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10. Lim its and Colimits, Products and Equalizers

Limit constructions are a very important tool in category theory. We will intro-

duce the basic facts on limits and colimits in th is section .

De�nition 8.10.1. A diagramscheme D is a small category (i. e. the class of ob-

jects is a set). Let C be an arb itrary category. A diagram in C over the diagramscheme

D is a covariant functor F : D �! C.

Example 8.10.2. (for diagramschemes)

1. The empty category D.
2. The category with precisely one ob ject D and precise ly one morphism 1D .
3. The category with two ob jects D1;D2 and one morphism f : D1 �! D2 (apart

from the two identitie s).

4. The category with two ob jects D1;D2 and two morphisms f; g : D1 �! D2

between them.

5. The category with a fam ily of ob jects (Diji 2 I) and the assoc iated identities.

6. The category with four ob jects D1; : : : ;D4 and morphisms f; g; h; k such that

the diagram

D3 D4
-

h

D1 D2
-f

?

g

?

k

commutes, i. e. kf = hg.

De�nition 8.10.3. Let D be a diagramscheme and C a category. Each ob ject

C 2 C de�nes a constant diagram KC : D �! C with KC(D) := C for all D 2 D
and K(f) := 1C for all morphisms in D. Each morphism f : C �! C 0 in C de�nes

a constant natural transformation Kf : KC �! KC0 with Kf(D) = f . This de�nes

a constant functor K : C �! Funct(D; C) from the category C into the category of

diagrams Funct(D; C).
Let F : D �! C be a diagram. An ob ject C together with a natural transformation

� : KC �! F is called a lim it or a projective lim it of the diagram F with the projection

� if for each ob ject C 0 2 C and for each natural transformation ' : KC0 �! F there is

a unique morphism f : C 0 �! C such that

KC F-�

'

@
@
@
@@R

KC0

?

Kf
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commutes, i. e. the diagrams

C F(Di)-�i

�j

@
@
@
@@R
F(Dj)
?

F(g)

commute for all morphisms g : Di �! Dj in D (� is a natural transformation) and

the diagrams

C F(Di):-
�i

'i

@
@
@
@@R

C 0

?

f

commute for all ob jects Di in D.
A category C has limits for diagrams over a diagramscheme D if for each diagram

F : D �! C over D there is a limit in C. A category C is called complete if each

diagram in C has a limit.

Example 8.10.4. 1. Let D be a diagramscheme consisting of two ob jects D1;D2

and the identities. A diagram F : D �! C is de�ned by giv ing two ob jects C1 and

C2 in C. An ob ject C1 � C2 together with two morphisms �1 : C1 � C2 �! C1 and

�2 : C1 � C2 �! C2 is called a product of the two ob jects if C1 � C2; � : KC1�C2
�! F

is a lim it, i. e. if for each ob ject C 0 in C and for any two morphisms '1 : C 0 �! C1

and '2 : C
0 �! C2 there is a unique morphism f : C 0 �! C1 � C2 such that

'1

�
�

�
��	

'2

@
@
@
@@R

C 0

?

f

C1 C1 �C2
��1 C2

-�2

commutes. The two morphisms �1 : C1�C2 �! C1 and �2 : C1�C2 �! C2 are called

the projections from the product to the two factors.

2. Let D a diagramscheme consisting of a �nite (non empty) set of ob jects

D1; : : : ;Dn and the asso ciated identitie s. A lim it of a diagram F : D �! C is called

a �nite product of the ob jects C1 := F(D1); : : : ; Cn := F(Dn) and is denoted by

C1 � : : :� Cn =
Qn

i=1Ci.

3. A lim it over a discrete diagram (i. e. D has only the identities as morphisms)

is called product of the Ci := F(Di), i 2 I and is denoted by
Q

I
Ci.

4. Let D be the empty diagramscheme and F : D �! C the (on ly possib le) empty

diagram. The lim it C; � : KC �! F of F is called the �nal object . It has the prop erty

that for each ob ject C 0 in C (the uniquely determ ined natural transformation ' : KC0

�! F does not have to be mentioned) there is a unique morphism f : C 0 �! C . In
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Set the one-point set is a �nal ob ject. In Ab ;Gr ;Vec the zero group 0 is a �nal

ob ject.

5. Let D be the diagramscheme from 8.8.2 4. with two ob jects and two morphisms

(d i� erent from the two identitie s). A diagram over D consists of two ob jects C1 and C2

and two morphisms g; h : C1 �! C2. The limit of such a diagram is called Equalizer of

the two morphisms and is given by an ob ject Ker(g; h) and a morphism �1 : Ker(g; h)
�! C1. The second morphism to C2 arises from the composition �2 = g�1 = h�1. The

equalizer has the following universal prop erty. For each ob ject C 0 and each morphism

'1 : C
0 �! C1 with g'1 = h'1(= '2) there is a unique morphism f : C 0 �! Ker(g; h)

with �1f = '1 (and thus �2f = '2, i. e. the diagram

C 0

f

�
�
�
��	 ?

'1

Ker(g; h) C1
-�1 -g

C2-
h

commutes.

Problem 8.10.1. 1. Let F : D �! Set be a disc rete diagram . Show that the

cartesian product over F coincides with the categorical product.

2. Let D be a pair of morphisms as in 8.8.4 5. and let F : D �! Set be a

diagram. Show that the set fx 2 F(D1)jF(f)(x) = F(g)(x)g with the inclusion map

into F(D1) is an equalizer of F : D �! Set .

3. Let F : D �! Set be a diagram . Show that the set

f(xDjD 2 ObD;xD 2 F(D))j8(f : D �! D0) 2 D : F(f)(xD) = xD0g

with the pro jections into the single of the families is the limit of F .

De�nition 8.10.5. Let F : D �! C be a diagram. An ob ject C and a natural

transformation � : F �! KC is called colim it or inductive lim it of the diagram F with

the injection � if for each ob ject C 0 2 C and for each natural transformation ' : F
�! KC0 there is a unique morphism f : C �! C 0 such that

F KC-�

'

@
@
@
@@R
KC0

?

Kf

commutes, i. e. the diagram

F(Dj) C-�j

�i

@
@
@
@@R

F(Di)

?

F(g)
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commutes for all morphisms g : Di �! Dj in D (� is a natural transformation) and

the diagram

F(Di) C-
�i

'i

@
@
@
@@R
C 0:
?

f

commutes for all ob jects Di in D.
The sp ecial colimits that can be formed over the diagrams as in Example 8.8.4

are called coproduct, initial object, resp . coequalizer .

Example 8.10.6. In Vec the ob ject 0 is an initial ob ject. In K-Alg the ob ject

K is an initial ob ject. In Geom the one-element functor A 7! f�g is a �nal ob ject.

In K-Alg the ob ject fa 2 Ajf(a) = g(a)g is the equalizer of the two algebra homo-

morphisms f : A �! B and g : A �! B. In KAlg the cartesian (set of pairs) and the

categorical products coincide.

Remark 8.10.7. A colim it of a diagram C is a limit of the corresponding (dual)

diagram in the dual category Cop. Thus theorems about lim its in arb itrary categories

automatically also produce (dual) theorems about colim its. However, observe that

theorems about limits in a particu lar category (for example the category of vector

spaces) translate on ly into theorems about colimits in the dual category, which most

often is not too usefu l.

Prop osition 8.10.8. Limits and colimits of diagrams are unique up to isomor-

phism.

Proof. Let F : D �! C be a diagram and let C; � and ~C; ~� be lim its of F .

Then there are unique morphisms f : ~C �! C and g : C �! ~C with �Kf = ~� and

~�Kg = �. This implies �K1C = � idKC
= � = ~�Kg = �KfKg = �Kfg and analogously

~�K1 ~C
= ~�Kgf . Because of the uniqueness th is implies 1C = fg and 1 ~C = gf .

Remark 8.10.9. Now that we have the uniqueness of the limit resp. colimit (up

to isomorphism) we can introduce a uni�ed notation. The limit of a diagram F : D
�! C will be denoted by lim �(F), the colim it by lim�!(F).

Theorem 8.10.10. If C has arb itrary products and equalizers then C has arb itrary

limits, i. e. C is complete .

Proof. Let D be a diagramscheme and F : D �! C a diagram. First we

form the products
Q

D2ObD F(D) and
Q

f2MorD F(Codom(f)) where Codom (f) is the

codomain (range) of the morphism f : D0 �! D00 in D so in this case Codom (f) = D00.

We de�ne for each morphism f : D0 �! D00 two morphisms as follows

pf := �F(D00) :
Y

D2ObD

F(D) �! F(D00) = F(Codom (f))
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and

qf := F(f)�F(D0) :
Y

D2ObD

F(D) �! F(D0) �! F(D00) = F(Codom(f)):

These two fam ilie s of morphisms induce two morphisms into the corresponding prod-

uct

p; q :
Y

D2ObD

F(D) �!
Y

f2MorD

F(Codom(f))

with �fq = qf and �fp = pf . Now we show that the equalizer of these two morphisms

Ker(p; q)
Y

D2ObD

F(D)- 
Y

f2MorD

F(Codom (f))
-p

-
q

is the limit of the diagram F : D �! C. We have p = q . The morphism �(D) :=
�F(D) : Ker(p; q) �!

Q
D2ObD F(D) �! F(D) de�nes a fam ily of morphisms for

D 2 ObD. If f : D0 �! D00 is in D then the diagram

Ker(p; q) F(D0)-�(D
0)

�(D00)

@
@
@
@@R
F(D00)
?

F(f)

is commutative because of F(f)�(D0) = F(f)�F(D0) = qf = �fq = �fp =
pf = �F(D00) = �(D00). Thus we have obtained a natural transformation � : KKer(p;q)

�! F .

Now let an ob ject C 0 and a natural transformation ' : KC0 �! F be given. Then

th is de�nes a unique morphism g : C 0 �!
Q

D2ObD F(D) with �F(D)g = '(D) for

all D 2 D. Since ' is a natural transformation we have '(D00) = F(f)'(D0) for

each morphism f : D0 �! D00. Thus we obtain �fpg = pfg = �F(D00)g = '(D00) =
F(f)'(D0) = F(f)�F(D0)g = qfg = �fqg for all morphisms f : D0 �! D00 hence

pg = qg. Thus g can be unique ly factorized through the equalizer  : Ker(p; q)
�!
Q

D2ObD F(D) in the form g =  h with h : C 0 �! Ker(p; q). Then we have

�(D)h = �F(D) h = �F(D)g = '(D) for all D 2 D hence �Kh = '.

Finally let another morphism h0 : C 0 �! Ker(p; q) with �Kh0 = ' be given . Then

we have �F(D) h
0 = �(D)h0 = '(D) = �(D)h = �F(D) h hence  h0 =  h = g.

Because of the uniqueness of the factorization of g through  we get h = h0. Thus

(Ker(p; q); �) is the lim it of F .

Remark 8.10.11. The proof of the preceding Theorem gives an explicit con-

struction of the limit of F as an equalizer

Ker(p; q)
Y

D2ObD

F(D)- 
Y

f2MorD

F(Codom (f))
-p

-
q
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Hence the lim it can be represented as a subob ject of a suitab le product. Dually

the colim it can be represented as a quotient ob ject of a su itab le coproduct. This

construction will be used in chapter 3.

Another fact is very important for us, the fact that certain functors preserve

limits resp. colim its. We say that a functor G : C �! C0 preserves limits over the

diagramscheme D if lim �(GF)
�= G(lim �(F)) for each diagram F : D �! C.

Prop osition 8.10.12. Covariant representab le functors preserve limits. Con-

travariant representab le functors map colim its into lim its.

Proof. We only prove the �rst assertion. The second assertion is dual to the

�rst one. For a diagram F : D �! Set the set

f(xDjD 2 ObD; xD 2 F(D))j8(f : D �! D0) 2 D : F(f)(xD) = xD0g

is a lim it of F by Problem 8.1. Now let a diagram F : D �! C be given and let lim �(F)
be the limit. Furthermore let MorC(C 0; -) : C �! Set be a representab le functor. By

the de�nition of the lim it of F there is a unique morphism f : C 0 �! lim �(F) with

�Kf = ' for each natural transformation ' : KC0 �! F . This de�nes an isomorphism

Nat(KC0 ;F) �= MorC(C 0; lim �(F)). Hence we have

lim �(MorC(C;F)) �=
f('(D) : C 0 �! F(D)jD 2 D)j8(f : D �! D0) 2 D : F(f)'(D) = '(D0)g
= Nat(KC0;F) �= MorC(C 0; lim �(F)):

Corollary 8.10.13. Let F : C �! C 0 be left adjoint to G : C0 �! C. Then F
preserves colimits and G preserves limits.

Proof. For a diagram H : D �! C we have

MorC(-; lim �(GH))
�= lim �MorC(-;GH) �= lim �MorC0(F -;H) �=

MorC0(F -; lim �(H))
�= MorC(-;G(lim �(H)));

hence lim �(GH)
�= G(lim �(H)) as representing ob jects. The proof for the left adjoint

functor is analogous.


