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Abstract.We take a fresh look at the important Caristi–Kirk Fixed Point
Theorem and link it to the recently developed theory of ball spaces,
which provides generic fixed point theorems for contracting functions in
a number of applications including, but not limited to, metric spaces.
The connection becomes clear from a proof of the Caristi–Kirk Theorem
given by J.-P. Penot in 1976. We define Caristi–Kirk ball spaces and
use a generic fixed point theorem to reprove the Caristi–Kirk Theorem.
Further, we show that a metric space is complete if and only if all of its
Caristi–Kirk ball spaces are spherically complete.
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1. Introduction

We consider a metric space (X, d) with a function f : X → X and ask for
the existence of a fixed point, that is, a point x ∈ X such that f(x) = x. To
simplify notation, we will write fx in place of f(x).

If the metric is an ultrametric, then ultrametric balls can serve well in
the proofs of fixed point theorems, such as the Ultrametric Banach’s Fixed
Point Theorem [14]. This is due to their special property that if two ultra-
metric balls have nonempty intersection, then they are already comparable
by inclusion. In contrast, metric balls in general metric spaces are not usually
employed in fixed point theorems.

In the papers [7–9] the notions and tools used for ultrametric spaces
have been taken as an inspiration for the development of a unifying approach
to fixed point theorems for contracting functions, via the flexible notion of
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ball spaces. It allows applications to various areas, such as ultrametric spaces,
topological spaces, ordered abelian groups and fields, partially ordered sets
and lattices. It also allows the transfer of ideas and concepts between the
various areas. However, while metric spaces can be treated with the same
approach, taking metric balls for the formal balls in ball spaces does not lead
to shorter or more elegant proofs of existing metric fixed point theorems.

The present paper owes its existence to the discovery that other sets
which came up in proofs of the Caristi–Kirk Fixed Point Theorem (discussed
below) fit much better to the ball spaces framework. In general, they are not
metric balls. We first learnt about the use of these sets, which we will call
Caristi–Kirk balls, from the paper [2] by Du. Later we found that already in
1976, Penot ([12, Proposition 2.1]) used these sets to give a short and elegant
proof of the Caristi–Kirk Theorem. We will present a modification of this
proof in Sect. 2.

In the sequel we give a quick introduction to the idea of ball spaces and
present a proof of the Caristi–Kirk Theorem in Sect. 4 which is based on a
generic fixed point theorem for ball spaces.

Our paper is meant as an invitation to the interested reader to consider
fixed point theory from the point of view of ball spaces. We will be happy if
the many open problems originating from the theory of ball spaces will be
taken up by other researchers. In particular, it is known that Caristi’s Fixed
Point Theorem is equivalent to Ekeland’s Variational Principle, Takahashi’s
Nonconvex Minimization Theorem, Danes’ Drop Theorem, the Petal Theo-
rem, and the Oettli–Thera Theorem; we refer the reader to [1,11,13,15], to
name just a few. It is certainly an interesting question what ball spaces can
say about these results and the connections between them, but this is beyond
the scope of our present paper.

The Caristi–Kirk Theorem gives a criterion for a fixed point to exist
when (X, d) is complete. To formulate it, we need the following notion. A
function ϕ from a metric space (X, d) to R is called lower semicontinuous if
for every y ∈ X,

lim inf
x→y

ϕ(x) ≥ ϕ(y) .

Theorem 1. (Caristi–Kirk) Take a complete metric space (X, d) and a lower
semicontinuous function ϕ : X → R which is bounded from below. If a func-
tion f : X → X satisfies the Caristi condition

(CC) d(x, fx) ≤ ϕ(x) − ϕ(fx),

then f has a fixed point on X.

Penot’s proof of this theorem is interesting as it works with sets of the
form

Bx := {y ∈ X | d(x, y) ≤ ϕ(x) − ϕ(y)} , (1)
for each x ∈ X. Note that in spite of the notation, these sets will in general
not be metric balls. We call these sets Caristi–Kirk balls.

A ball space is a pair (X,B) consisting of a nonempty set X and a
nonempty set B ⊆ P(X) \ {∅} of distinguished nonempty subsets B of X.
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The elements B of B will be called balls, in analogy to the case of metric or
ultrametric balls.

In analogy to the case of ultrametric spaces, we will call a nonempty
collection N of balls in B a nest of balls (in B) if it is totally ordered by
inclusion. We will say that (X,B) is spherically complete if the intersection⋂N of each nest of balls in B is nonempty.

A function f on an arbitrary ball space (X,B) is called contracting on
orbits if there is a function that associates to every x ∈ X some ball Bx ∈ B
such that for all x ∈ X, the following conditions hold:
(SC1) x ∈ Bx ,
(SC2) Bfx ⊆ Bx , and if x �= fx, then Bfx � Bx .

We will say that a nest of balls N is an f -nest if N = {Bx | x ∈ M} for
some set M ⊆ X that is closed under f (in other words, with every ball Bx

it also contains the ball Bfx). The function f will be called self-contractive
if in addition to (SC1) and (SC2), it satisfies:
(SC3) if N is an f -nest and if z ∈ ⋂ N , then Bz ⊆ ⋂ N .

The following fixed point theorem has been proved in [7] (see also [9]),
using Zorn’s Lemma:

Theorem 2. Every self-contractive function on a spherically complete ball
space has a fixed point.

Take any function ϕ : X → R. We define the ball space induced by ϕ
to be (X,Bϕ) where

Bϕ := {Bx | x ∈ X} , (2)
with Bx defined as in (1). If ϕ is lower semicontinuous and bounded from
below, then we will call (X,Bϕ) a Caristi–Kirk ball space of (X, d). We wish
to show how the Caristi–Kirk Theorem can be deduced from Theorem 2. To
this end, we prove in Sect. 4 that a function satisfying the Caristi Condition
(CC) is self-contractive in the ball space induced by ϕ (even if ϕ is not lower
semicontinuous). Then the Caristi–Kirk Theorem will follow from Theorem 2
together with the following result, which we will prove in Sect. 3:

Proposition 3. Let (X, d) be a metric space. Then the following statements
are equivalent:
(i) The metric space (X, d) is complete.
(ii) Every Caristi–Kirk ball space (X,Bϕ) is spherically complete.
(iii) For every continuous function ϕ : X → R bounded from below, the

Caristi–Kirk ball space (X,Bϕ) is spherically complete.

Note that it is in general not true that the ball space consisting of
all nonempty closed metric balls of a complete metric space is spherically
complete. Passing to Caristi–Kirk balls instead remedies this deficiency.

In Sect. 4 we will also show that the Caristi–Kirk Theorem implies the
Banach Fixed Point Theorem. More precisely, we prove:

Theorem 4. Take a metric space (X, d) and assume that for every continu-
ous ϕ : X → R bounded from below, its Caristi–Kirk ball space (X,Bϕ) is
spherically complete. Further, take a function f : X → X which is
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1) non-expanding, i.e., d(fx, fy) ≤ d(x, y) for all x, y ∈ X, and
2) contracting on orbits, i.e., d(fx, f2x) ≤ Cd(x, fx) for all x, y ∈ X, with
Lipschitz constant C < 1.
Then f has a fixed point on X.

Finally, let us mention that Caristi’s original theorem and the Caristi–
Kirk Theorem discussed here have been the subject of many papers in the
literature. Several of them are listed in the references of, e.g., [2,6]. A re-
curring question is whether the theorems can be proven without the use of
transfinite induction, Zorn’s Lemma, or even the axiom of choice (see [10]
and the discussion in [3], [4, pages 55–56], [6] together with the literature
cited therein). While the first two are avoided in [12] and also in [2,6], the
axiom of choice, or at least the axiom of dependent choice, is still present (cf.
[6, Section 3]).

In this connection, we should point out that the generic fixed point the-
orems in the theory of ball spaces are making essential use of Zorn’s Lemma.
In fact, in this way Zorn’s Lemma has provided an elegant replacement of
transfinite induction which was used before for the proof of theorems in val-
uation theory (see [14]).

Another task mentioned in [6] is to avoid defining a partial order in
the proof of the Caristi–Kirk Theorem. This is achieved in [2,6] and also
in the present paper. As we will point out in Remark 6, the partial order is
implicit whenever the Caristi–Kirk balls are used, which are partially ordered
by inclusion. However, working with these balls directly is more natural than
the detour of defining the partial order explicitly.

2. A modification of Penot’s proof of the Caristi–Kirk
Theorem

We start by working out the basic properties of the Caristi–Kirk balls Bx

that have been defined in (1).

Lemma 5. Take a metric space (X, d) and any function ϕ : X → R. Let the
sets Bx be defined as in (1). Then the following assertions hold.
1) For every x ∈ X, x ∈ Bx .
2) If y ∈ Bx , then By ⊆ Bx; if in addition x �= y, then By � Bx and

ϕ(y) < ϕ(x).
3) If f : X → X is a function for which the Caristi–Kirk condition (CC)

holds, then fx ∈ Bx .
4) If ϕ is lower semicontinuous, then all Caristi–Kirk balls Bx are closed

in the topology induced by the metric.

Proof. Assertion 1) holds since d(x, x) = 0 ≤ ϕ(x) − ϕ(x), and assertion 3)
is obvious.

For the proof of assertion 2), take any y ∈ Bx. Then ϕ(x) ≥ ϕ(y)
because d(x, y) ≥ 0. Moreover, ϕ(x) = ϕ(y) can only hold if x = y. Hence if
x �= y, then ϕ(y) − ϕ(x) < 0, which yields that x /∈ By and hence By �= Bx .
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Further, if z ∈ By, then

d(x, z) ≤ d(x, y) + d(y, z) ≤ ϕ(x) − ϕ(y) + ϕ(y) − ϕ(z) = ϕ(x) − ϕ(z) .

Hence z ∈ Bx, so By ⊆ Bx.
For the proof of assertion 4), observe that the complement {y ∈ X |

d(x, y) + ϕ(y) > ϕ(x)} of Bx is the preimage of the open subset (ϕ(x),∞) of
R under the function d(x, Y ) + ϕ(Y ). Whenever ϕ is lower semicontinuous,
then so is d(x, Y ) + ϕ(Y ) and this preimage is open in X. �

For the proof of the Caristi–Kirk Theorem, start with any x1 ∈ X
and construct a sequence (xn)n∈N by induction as follows. Suppose that the
members xi are already constructed for 1 ≤ i ≤ n such that
a) (ϕ(xi))i≤n is strictly decreasing,
b) (Bxi

)i≤n is strictly decreasing w.r.t. inclusion.
If Bxn

is a singleton, then by parts 1) and 3) of Lemma 5, Bxn
= {xn, fxn}

with xn = fxn. Then we have found a fixed point, and we stop. Otherwise,
we choose some xn+1 ∈ Bxn

\ {xn} such that

ϕ(xn+1) ≤ inf
z∈Bxn

ϕ(z) +
1
n

. (3)

Here the infimum exists because we are dealing with a subset of the reals
bounded from below.

From Lemma 5 we obtain that ϕ(xn+1) < ϕ(xn) and Bxn+1 � Bxn
. So

a) and b) hold for n + 1 in place of n. In this way, if we do not stop at some
n having found a fixed point, we obtain a sequence (xn)n∈N for which the
sequences (ϕ(xn))n∈N and (Bxn

)n∈N are strictly decreasing.
For every x ∈ Bxn+1 we have, using that Bxn+1 ⊂ Bxn

and (3):

ϕ(x) ≥ inf
z∈Bxn

ϕ(z) > ϕ(xn+1) − 1
n

, and

d(x, xn+1) ≤ ϕ(xn+1) − ϕ(x) <
1
n

.

This shows that the diameter sup{d(x, y) | x, y ∈ Bxn+1} of Bxn+1 is not
larger than 2

n . Therefore, as (X, d) is complete and the sets Bxn
are closed by

part 4) of Lemma 5, the intersection
⋂

n∈N
Bxn

contains exactly one element
z. Then z ∈ Bxn

and thus fz ∈ Bz ⊆ Bxn
for all n ∈ N by parts 2) and 3) of

Lemma 5. Hence fz ∈ ⋂
n∈N

Bxn
= {z}, showing that fz = z. �

Remark 6. In his original proof, Penot uses the partial order x ≤ y :⇔
d(x, y) ≤ ϕ(x) − ϕ(y). However, this is not necessary, and we have elimi-
nated the explicit use of this partial order. In fact, it is encoded in the partial
order of the Caristi–Kirk balls. Indeed, parts 1) and 2) of Lemma 5 show that
x ≥ y ⇔ By ⊆ Bx .

Apart from the fact that the proofs in [2,6] do not explicitly use the
partial order, the major difference between these proofs and Penot’s original
proof as well as the above modification is that Penot shows that the diameters
of the sets Bxn

converge to 0 and from this deduces without much technical
effort that their intersection contains exactly one element which is equal to
its image under f .



107 Page 6 of 9 F-V. Kuhlmann et al. JFPTA

3. Proof of Proposition 3

First we show that (i) implies (ii).
Assume that the metric space (X, d) is complete, and consider a Caristi–

Kirk ball space (X,Bϕ) of (X, d). Take a nest N of balls in Bϕ. We write
N = {Bx | x ∈ M} for some subset M ⊆ X. For all x, y ∈ M we have that
x ∈ By or y ∈ Bx because N is totally ordered by inclusion. In both cases,

d(x, y) ≤ |ϕ(x) − ϕ(y)| . (4)

Since ϕ is bounded from below, there exists

r := inf
x∈M

ϕ(x) ∈ R .

Let (xn)n∈N be a sequence in M such that limn→∞ ϕ(xn) = r. The sequence
(ϕ(xn))n∈N is a Cauchy sequence in R (as it converges to r), hence (4) implies
that (xn)n∈N is a Cauchy sequence in (X, d). As (X, d) is complete, we obtain
that (xn)n∈N converges to some z ∈ X. We claim that z ∈ ⋂ N .

Take any x ∈ M . Since ϕ is lower semicontinuous,

ϕ(z) ≤ lim
n→∞ ϕ(xn) = r .

For all n ∈ N we have d(x, xn) ≤ |ϕ(x) − ϕ(xn)| by (4). Using the continuity
of d, we obtain:

d(x, z) = lim
n→∞ d(x, xn) ≤ lim

n→∞ |ϕ(x) − ϕ(xn)| = |ϕ(x) − r|
= ϕ(x) − r ≤ ϕ(x) − ϕ(z) .

Therefore, z ∈ Bx. As x ∈ M was arbitrary, we have that z ∈ ⋂ N , as
desired.

It is obvious that (ii) implies (iii).
Finally we show that (iii) implies (i).
Take a Cauchy sequence (xn)n∈N in (X, d); we wish to show that it has

a limit in X. We may assume that no xn is a limit of (xn)n∈N since otherwise
we are done. Define ψ : X → R

≥0 by

ψ(x) := lim
n→∞ d(x, xn)

for all x ∈ X and note that this function is continuous.
By induction, we choose a subsequence (yk)k∈N of (xn)n∈N with yk =

xnk
as follows. We set n1 := 1. If nk is already chosen, we observe that by

assumption, yk = xnk
is not a limit of (xn)n∈N and therefore ψ(yk) > 0. On

the other hand, limn→∞ ψ(xn) = 0 since (xn)n∈N is a Cauchy sequence. It
follows that there is some m > nk such that

1
2
d(yk, xm) ≤ ψ(yk) − ψ(xm) . (5)

We choose one of such m and set nk+1 := m. Further, we set

ϕ(x) := 2ψ(x) .

Then by construction and inequality (5),

d(yk, yk+1) ≤ ϕ(yk) − ϕ(yk+1) (6)
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for all k ∈ N, and ϕ is a continuous function from X to R
≥0. Hence by

assumption, the Caristi–Kirk ball space (X,Bϕ) is spherically complete. We
will use this to show that (yk)k∈N converges to some y in (X, d).

We set

N := {Byk
| k ∈ N} .

The inequality (6) shows that yk+1 ∈ Byk
and hence Byk+1 ⊆ Byk

by part 2)
of Lemma 5. This shows that N is a nest of balls. By spherical completeness,
there exists an element y ∈ ⋂ N . It follows that

d(yk, y) ≤ ϕ(yk) − ϕ(y) ≤ ϕ(yk)

for all k ∈ N. Since limk→∞ ϕ(yk) = 0, this shows that (yk)k∈N converges to
y in (X, d). Since (yk)k∈N is a subsequence of (xn)n∈N, the original Cauchy
sequence (xn)n∈N also converges to y. We have thus proved that the metric
space (X, d) is complete. �

Remark 7. The idea for the definition of the function ϕ is taken from the
proof of [5, Theorem 2]. In that Theorem, Kirk states that a metric space must
be complete if it satisfies the Caristi–Kirk Theorem. To prove this assertion,
he assumes that there is a Cauchy sequence (xn)n∈N in (X, d) without a limit
in X. He then defines a function f : X → X by setting f(x) := xm where m
is the smallest natural number such that

0 <
1
2
d(x, xm) ≤ ψ(x) − ψ(xm) .

Consequently, f satisfies the Caristi Condition (CC) with respect to ϕ(x) =
2ψ(x). But by construction, f does not have a fixed point.

4. Proofs of Theorem 1 and Theorem 4

Lemma 8. Take any function ϕ : X → R and a function f : X → X that
satisfies condition (CC). Then f is self-contractive in the ball space (X,Bϕ).

If in addition (X,Bϕ) is spherically complete, then f admits a fixed
point.

Proof. Lemma 5 shows that conditions (SC1) and (SC2) are satisfied.
Take any f -nest N . Then z ∈ ⋂ N implies that z ∈ Bx for all Bx ∈ N .

Therefore, we have Bz ⊆ Bx for all x ∈ S, which shows that Bz ⊆ ⋂ N .
Hence, (SC3) holds and we have proven that f is self-contractive.

The last assertion follows from Theorem 2. �

Note that in the proof of the first part of this lemma we have not used
that ϕ is lower semicontinuous and bounded from below. This is only needed
to deduce the spherical completeness of (X,Bϕ) from the completeness of
(X, d).
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Proof of Theorem 1:
If the assumptions of the theorem are satisfied, then Proposition 3 shows that
(X,Bϕ) is spherically complete, and Lemma 8 shows that f admits a fixed
point. �

Proof of Theorem 4:
Take a function f on a metric space (X, d) which is non-expanding and con-
tracting on orbits with Lipschitz constant C < 1. For each x ∈ X, we define

ϕ(x) :=
d(x, fx)
1 − C

. (7)

Since f is contracting on orbits, we find:

ϕ(fx) =
d(fx, f2x)

1 − C
≤ Cd(x, fx)

1 − C
,

whence

ϕ(x) − ϕ(fx) ≥ d(x, fx)
1 − C

− Cd(x, fx)
1 − C

= d(x, fx) .

This shows that the Caristi Condition (CC) is satisfied. We will now show
that ϕ is continuous. Take arbitrary x, y ∈ X and assume w.l.o.g. that ϕ(x) ≥
ϕ(y). Then we compute, using the fact that f is non-expanding:

ϕ(x) − ϕ(y) =
1

1 − C
(d(x, fx) − d(y, fy))

≤ 1
1 − C

(d(x, y) + d(y, fy) + d(fy, fx) − d(y, fy)))

=
1

1 − C
(d(x, y) + d(fy, fx)) ≤ 2

1 − C
d(x, y) .

This implies that ϕ is continuous. Moreover, it is bounded from below by 0.
Hence by assumption, the Caristi–Kirk ball space (X,Bϕ) is spherically com-
plete. Since we have shown that f satisfies the Caristi Condition (CC), the
existence of a fixed point now follows from Lemma 8. �
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