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Recent conjectures in algebraic number theory like the Rubin Stark conjecture rely on
(S, T )-units, which are a subgroup of the S-units of an algebraic number field. In this
thesis, a practical algorithm for the computation of (S, T )-units will be developed and an
implementation in the computational algebra system Magma will be given. Furthermore,
the connection to the (S, T )-class group will be revealed and will be used to verify the
results of the algorithm.
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1 Introduction

Throughout this thesis, we fix an algebraic number field K. We denote by OK its ring of
integers and byO×K the group of units inOK . In general, OK is not a unique factorization
domain. This motivates the passage from integers to ideals. Let PK be the set of prime
ideals1 in OK . Because OK is a Dedekind domain, every ideal 0 6= a C OK has a unique
decomposition

a =
∏

p∈PK

pep , ep ∈ N0

with ep = 0 for almost all p ∈ PK . In this sense, ideals and prime ideals generalize the
usual integers and prime numbers naturally.

Ideals (except the zero ideal) are just a special case of fractional ideals, i. e. finitely
generated non-zero OK-submodules of K. The set IK of fractional ideals in K forms a
group, where the inverse of a ∈ IK is given by

a−1 = {x ∈ K | xa C OK} .

Every fractional ideal a ∈ IK has a unique decomposition

a =
∏

p∈PK

pep , ep ∈ Z

with ep = 0 for almost all p ∈ PK . Therefore, IK can be considered as the free abelian
group over PK .

Each prime ideal p ∈ PK defines a discrete valuation vp : K× → Z where vp(α) = ep is
the exponent of p in the prime decomposition of αOK . For convenience, let vp(0) =∞.
It follows that

OK = {α ∈ K | vp(α) ≥ 0, p ∈ PK}
O×K = {α ∈ K | vp(α) = 0, p ∈ PK} .

As usual, we define the norm of an ideal 0 6= a C OK via N(a) := |OK/a|. The
multiplication by an element α ∈ K constitutes a Q-linear mapK → K, the determinant
of which is called the normNK|Q(α). For an algebraic integer, the element norm coincides
with the norm of the corresponding principal ideal, i. e. NK|Q(a) = N(aOK) for all
0 6= a ∈ OK .

1In this context, the zero ideal is not considered as a prime ideal. So in fact, PK is the set of maximal
ideals in OK .
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1 Introduction

If ν denotes the degree of the extension K | Q, K possesses ν distinct embeddings
into C. These split into r real embeddings σ1, . . . , σr and t pairs of (proper) complex
embeddings τ1, τ1, . . . , τt, τt, where ν = r + 2t. These embeddings give rise to r + t
archimedian valuations on K via |α|i := |σi(α)| for i ∈ {1, . . . , r} and |α|r+i := |τi(α)|2
for i ∈ {1, . . . , t}.

While the unit group O×K is the kernel of the transition

K× → IK

α 7→ αOK

from non-zero field elements to fractional ideals, the class group ClK := IK/HK is
defined as its cokernel, where

HK := {αOK | α ∈ K×} ≤ IK

is the subgroup of principal fractional ideals. Then we have the exact sequence

1→ O×K → K× → IK → ClK → 1 .

Therefore, the determination of O×K and ClK are of special interest.

One of the main results in classical algebraic number theory is that the class group ClK
is always finite. Its cardinality hK := |ClK | is called the class number of K. One could
say that hK measures the “failure” of OK being a principal ideal domain. In particular,
hK = 1 is equivalent to OK being a principal ideal domain.

Another main result is the Dirichlet unit theorem, which states that the unit group O×K
has finite rank, namely r + t − 1. The torsion part of O×K consists exactly of the roots
of unity inside K and is therefore finite cyclic. In other words, there exist so called
fundamental units ε1, . . . , εr+t ∈ O×K such that

O×K = ε
Z/wKZ
1 × εZ2 × · · · × εZr+t

where ε1 is a primitive wK-th root of unity. This means that every unit ε ∈ O×K has a
unique representation ε = εf1

1 · · · ε
fr+t
r+t with f1, . . . , fr+t ∈ Z and 0 ≤ f1 < wK . It turns

out that the determination of ε1 and wK is rather straightforward. On the other hand,
the efficient computation of the fundamental units ε2, . . . , εr+t requires a lot harder work
and is still subject to current research. In Section 2.1, a brief overview will be given on
how to attempt this problem, together with an approach for the computation of ClK .

Associated to K is its Dedekind zeta function

ζK(s) :=
∑

06=aCOK

1
N(a)s =

∏
p∈PK

(
1− 1

N(p)s
)−1

that generalizes the Riemann zeta function obtained forK = Q. It can be shown [Neu92]
that the defining series of ζK(s) converges absolutely and uniformely on Re(s) ≥ 1 + δ
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for all δ > 0, and that ζK has an analytic continuation on C \ {1}. By the analytic class
number formula, the residuum of ζK(s) at s = 1 equals

lim
s→1

(s− 1)ζK(s) = 2r+tπthKRK
wK |dK |1/2 ,

where RK is the regulator of K and dK is its discriminant. This is a surprising and
beautiful connection between analytic properties of the holomorphic function ζK and
algebraic invariants of the number field K.

Because the constants wK and dK can be computed rather easily, the analytic class
number formula discloses information about the product hKRK . While the class number
hK is strongly related to the class group ClK , the regulator RK is connected to the unit
group O×K . Hence, the knowledge of hKRK comes in handy when computing ClK and
O×K simultaneously.

Given a finite set S ⊂ PK of prime ideals in OK , we can generalize integers and units to
S-integers and S-units in the following way:

OK,S := {α ∈ K | vp(α) ≥ 0, p ∈ PK \ S}
O×K,S := {α ∈ K | vp(α) = 0, p ∈ PK \ S}

Then OK,S is the localization of OK by a suitable multiplicative set, as we will see later
in Section 2.2.

The (S, T )-units O×K,S,T are a subgroup of O×K,S depending on a further finite set T ⊂ PK
of prime ideals which is disjoint from S. They play an important role in the Rubin Stark
conjecture [Rub96] that was formulated by Karl Rubin in 1996. The precise definition
of O×K,S,T will be given in Section 3.1. As far as the author knows, the computation of
(S, T )-units is not yet available in computational algebra systems like Magma or Pari.
Therefore, this thesis aims to develop and implement an algorithm for the calculation of
O×K,S,T , which will be done in the Sections 3.2 and 3.3.
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2 From units to S-units

In this chapter, we will first recall a known algorithm for combined computation of the
unit and class group. After that we will introduce S-units and describe how to find
them. We will also elaborate on the S-class group.

2.1 Unit and class group computation

The algorithmic computation of the unit group O×K and the class group ClK are two of
the most challenging tasks in computational number theory. In this section, we describe
an algorithm presented in the book of Henri Cohen [Coh96, Section 6.5] that computes
O×K and ClK simultaneously. It generalizes an idea of Johannes Buchmann regarding
real quadratic fields.

The basic idea when computing the class group ClK is that every ideal a C OK contains
an element a ∈ a such that NK|Q(a) ≤M ·N(a), where

M := ν!
νν

( 4
π

)t√
|dK |

denotes the Minkowski bound [PZ85]. It follows that every ideal class in ClK can be
represented by an ideal a C OK with N(a) ≤ M . Because any prime ideal dividing
a must also have norm at most M , ClK is generated by the classes of all prime ideals
p ∈ PK with N(p) ≤M . Since they divide prime numbers p ≤M , there are only finitely
many p with this property, say p1, . . . , pk. This list of prime ideals can be generated
efficiently.

Now we are endowed with a surjective homomorphism

Zk → ClK
(e1, . . . , ek) 7→ [pe1

1 · · · p
ek
k ] .

We have solved the problem of computing ClK if we are able to determine the kernel Λ
of this map, giving rise to the exact sequence

0→ Λ→ Zk → ClK → 0 .

Then we would get ClK ∼= Zk/Λ and could use standard algorithms for computing quo-
tients of abelian groups to obtain integers h1, . . . , hd ≥ 2 such that ClK ∼=

⊕d
j=1 Z/hjZ.
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2.1 Unit and class group computation

For every α ∈ K× that factors over p1, . . . , pk into αOK = pe1
1 · · · p

ek
k we obtain the

relation [p1]e1 · · · [pk]ek = [OK ] inside ClK , so (e1, . . . , ek) ∈ Λ. The idea is to collect as
many such relations as possible and to store the integer vectors (e1, . . . , ek) as columns
of a so called relation matrix Y consisting of k rows. The image of Y is guaranteed to
be a subgroup of Λ and we need to add more and more relations until ImY equals Λ.

The reader may ask how the preceeding thoughts are useful for the computation of
fundamental units. To this end, note that for every integral combination of the columns
of Y that results in the zero vector, the product of the corresponding field elements
from whom the relations originated constitutes a unit of OK , because its valuation at all
primes is identically zero. Therefore, the kernel of Y always corresponds to a subgroup
of O×K and we need to add more and more relations until KerY equals O×K .

To summarize, the kernel of the relation matrix Y is an approximation of O×K , while
the cokernel of Y is an approximation of ClK . As an indicator of how accurate these
approximations are, we can consider the “preliminary” regulator R̃K which is simply the
regulator of the subgroup of O×K corresponding to KerY , together with the “preliminary”
class number h̃k which is the index of ImY inside Zk. Then it holds h̃K ≥ hK and
R̃K ≥ RK .

Of course, we do not yet know the actual values of hK and RK . But we can get a good
approximation of their product by using the analytic class number formula mentioned
in the introduction. We are able to approach hKRK in terms of the Euler product

hKRK = wK |dK |1/2

2r+tπt
∏

p prime

1− 1/p∏
p|p(1− 1/N(p))

by cutting off the outer product over all prime numbers at a reasonable bound. Therefore,
the analytic class number formula serves as a stop criterion for our method of repeatedly
appending new relations to Y .

We have left open the question of how to collect more and more relations, i. e. how to find
elements which factor over p1, . . . , pk. In fact, there are many possibilities to accomplish
this. For example, we could search for elements with a small norm that factors over
N(p1), . . . , N(pk). However, the main tool used by Cohen is different from that: Its
algorithm just computes random products a := pe1

1 · · · p
ek
k (to be more precisely, he uses

a smaller factor basis than p1, . . . , pk for this step) and uses advanced techniques like
LLL reduction afterwards to find an α ∈ K× such that α−1a is reduced in a certain sense,
thus hoping that α−1a factors again over p1, . . . , pk which would lead to a factorization
of α into p1, . . . , pk and, hence, to a relation.

The set {p1, . . . , pk} is called the factor basis. If one assumes the generalized Riemann
hypothesis holds true, the Minkowski bound M can be replaced by an even smaller
value, for example by the Bach bound 12(log |dK |)2. Thus our factor basis can be taken
considerably smaller. This will make the algorithm much faster, since less relations are
required. We could even choose a factor basis which is “too small” on behalf of better
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2 From units to S-units

Compute r, t, dK , wK

Estimate hKRK

Choose factor basis

Gather more relations

Is Y of maximal rank?

Compute KerY Candidate for
O×K and RK

Compute Zk/ ImY
Candidate for
ClK and hK

Is hKRK small enough?

Output O×K and ClK

yes

no

yes

no

Figure 2.1: The essential steps of a combined algorithm for O×K and ClK
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2.2 Definition of S-units

performance, but at the risk of obtaining wrong results. On the other hand, one has
to keep in mind that a too small factor basis makes the occurrence of elements which
decompose over the factor basis more unlikely. We conclude that the right tuning of our
factor basis size is crucial for the running time of the algorithm.

To sum up everything, our algorithm works essentially as follows (see also the flow chart
shown in Figure 2.1). First we compute the constants r, t (see [Coh96, Algorithm 4.1.11]),
the discriminant dK (see [Coh96, Algorithm 6.1.8]) as well as the number wK of roots
of unity (see [Coh96, Algorithm 4.9.9]). Then we consult the analytic class number
formula to get an estimation of the actual value of the product hKRK . We also choose
an adequate factor basis p1, . . . , pk. Now we can start collecting relations until Y has a
reasonable amount of columns. In particular, Y should have maximal rank, because we
know that ClK is finite. By computing KerY and Zk/ ImY , we obtain candidates for
O×K and ClK , respectively, and calculate the preliminary regulator and class number R̃K
and h̃K . After that we need to check if h̃KR̃K is already small enough. If not, we must
go back and go on collecting more relations. In case h̃KR̃K is close to our previously
computed approximation, we succeeded and can transform the candidates for O×K and
ClK in a canonical form to output them.

It is hard to predict the asymptotical running time of this algorithm, because the gen-
eration of new relations is highly randomized. Although Buchmann’s algorithm for real
quadratic fields is believed to be sub-exponential, Cohen does not claim this also holds
for its generalization. In practice, however, this algorithm is very fast compared to other
methods.

2.2 Definition of S-units

Before we introduce S-units, we first have to define S-integers.

Definition 2.1. Let S = {p1, . . . , ps} be a finite set of prime ideals in OK . The S-
integers of K are defined as

OK,S := {α ∈ K | vp(α) ≥ 0, p ∈ PK \ S} .

Clearly, OK,∅ = OK .

If we compare OK,S to OK , we simply discard the requirement that vp(α) ≥ 0 for
all p ∈ S. Roughly spoken, OK,S arises from “inverting” the prime ideals p1, . . . , ps.
Formally, OK,S is the localization of OK by an appropriate multiplicative set.

Proposition 2.2. Let (p1 · · · ps)hK = ωOK for some ω ∈ OK . Then OK,S is the
localization of OK by the multiplicative set {ωk | k ∈ N0}.
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2 From units to S-units

Proof. Since vp(ω) = 0 for all p ∈ PK \ S, it is clear that ω−kOK ⊂ OK,S for all k ∈ N0.
On the other hand, for any α ∈ OK,S we can take k > max{−vp(α) | p ∈ S} to obtain
vp(αωk) ≥ 0 for p ∈ S as well as for p ∈ PK \S. Therefore, we conclude α ∈ ω−kOK .

Basic localization theory tells us that OK,S is a Dedekind domain again. Futhermore,
there is a canonical bijection between prime ideals of OK which do not contain ω and
the prime ideals of OK,S . The former ones are precisely PK \ S. Therefore, the group
IK,S of OK,S-fractional ideals in K is basically the free abelian subgroup of IK generated
by PK \ S.

Now we study the group of invertible elements in OK,S .

Definition 2.3. The units of the ring OK,S are called the S-units of K and are denoted
by O×K,S , i. e.

O×K,S := {α ∈ K | vp(α) = 0, p ∈ PK \ S} .

As a consequence, every α ∈ O×K,S admits a factorization

αOK = pe1
1 · · · p

es
s .

Like before, O×K,S differs from O×K only by discarding the requirement vp(α) = 0 for
all p ∈ S. If OK would be a principal ideal domain, say pi = piOK for i ∈ {1, . . . , s},
we could simply write O×K,S = pZ1 × · · · × pZs × O×K . But in a general setting, the map
O×K,S → Zs, α 7→ (vp(α))p∈S is not surjective. Hence, the determination of O×K,S is a
little bit harder and depends on the class group, as we will see in the next section.

2.3 Computation of S-units

We can inductively obtain a set of generators for O×K,S from a set of generators for
O×K,S\{ps} by adding a single generator, provided that we know the class group ClK .
The idea of studying the transition from S \ {ps} to S was taken from John Tate’s
influential book [Tat84] about the Stark conjectures.

Proposition 2.4. There exists a γ ∈ K× with

O×K,S = γZ ×O×K,S\{ps} .

Proof. Denote by [pi] the class of pi in ClK for all i ∈ {1, . . . , s}. Let m ∈ N be minimal
with [ps]m ∈ 〈[p1], . . . , [ps−1]〉. Such an m exists because ClK is finite. It follows that
pms = γpe1

1 · · · p
es−1
s−1 for some γ ∈ K× and e1, . . . , es−1 ∈ Z. Then

vp(γ) =


−ei if p ∈ {p1, . . . , ps−1}
m if p = ps

0 if p ∈ PK \ S .
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2.4 The S-class group

Therefore, we have γ ∈ O×K,S and γ /∈ O×K,S\{ps}.

It remains to prove that every S-unit is a product of an (S \ {ps})-unit and a power of
γ. Let α ∈ O×K,S . Since vp(α) = 0 for all p /∈ S, αOK = pe1

1 · · · pes
s with ei = vpi(α) ∈ Z

for i ∈ {1, . . . , s}. It follows that [p1]e1 · · · [ps]es is trivial in ClK and thus [ps]es ∈
〈[p1], . . . , [ps−1]〉. Because m was chosen minimal, we have es = k ·m for some k ∈ Z.
We obtain α = γk · αγ−k with αγ−k ∈ O×K,S\{ps}, since vps(αγ−k) = es − k ·m = 0.

The proposition shows that a system of fundamental units for O×K,S can be chosen
to consist of a system of fundamental units for O×K together with |S| additional free
generators. In particular, Rank(O×K,S) = |S|+ Rank(O×K) <∞.

The proof of Proposition 2.4 already discloses a constructive method to compute these
additional generators step by step. In practice, however, more efficient algorithms are
used, which are able to compute a system of fundamental units for O×K,S all at once.
One of them is described in [Coh00, Section 7.4.2]. Its further advantage is that the new
generators are still in OK and have comparatively small coefficients.
Example 2.5. Let K = Q(

√
42) and S = {p} with p = (11, 3 +

√
42). Obviously,

−1 is the only non-trivial root of unity contained in OK due to K ⊂ R. Thus, by the
Dirichlet unit theorem O×K = ε

Z/2Z
1 × εZ2 with ε1 = −1 and some fundamental unit ε2.

It can be easily seen that ε2 = 13 + 2
√

42 is a possible choice. Following the proof of
Proposition 2.4, we need to find the order of p in ClK . It turns out that p2 is already
principal, namely generated by ε3 = 17+2

√
42, and we conclude O×K,S = ε

Z/2Z
1 ×εZ2 ×εZ3 .

2.4 The S-class group

The S-class group defined in this section is related to S-units and will be useful when
we introduce and compute the (S, T )-class group.
Definition 2.6. The S-class group ClK,S of K is defined as the class group of the
Dedekind domain OK,S , i. e.

ClK,S := IK,S
HK,S

where IK,S is the group of fractional ideals in OK,S and HK,S is the subgroup of principal
fractional ideals in OK,S .

The following proposition summarizes the roles of O×K,S and ClK,S in a compact way.
Proposition 2.7. The sequence

1 // O×K
� � // O×K,S

v // Zs λ // ClK κ // ClK,S // 1

is exact, where v(α) := (vp(α))p∈S, λ(e1, . . . , es) := [pe1
1 · · · pes

s ] and κ is the homomor-
phism arising from a 7→ aOK,S by passage to the quotient.
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2 From units to S-units

Proof. By definition of O×K and O×K,S , it is obvious that O
×
K = Ker v, so we have proven

exactness at O×K and O×K,S .

Let (e1, . . . , es) ∈ Im v, so there is an α ∈ O×K,S with vpi(α) = ei for i ∈ {1, . . . , s}.
Because vp(α) = 0 for p /∈ S, we have αOK = pe1

1 · · · pes
s . Therefore, [pe1

1 · · · pes
s ] is trivial

in ClK , which means (e1, . . . , es) ∈ Kerλ. On the other hand, if (e1, . . . , es) ∈ Kerλ,
then [pe1

1 · · · pes
s ] is trivial in ClK . Hence, there exists an α ∈ K× such that αOK =

pe1
1 · · · pes

s . But this implies α ∈ O×K,S and vpi(α) = ei for i ∈ {1, . . . , s}. It follows that
(e1, . . . , es) ∈ Im v.

Let [a] ∈ Imλ, so there exists (e1, . . . , es) ∈ Zs such that [a] = [pe1
1 · · · pes

s ]. Because
pOK,S = OK,S for all p ∈ S, κ(a) = [p1]e1 · · · [ps]es is trivial in ClK,S . Conversely, assume
that [a] ∈ Kerκ. Then aOK,S = αOK,S for an α ∈ K×. Hence the prime decomposition
of α−1a contains only prime ideals from S. Therefore, [a] = [α−1a] ∈ Imλ.

Finally, we prove the surjectivity of κ. Note that IK,S is generated by the prime ideals
in OK,S . In Section 2.2, we mentioned the natural correspondence between PK \ S and
the prime ideals in OK,S , which means that every prime ideal in OK,S is of the form
pOK,S for some p ∈ PK \ S. It follows that the ideal classes κ([p]) where p ∈ PK \ S
generate the whole class group ClK,S .

As an immediate consequence of Proposition 2.7 we get

ClK,S ∼= ClK/ 〈[p1], . . . , [ps]〉 .

In particular, ClK,S is again finite and can be constructed easily from ClK . Its cardinality
hK,S := |ClK,S | is called the S-class number.
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3 From S-units to (S, T )-units

In this chapter, we will introduce (S, T )-units. We will present an algorithm for comput-
ing them, which is the main goal of this thesis. After that we will enlarge on the related
(S, T )-class group. By computing the (S, T )-class group we are able to verify the index
of the (S, T )-unit group.

3.1 Idea and Definition

In 1996, Karl Rubin [Rub96] published an extension of the Stark conjectures where he
studies Artin L-functions with higher order zeros at s = 0, arising from an additional
set of prime ideals T . This set T results in a broad range of generalizations: From the
S-unit group O×K,S towards the (S, T )-unit group O×K,S,T , from the S-class group ClK,S
towards the (S, T )-class group ClK,S,T , from the S-zeta function ζK,S towards the (S, T )-
zeta function ζK,S,T , from the S-class number formula towards the (S, T )-class number
formula, and so on. In the following sections, we focus solely on O×K,S,T and ClK,S,T and
discuss them independently of their relation to the Rubin Stark conjecture.

While the adoption of S-units “removes” certain prime ideals, thus enlarging O×K to
O×K,S , the idea behind the additional set T is to “add” certain prime ideals (although
they are already there), thus making O×K,S smaller again into O×K,S,T . In Section 3.4, we
will see that an analogous picture happens to occur on the class groups ClK , ClK,S and
ClK,S,T .

Contrary to S-units, the (S, T )-units are not a unit group of a particular Dedekind
domain. Instead they are defined directly as a subgroup of the S-units.

Definition 3.1. Let S and T be finite sets of prime ideals in OK with S ∩ T = ∅. The
(S, T )-units of K are defined as

O×K,S,T := {α ∈ O×K,S | α ≡ 1 (mod q), q ∈ T} .

Clearly, O×K,S,∅ = O×K,S .

Let T be the product of the prime ideals in T . Using the Chinese remainder theorem,
the above definition can be equivalently rewritten into a single condition:

O×K,S,T = {α ∈ O×K,S | α ≡ 1 (mod T)} .

However, the actual definition turns out to be quite as useful.
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3 From S-units to (S, T )-units

3.2 Computation of (S, T )-units

Let T = {q1, . . . , qm}. By definition, O×K,S,T is the kernel of the map

π : O×K,S →
m∏
i=1

(OK/qi)×

where each α ∈ O×K,S is sent to its projections in (OK/q)× for all q ∈ T . This is
well-defined, because S ∩ T = ∅ implies that vq(α) = 0 for all q ∈ T .

In Section 2.3, we have seen that

O×K,S = ε
Z/wKZ
1 × εZ2 × · · · × εZn

for certain ε1, . . . , εn ∈ O×K,S , where n = r + t+ s. In other words,

φ : Z/wKZ⊕ Zn−1 → O×K,S
(x1, . . . , xn) 7→ εx1

1 · · · ε
xn
n

is an isomorphism between the additive group Z/wKZ ⊕ Zn−1 and the multiplicative
group O×K,S .

Because OK/qi is always a finite field, (OK/qi)× is a cyclic group of order ci := N(qi)−1
generated by some gi ∈ (OK/qi)×. This implies that

ψ :
m⊕
i=1

Z/ciZ→
m∏
i=1

(OK/qi)×

(a1, . . . , am) 7→ (ga1
1 , . . . , gam

m )

is an isomorphism between the additive group
⊕m

i=1 Z/ciZ and the multiplicative group∏m
i=1(OK/qi)×.

Therefore, the problem of computing O×K,S,T reduces to computing the kernel of the
homomorphism

A : Z/wKZ⊕ Zn−1 →
m⊕
i=1

Z/ciZ

defined as A := ψ−1 ◦ π ◦ φ, as shown in the following commutative diagram with exact
rows:

1 // O×K,S,T
� � // O×K,S

π //
m∏
i=1

(OK/qi)×

0 // KerA �
� //

φ|KerA ∼=

OO

Z/wKZ⊕ Zn−1 A //

φ ∼=

OO

m⊕
i=1

Z/ciZ

ψ ∼=

OO
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3.2 Computation of (S, T )-units

In particular, we get (O×K,S : O×K,S,T ) = | ImA| ≤
∏m
i=1 ci <∞ and thus RankO×K,S,T =

RankO×K,S .

More explicitly, one has to solve the system of linear congruences

ai1x1 + · · ·+ ainxn ≡ 0 (mod ci) , i = 1, . . . ,m

in integers x1, . . . , xn (to be more precisely, we have x1 ∈ Z/wKZ), where the coefficient
aij is given by the i-th component of ψ−1(π(εj)), which is the discrete logarithm of εj
in (OK/qi)×. This system of linear congruences is equivalent to the system of linear
equations

ai1x1 + · · ·+ ainxn + ciyi = 0 , i = 1, . . . ,m

over Z in n+m variables x1, . . . , xn, y1, . . . , ym. Hence, it remains to find a Z-basis for
the kernel space of the matrix

M :=


a11 a12 · · · a1n c1 0 · · · 0
a21 a22 · · · a2n 0 c2 · · · 0
...

... . . . ...
...

... . . . ...
am1 an2 · · · amn 0 0 · · · cm

 ∈ Zm×(n+m) ,

for which efficient algorithms are known.

Therefore, we have developed the following algorithm for the (S, T )-unit group.

Algorithm 3.2 (Computation of (S, T )-units). Let T = {q1, . . . , qm}.

1. [Compute S-units.] Use the algorithm from Section 2.3 to compute fundamental
units ε1, . . . , εn of O×K,S .

2. [Take discrete logarithms.] For i = 1, . . . ,m and j = 1, . . . , n set aij to be the
discrete logarithm of εj in the residue class field OK/qi.

3. [Solve linear equations.] Construct a Z-basis of the kernel space of the matrix M
defined as above where ci := N(qi)− 1.

4. [Terminate.] For every kernel vector (x1, . . . , xn, y1, . . . , ym) from step 3, output
the fundamental unit φ(x1, . . . , xn) = εx1

1 · · · εxn
n of O×K,S,T .

The running time of this algorithm is dominated by the first step where the S-units are
computed. Therefore, the computational complexity of finding fundamental (S, T )-units
is not bigger than the one of finding fundamental S-units, which in turn is substantially
ruled by the unit group computation.

We demonstrate the operation of Algorithm 3.2 on a small example.

Example 3.3. Let K = Q(
√

42), S = {p}, T = {q1, q2} with p = (11, 3 +
√

42) (one of
the two prime ideals lying above 11 in OK), q1 = (5) (the unique principal prime ideal
lying above 5 in OK) and q2 = (7,

√
42) (the unique prime ideal lying above 7 in OK).

17



3 From S-units to (S, T )-units

1. [Compute S-units.] Example 2.5 resulted in O×K,S = ε
Z/2Z
1 × εZ2 × εZ3 with ε1 = −1,

ε2 = 13 + 2
√

42 and ε3 = 17 + 2
√

42.

2. [Take discrete logarithms.] The residue class fields are OK/q1 ∼= F25 ∼= F5(
√

2)
and OK/q2 ∼= F7. We choose the generators g1 = 3 +

√
2 of F5(

√
2) and g2 = 3 of

F7 and calculate

O×K,S
π→ F5(

√
2)× F7

ψ−1
→ Z/24Z⊕ Z/6Z

ε1 7→ (4, 6) 7→ (12, 3)
ε2 7→ (3 + 2

√
2, 6) 7→ (4, 3)

ε3 7→ (2 + 2
√

2, 3) 7→ (8, 1) .

3. [Solve linear equations.] To solve the system of linear congruences

12x1 + 4x2 + 8x3 ≡ 0 (mod 24)
3x1 + 3x2 + x3 ≡ 0 (mod 6) ,

we determine the kernel of the matrix

M =
(

12 4 8 24 0
3 3 1 0 6

)
∈ Z2×5

to be

〈
2
0
0
−1
−1

 ,

−1
3
0
0
−1

 ,


0
0
6
−2
−1


〉
.

4. [Terminate.] Applying φ yields ε2
1 = 1, ε−1

1 ε3
2 = −8749 − 1350

√
42 and ε6

3 =
361703161 + 55811340

√
42. We can see that the Z/2Z-torsion was eliminated and

O×K,S,T contains no non-trivial roots of unity. This yields the two fundamental
units −ε3

2 and ε6
3.

Many additional examples can be found in Chapter 4.

3.3 Implementation within Magma

The computational algebra system Magma was chosen to implement Algorithm 3.2. It
already provides the routine SUnitGroup to compute the group of S-units. Because
abelian groups are represented in Magma as quotients of Zn, SUnitGroup additionally
returns the isomorphism φ defined in the previous section viewed as an injection into K,

18



3.3 Implementation within Magma

i. e. the system of fundamental units for O×K,S is given by the images under φ of the n
canonical generators of Z/wKZ⊕ Zn−1.

For convenience, the newly implemented routine STUnitGroup returns apart from the
(S, T )-unit group also the S-unit group together with its map into the field. Because
the computed (S, T )-unit group is represented in Magma as a subgroup of the S-unit
group, this map into K can be applied to elements of the (S, T )-unit group as well.

1 intrinsic STUnitGroup(S :: [ RngOrdIdl ], T :: [ RngOrdIdl ]) −> GrpAb, GrpAb, Map
2 {Compute (S,T)−units.}
3 require not (IsEmpty(S) and IsEmpty(T)):
4 "At least S or T must be non-empty.";
5 require IsDisjoint (SequenceToSet(S), SequenceToSet(T)):
6 "S and T must be disjoint.";
7 if IsEmpty(S) then
8 O := Order(T[1]);
9 U, mU := UnitGroup(O);

10 else
11 U, mU := SUnitGroup(S);
12 end if ;
13 m := #T;
14 n := NumberOfGenerators(U);
15 M := ZeroMatrix(IntegerRing(), m, n + m);
16 for i := 1 to m do
17 F, mF := ResidueClassField(T[i ]);
18 for j := 1 to n do
19 x := mU(U.j);
20 r := mF(x);
21 M[i, j ] := Log(r);
22 end for;
23 M[i, n + i] := #F − 1;
24 end for;
25 K := KernelMatrix(Transpose(M));
26 L := RowSequence(ColumnSubmatrix(K, n));
27 V := sub<U | L>;
28 return V, U, mU;
29 end intrinsic ;

Example 3.4. We demonstrate how to do Example 3.3 in Magma. First we need to
attach the file where STUnitGroup is implemented.

> Attach("STUnitGroup.m");

Then we create K = Q(
√

42) and OK , as well as the three prime ideals p, q1 and q2.
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3 From S-units to (S, T )-units

> K := QuadraticField(42);
> O := MaximalOrder(K);
> p := Decomposition(O, 11)[1][1];
> q1 := Decomposition(O, 5)[1][1];
> q2 := Decomposition(O, 7)[1][1];
> p;
Prime Ideal of O
Two element generators:

11
$.2 + 3

Now we are ready to call STUnitGroup and view the results.

> V, U, mU := STUnitGroup([p], [q1, q2]);
> U;
Abelian Group isomorphic to Z/2 + Z + Z
Defined on 3 generators
Relations:

2*U.1 = 0
> V;
Abelian Group isomorphic to Z + Z
Defined on 2 generators in supergroup U:

V.1 = 3*U.2
V.2 = 6*U.3 (free)

We can use the returned map to explicitly obtain the fundamental (S, T )-units.

> mU(V.1), mU(V.2);
-8749/1*O.1 - 1350/1*O.2
361703161/1*O.1 + 55811340/1*O.2

Finally, we are interested in the index (O×K,S : O×K,S,T ).

> Index(U, V);
36

3.4 The (S, T )-class group

The (S, T )-class group can be understood as kind of a ray class, as the following definition
suggests.

20



3.4 The (S, T )-class group

Definition 3.5. The (S, T )-class group of K is defined as

ClK,S,T := IK,S,T
HK,S,T

where
IK,S,T := {a ∈ IK,S | (a, q) = 1, q ∈ T}

is the group of fractional ideals in OK,S coprime to all prime ideals in T and

HK,S,T := {αOK,S | α ∈ K×, α ≡ 1 (mod q), q ∈ T} ≤ IK,S,T

is the subgroup of principal fractional ideals in OK,S that have a generator which is
trivial in (OK/q)× for all q ∈ T .

Now we want to define a homomorphism f : ∏m
i=1(OK/qi)× → ClK,S,T . By the Chinese

remainder theorem, every tuple (r1, . . . , rm) ∈
∏m
i=1(OK/qi)× has a common represen-

tative α ∈ K× satisfying α ≡ ri (mod qi) for every i ∈ {1, . . . ,m}. In particular,
(αOK,S , q) = 0 for all q ∈ T . Let f(r1, . . . , rm) := [αOK,S ]. This is well-defined, because
for any other representative α′ ∈ K× it holds α

α′ ≡ 1 (mod q) for all q ∈ T and thus
[αOK,S ] = [α′OK,S ] in ClK,S,T .

Proposition 3.6. The sequence

1 // O×K,S,T
� � // O×K,S

π //
m∏
i=1

(OK/qi)×
f // ClK,S,T

ρ // ClK,S // 1

is exact, where f is like above and ρ denotes the canonical homomorphism induced by
IK,S,T ≤ IK,S and HK,S,T ≤ HK,S.

Proof. Because O×K,S,T is defined as Kerπ, it is clear that the sequence is exact at O×K,S,T
and O×K,S .

We show that Im π = Ker f . Let (r1, . . . , rm) ∈
∏m
i=1(OK/qi)× with a common repre-

sentative α ∈ K×. Then (r1, . . . , rm) ∈ Ker f is equivalent to αOK,S = α′OK,S for some
α′ ∈ K× with α′ ≡ 1 (mod q) for all q ∈ T . This implies that we have β := α

α′ ∈ O
×
K,S .

Since ri ≡ α ≡ α′β ≡ β (mod qi), it holds π(β) = (r1, . . . , rm). On the other hand, ev-
ery π(β) ∈ Im π can be represented by β ∈ O×K,S and thus f(π(β)) = [βOK,S ] = [OK,S ]
is trivial in ClK,S,T .

Because Im f contains only principal ideals, Im f ⊂ Ker ρ is immediate. Now take
[αOK,S ] ∈ Ker ρ. Since αOK,S ∈ IK,S,T , α projects to an element in

∏m
i=1(OK/qi)× and

Ker ρ ⊂ Im f follows.

Finally, we prove that ρ is surjective, i. e. for every a ∈ IK,S there exists an α ∈ K×
such that αa ∈ IK,S,T . By the Chinese remainder theorem, we can choose α ∈ K× such
that vq(α) = −vq(a) for all q ∈ T . Therefore the prime decomposition of αa contains no
prime ideals from T and we are done.
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3 From S-units to (S, T )-units

3.5 Computation of the (S, T )-class group

Proposition 3.6 allows us to compute ClK,S,T , provided that the other parts of the exact
sequence are known. We will now give an explicit construction of ClK,S,T . For simplicity,
write h := hK,S and Ω :=

∏m
i=1(OK/qi)×.

Proposition 3.7. Let a1, . . . , ah be a system of representatives for ClK,S. By multiplica-
tion with suitable principal fractional ideals we can assume that a1, . . . , ah ∈ IK,S,T . Let
α1, . . . , α` ∈ K× be such that their projections onto Ω form a system of representatives
for the cokernel Ω/ Im π. Then αiaj is a system of representatives for ClK,S,T , where
(i, j) ∈ {1, . . . , `} × {1, . . . , h}.

Proof. Let a ∈ IK,S,T be arbitrary. We show that a is modulo HK,S,T congruent to one of
the αiaj . First of all, because a1, . . . , ah represent ClK,S , there exists a j ∈ {1, . . . , h} and
an α ∈ K× such that a = αaj . Now we use that the projections of α1, . . . , α` represent
Ω/ Im π to obtain an i ∈ {1, . . . , `} and a β ∈ O×K,S such that αβ ≡ αi (mod q) for all
q ∈ T . This implies a = α

αi
αiaj , where α

αi
OK,S = αβ

αi
OK,S ∈ HK,S,T due to αβ

αi
≡ 1

(mod q) for all q ∈ T .

It remains to show that the αiaj are pairwise distinct modulo HK,S,T . Suppose that
αiaj ≡ αi′aj′ (mod HK,S,T ) for (i, j) 6= (i′, j′). Then αiaj = βαi′aj′ with β ≡ 1 (mod q)
for all q ∈ T . In particular, [aj ] = [aj′ ] in ClK,S , so j = j′. It follows αi

βαi′
∈ O×K,S . Since

αi ≡ αi
βαi′

αi′ (mod q) for all q ∈ T , this means that αi and αi′ are the same in Ω up to
π( αi

βαi′
). Hence, i = i′. This is a contradiction.

The proposition shows that ClK,S,T is a finite group of order hK,S,T := |ClK,S,T | = `·hK,S
and gives us a system of representatives for ClK,S,T . To completely understand the group
structure of ClK,S,T , it suffices to examine how multiplication in ClK,S,T works in terms of
these representatives. Be aware that we cannot conclude that ClK,S,T ∼= Ω/ Im π×ClK,S .
However, multiplication of two [αiOK,S ] inside ClK,S,T simply leads to another [αiOK,S ].
But with [aj ] we must be more careful.

Since ClK,S is a finite abelian group, ClK,S ∼=
⊕d

j=1 Z/hjZ for integers h1, . . . , hd ≥ 2.
Pick b1, . . . , bd ∈ IK,S,T such that ClK,S = [b1]Z/h1Z × · · · × [bd]Z/hdZ. For every j ∈
{1, . . . , d}, bhj

j is a principal fractional ideal generated by an element α ∈ K×. Then we
can find an i ∈ {1, . . . , `} such that [bj ]hj = [αOK,S ] = [αiOK,S ] in ClK,S,T .

It follows that the abelian group ClK,S,T admits a presentation where the generators
consist of the generators of Ω/ Im π together with the d generators [b1], . . . , [bd], and
the relations consist of the relations inside Ω/ Im π together with the relations [bj ]hj =
[αiOK,S ]. It is clear that there are no other relations. We can use well known methods
for abelian groups to transform this presentation of ClK,S,T into a canonical form.

We end up with the following algorithm for computing ClK,S,T .

22



3.6 Heuristic verification

Algorithm 3.8 (Computation of the (S, T )-class group). .

1. [Compute S-units.] Use the algorithm from Section 2.3 to compute fundamental
units ε1, . . . , εn of O×K,S .

2. [Take discrete logarithms.] For i = 1, . . . ,m and j = 1, . . . , n set aij to be the
discrete logarithm of εj in the residue class field OK/qi.

3. [Construct quotient group.] Use standard methods for abelian groups to compute
the cokernel of A, i. e. the structure of

⊕m
i=1 Z/ciZ modulo the subgroup generated

by (a1j , . . . , amj) for j = 1, . . . , n. This leads to⊕m
i=1 Z/ciZ
ImA

∼=
µ⊕
i=1

Z/siZ

for integers s1, . . . , sµ ≥ 2.

4. [Compute S-class group.] Use the algorithm of Section 2.4 to compute ClK,S =
[b1]Z/h1Z × · · · × [bd]Z/hdZ. If necessary, multiply b1, . . . , bd by principal fractional
ideals to make them coprime to T .

5. [Find relations.] For j = 1, . . . , d, choose a generator α ∈ K× for the principal
fractional ideal bhj

j . First send α to
⊕m
i=1 Z/ciZ by taking discrete logarithms

again, and then map it to (k1j , . . . , kµj) ∈
⊕µ

i=1 Z/siZ by quotienting out ImA.

6. [Terminate.] The desired abelian group ClK,S,T is given as

ClK,S,T ∼=
(
⊕µ

i=1 Z/siZ)⊕ Zd

Γ

where Γ is the subgroup spanned by the relations (k1j , . . . , kµj , 0, . . . ,−hj , . . . , 0)
for j = 1, . . . , d where −hj stands at the (µ+ j)-th coordinate.

Algorithm 3.8 was implemented in Magma. Because the implementation details are quite
lengthy, the full source code listing was moved to the appendix.

3.6 Heuristic verification

From Proposition 3.6 we obtain a formula for the index

(O×K,S : O×K,S,T ) = hK,S
hK,S,T

m∏
i=1

ci (3.1)

with respect to the class numbers hK,S := |ClK,S | and hK,S,T := |ClK,S,T |. We can
compute O×K,S,T and ClK,S,T as previously explained. By testing on many examples if
this formula holds, we get a rough indication that the two described algorithms seem to
be correct, or at least fit well together.
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3 From S-units to (S, T )-units

If S = ∅, then O×K,S,T equals the ray class group of the ideal q1 · · · qm inside OK . Because
the computation of ray class groups is already implemented in Magma, we have a further
validation possibility of our algorithm for the (S, T )-class group, just by comparing the
results of the routines STClassGroup and RayClassGroup.

Chapter 4 lists several examples which were carried out. Both aforementioned tests
always succeeded. Therefore, an implementation mistake seems to be very unlikely.
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4 Examples

Example 4.1. Consider the imaginary quadratic field K = Q(
√
−1997). It turns out

that ClK ∼= Z/42Z and O×K ∼= Z/2Z. We will work with the following three prime ideals.

name definition residue class field
p1 (7) F49
p2 (3, 2 +

√
−1997) F3

p3 (17, 3 +
√
−1997) F17

In order to test our algorithms for as many border cases as possible, we examine all valid
combinations of S and T such that S ∩ T = ∅ and S ∪ T ⊂ {p1, p2, p3}. Table 4.1 lists
the index of the (S, T )-unit group inside the S-unit group for all these combinations.
Because none of the prime ideals divide 2, the Z/2Z-torsion of O×K,S will always be
eliminated when passing to O×K,S,T (except for T = ∅). In the table we can see that the
index increases if we enlarge the set T . This is clear because for any prime ideal added
to T , a new congruence relation is imposed.

The computed structures of ClK,S,T are shown in Table 4.2. To improve readability, Zn
was written instead of Z/nZ. In particular, the entries in the first column are the S-class
groups. Furhermore, the entries in the first row are ray class groups. It was verified that
they agree with the results of the Magma procedure RayClassGroup. It was also checked
that the equation (3.1) holds in all cases.

The purpose of the next example is to highlight the handling of roots of unity.

S \ T ∅ {p1} {p2} {p3} {p1, p2} {p1, p3} {p2, p3} {p1, p2, p3}
∅ 1 2 2 2 2 2 2 2
{p1} 1 2 16 32
{p2} 1 8 8 8
{p3} 1 16 2 32
{p1, p2} 1 16
{p1, p3} 1 2
{p2, p3} 1 16
{p1, p2, p3} 1

Table 4.1: The indices (O×K,S : O×K,S,T )
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4 Examples

S
\
T

∅
{
p1 }

{
p2 }

{
p3 }

{
p1 ,p2 }

{
p1 ,p3 }

{
p2 ,p3 }

{
p1 ,p2 ,p3 }

∅
Z

42
Z

6 ⊕
Z

168
Z

42
Z

2 ⊕
Z

168
Z

6 ⊕
Z

336
Z

2 ⊕
Z

24 ⊕
Z

336
Z

2 ⊕
Z

336
Z

2 ⊕
Z

48 ⊕
Z

336
{
p1 }

Z
42

Z
42

Z
42

Z
42

{
p2 }

0
Z

6
Z

2
Z

2 ⊕
Z

48
{
p3 }

Z
14

Z
42

Z
14

Z
42

{
p1 ,p2 }

0
0

{
p1 ,p3 }

Z
14

Z
14

{
p2 ,p3 }

0
Z

3
{
p1 ,p2 ,p3 }

0

Table
4.2:T

he
(S
,T

)-class
groups
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Example 4.2. Consider the cyclotomic field K = Q(ζ30), where ζ30 is a primitive 30-th
root of unity, i. e. a zero of the 30-th cyclotomic polynomial

φ30(X) = X8 +X7 −X5 −X4 −X3 +X + 1 .

We have O×K ∼= Z/30Z⊕ Z3. By definition of O×K,S,T , if k is the least common multiple
of the orders of ζ30 inside the residue class fields OK/q, q ∈ T , then exactly the powers
of ζk30 will survive in O×K,S,T , so the torsion part of O×K,S,T will be cyclic of order 30

k . It
turns out that 1− ζ30, 1− ζ2

30, 1− ζ3
30 and 1− ζ5

30 are units, so there is no residue class
field where the order of ζ30 equals 1, 2, 3 or 5, respectively. However, 1 − ζ6

30, 1 − ζ10
30

and 1 − ζ15
30 = 2 have prime factors q1, q2 and q3, respectively. Now our algorithm for

(S, T )-units computes the following results.

O×K,∅,{q1}
∼= Z/5Z⊕ Z3 (O×K : O×K,∅,{q1}) = 24

O×K,∅,{q2}
∼= Z/3Z⊕ Z3 (O×K : O×K,∅,{q2}) = 80

O×K,∅,{q3}
∼= Z/2Z⊕ Z3 (O×K : O×K,∅,{q3}) = 15

In this case, the residue class fields are F25, F81 and F16. Observe that the torsion parts
behave as expected. Of course, we could also have taken a non-empty set S, but this
would not change the torsion parts that this example should demonstrate.

The (S, T )-class group algorithm outputs that ClK,∅,{qi} is trivial for all i ∈ {1, 2, 3}.
Hence, by equation (3.1) it should hold

(O×K : O×K,∅,{qi}) = N(qi)− 1

which matches the computed indices from above.

Finally, we give an example where we test the limits of our implementation by using
large sets for S and T .
Example 4.3. Consider the number field K = Q( 5√31). In contrast to the previous
two examples, this is not a Galois extension. It turns out that ClK ∼= Z/5Z⊕Z/5Z and
O×K ∼= Z/2Z⊕ Z2. We take all prime divisors of the first 50 prime numbers and obtain
107 prime ideals. From this set we randomly pick two disjoint subsets S and T , each of
cardinality 50.

The (S, T )-unit group algorithm terminates after a few seconds and returns a subgroup
of index (O×K,S : O×K,S,T ) ≈ 10200. Note that the discrete logarithm matrix has the size
50× 53. If we supply an empty set for S, we obtain (O×K : O×K,∅,T ) ≈ 10100.

The computation of ClK,S,T takes a bit longer, but ClK,S,T usually ends up to be trivial.
However, ClK,∅,T is highly non-trivial. This is clear, because (3.1) implies that

hK,∅,T = 25 ·
(O×K,S : O×K,S,T )
(O×K : O×K,∅,T )

≈ 10100

if hK,S,T = hK,S = 1. It was checked that RayClassGroup returned exactly the same huge
group. Also the precise equality in (3.1) was verified.
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List of symbols

N positive integers
N0 non-negative integers
Z integers
Q rational numbers
R real numbers
C complex numbers
Fq finite field with q elements
|X| cardinality of set
C ideal relation
≤ subgroup relation
Re(s) real part
[a] equivalence class
〈. . .〉 generated subgroup
⊕ direct sum
× direct product
Rank rank of abelian group
Ker kernel
Im image
K algebraic number field
K× invertible (i. e. non-zero) field elements
OK integer ring
OK/p residue class field
O×K unit group
OK,S S-integers
O×K,S S-units
O×K,S,T (S, T )-units
ν degree of extension K | Q
r number of real embeddings
t number of complex embeddings
RK regulator
dK discriminant
wK number of roots of unity
εi fundamental units
N(a) ideal norm
vp discrete valuation of p
ζK Dedekind zeta function
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σi real embedding
τi, τi pair of (proper) complex embeddings
|α|i archimedian valuation
S finite set of prime ideals
T finite set of prime ideals with S ∩ T = ∅
ClK class group
ClK,S S-class group
ClK,S,T (S, T )-class group
hK class number
hK,S S-class number
hK,S,T (S, T )-class number
PK set of non-zero prime ideals
IK fractional ideals
HK principal fractional ideals
IK,S fractional S-ideals
HK,S principal fractional S-ideals
IK,S,T fractional S-ideals coprime to T
HK,S,T T -ray principal fractional S-ideals
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Source code of STClassGroup

1 intrinsic SClassGroup(S :: [ RngOrdIdl ]) −> GrpAb, Map
2 {Compute the S−class group.}
3 require not IsEmpty(S): "S must be non-empty.";
4 O := Order(S[1]);
5 C, mC := ClassGroup(O);
6 R := [ Inverse (mC)(p) : p in S ];
7 D, mD := quo<C | R>;
8 return D, Inverse (mD) ∗ mC;
9 end intrinsic ;

10
11 intrinsic IsSPrincipal (S :: [ RngOrdIdl ], I :: RngOrdFracIdl) −> BoolElt, FldOrdElt
12 {Check if I is principal with respect to S−integers, and return a generator in that case .}
13 if IsEmpty(S) then
14 return IsPrincipal ( I );
15 end if ;
16 O := Order(I);
17 C, mC := ClassGroup(O);
18 F := FreeAbelianGroup(#S);
19 f := hom< F −> C | [ Inverse(mC)(p) : p in S ]>;
20 a := Inverse (mC)(I);
21 if a in Image(f) then
22 l := ElementToSequence(Inverse(f)(a));
23 I := I / &∗[S[j ] ^ l [ j ] : j in [1..#S ]];
24 return IsPrincipal ( I );
25 end if ;
26 return false ;
27 end intrinsic ;
28
29 intrinsic STClassGroup(S :: [ RngOrdIdl ], T :: [ RngOrdIdl ]) −> GrpAb, Map
30 {Compute the (S,T)−class group.}
31 require not (IsEmpty(S) and IsEmpty(T)):
32 "At least S or T must be non-empty.";
33 require IsDisjoint (SequenceToSet(S), SequenceToSet(T)):
34 "S and T must be disjoint.";
35 if IsEmpty(S) then
36 O := Order(T[1]);
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37 U, mU := UnitGroup(O);
38 C, mC := ClassGroup(O);
39 else
40 O := Order(S[1]);
41 U, mU := SUnitGroup(S);
42 C, mC := SClassGroup(S);
43 end if ;
44 if IsEmpty(T) then
45 return C, mC;
46 end if ;
47 P := &∗T;
48 n := NumberOfGenerators(U);
49 d := NumberOfGenerators(C);
50 A := quo<O | P>;
51 R, mR := UnitGroup(A);
52 Q, mQ := quo<R | [Inverse(mR)(A ! mU(U.j)) : j in [1.. n]]>;
53 q := NumberOfGenerators(Q);
54 D := DirectSum(Q, FreeAbelianGroup(d));
55 rel := [];
56 b := [ FieldOfFractions (O) | ];
57 for i := 1 to d do
58 h := AbelianInvariants (C)[ i ];
59 b[ i ] := MakeCoprime(mC(C.i), P);
60 I := (b[ i ] ∗ mC(C.i)) ^ h;
61 t , g := IsSPrincipal (S, I );
62 if not t then
63 // Something went completely wrong
64 end if ;
65 gq := mQ(Inverse(mR)(A ! g));
66 rel [ i ] := D ! (ElementToSequence(gq) cat [0 : j in [1.. d ]]) = h ∗ D.(q+i);
67 end for;
68 Y, mY := quo<D | rel>;
69 idealRepresentative := function(x)
70 x := Inverse (mY)(x);
71 x := ElementToSequence(x);
72 y := Q ! [x[ i ] : i in [1.. q ]];
73 y := O ! mR(Inverse(mQ)(y));
74 z := &∗[PowerIdeal(FieldOfFractions (O)) | (b[ i ] ∗ mC(C.i)) ^ x[ i+q] : i in [1.. d ]];
75 return y ∗ z;
76 end function;
77 idealClass := function(I)
78 c := Inverse (mC)(I);
79 c := ElementToSequence(c);
80 z := &∗[PowerIdeal(FieldOfFractions (O)) | (b[ i ] ∗ mC(C.i)) ^ c[ i ] : i in [1.. d ]];
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Source code of STClassGroup

81 t , g := IsSPrincipal (S, I / z );
82 if not t then
83 // Something went completely wrong
84 end if ;
85 gq := mQ(Inverse(mR)(A ! g));
86 return mY(D ! (ElementToSequence(gq) cat c));
87 end function;
88 return Y, hom<Y −> PowerIdeal(FieldOfFractions(O)) |
89 x :−> idealRepresentative (x), I :−> idealClass( I ) >;
90 end intrinsic ;
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