$\begin{split} \int_0^1 x^n dx &= \int_0^1 \left(\frac{1}{n+1} x^{n+1}\right)' dx = \left(\frac{1}{n+1} x^{n+1}\right) \Big|_0^1 = \\ &= \frac{1}{n+1} 1^{n+1} - \frac{1}{n+1} 0^{n+1} = \frac{1}{n+1}. \\ \int_1^2 \frac{1}{x} dx &= \int_1^2 [\ln(x)]' dx = \ln(x) \Big|_1^2 := \ln(2) - \ln(1) = \ln(2) - 0 = \ln(2). \end{split}$$
 If $x < 0$, then by the chain rule we get

$$[\ln(-x)]' = \frac{1}{-x}(-1) = \frac{1}{x}.$$

Hence

$$\int_{-2}^{-1} \frac{1}{x} dx = \ln(-x) \Big|_{-2}^{-1} := \ln(1) - \ln(2) = 0 - \ln(2) = -\ln(2).$$

We write the two previous cases in one, as follows:

 $\int \frac{dx}{x} = \ln(|x|), \quad 0 \text{ is not in the interval of the integration.}$

As an application of (FTDIC) and the chain rule we have that

$$\int_{a}^{b} \frac{g'(t)}{g(t)} dt = \ln\left(|g(t)|\right)\Big|_{a}^{b} = \ln\left(|g(b)|\right) - \ln\left(|g(a)|\right),$$

where $g:[a,b] \to \mathbb{R}$ is a *continuously differentiable* function i.e., g' is a continuous function (hence the function $\frac{g'(t)}{g(t)}$ is integrable), such that $g(t) \neq 0$, for every $t \in [a,b]$.

PROPOSITION 2.7.5 (Substitution rule). Let $f : [a',b'] \to \mathbb{R}$ be a continuous function and $g : [a,b] \to [a',b']$ a continuously differentiable function. Then

$$\int_{a}^{b} f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(x)dx$$

PROOF. Let $F : [a', b'] \to \mathbb{R}$ be a primitive function of f. For the composite function $F \circ g : [a, b] \to \mathbb{R}$ the chain rule gives

$$(F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t).$$

By Theorem 2.7.4 we have that

$$\int_{a}^{b} f(g(t))g'(t)dt = (F \circ g)(t) \Big|_{a}^{b}$$
$$= (F \circ g)(b) - (F \circ g)(a)$$
$$= F(g(b)) - F(g(a))$$
$$= \int_{g(a)}^{g(b)} f(x)dx.$$

Example 1: If $f(x) = \frac{1}{x}$, where $x \neq 0$, and $g : [a, b] \to \mathbb{R}$ is as in the last example before Proposition 2.7.5, then we have that

$$\int_{a}^{b} \frac{g'(t)}{g(t)} dt = \int_{a}^{b} f(g(t))g'(t)dt$$
$$= \int_{g(a)}^{g(b)} f(x)dx$$
$$= \int_{g(a)}^{g(b)} \frac{1}{x}dx$$
$$= \ln (|x|) \Big|_{g(a)}^{g(b)}$$
$$= \ln (|g(b)|) - \ln (|g(a)|).$$

Example 2: If $c \in \mathbb{R}$, then

$$\int_{a}^{b} f(t+c)dt = \int_{a+c}^{b+c} f(x)dx.$$

If g(t) = t + c, for every $t \in \mathbb{R}$, then g'(t) = 1 and

$$\int_{a}^{b} f(t+c)dt = \int_{a}^{b} f(g(t))g'(t)dt$$
$$= \int_{g(a)}^{g(b)} f(x)dx$$
$$= \int_{a+c}^{b+c} f(x)dx.$$

Example 3: If $c \neq 0$, then

$$\int_{a}^{b} f(ct)dt = \frac{1}{c} \int_{ac}^{bc} f(x)dx.$$

If g(t) = ct, for every $t \in \mathbb{R}$, then g'(t) = c and

$$\int_{a}^{b} f(ct)dt = \frac{1}{c} \int_{a}^{b} f(g(t))g'(t)dt$$
$$= \frac{1}{c} \int_{g(a)}^{g(b)} f(x)dx$$
$$= \frac{1}{c} \int_{ac}^{bc} f(x)dx.$$

PROPOSITION 2.7.6. Let $f, g : [a, b] \to \mathbb{R}$ be continuously differentiable functions. Then

$$\int_a^b f(x)g'(x)dx = f(x)g(x)\Big|_a^b - \int_a^b g(x)f'(x)dx.$$

PROOF. If $F = f \cdot g$, then

$$F'(x) = f'(x)g(x) + f(x)g'(x) \Leftrightarrow f(x)g'(x) = F'(x) - f'(x)g(x),$$

for every $x \in [a, b]$. Hence

$$\int_{a}^{b} f(x) g'(x) dx = \int_{a}^{b} [F'(x) - f'(x)g(x)] dx$$

= $\int_{a}^{b} F'(x) dx - \int_{a}^{b} f'(x)g(x) dx$
= $F(x) \Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx$
= $f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$

Example 1. If a, b > 0, then

$$\int_{a}^{b} \ln(x)dx = \int_{a}^{b} \ln(x)x'dx$$
$$= x \ln(x) \Big|_{a}^{b} - \int_{a}^{b} \ln'(x)xdx$$
$$= x \ln(x) \Big|_{a}^{b} - \int_{a}^{b} \frac{1}{x}xdx$$
$$= x \ln(x) \Big|_{a}^{b} - \int_{a}^{b} dx$$
$$= x \ln(x) \Big|_{a}^{b} - x \Big|_{a}^{b}$$
$$= [x \ln(x) - x] \Big|_{a}^{b}$$
$$= [x(\ln(x) - 1)] \Big|_{a}^{b}.$$

Example 2. Let the integral

$$I = \int e^x \cos(x) dx.$$

We have that

$$I = \int (e^x)' \cos(x) dx$$

= $e^x \cos(x) - \int e^x [-\sin(x)] dx$
= $e^x \cos(x) + \int e^x \sin(x) dx$
= $e^x \cos(x) + J$.

Moreover, we have that

$$J = \int e^x \sin(x) dx$$

= $\int (e^x)' \sin(x) dx$
= $e^x \sin(x) - \int e^x \cos(x) dx$
= $e^x \sin(x) - I.$

Hence

$$I = e^x \cos(x) + e^x \sin(x) - I \Leftrightarrow I = \frac{e^x}{2} [\cos(x) + \sin(x)].$$

Bibliography

- O. Forster: Analysis I, Springer, 2016.
 S. Lang: Undergraduate Analysis, Springer, 1983.
 S. Lang: A First Course in Calculus, Springer, 1986.
 H. Schwichtenberg: Constructive analysis with witnesses, Lecture notes, LMU, 2019.