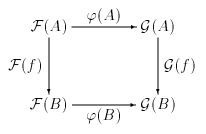
CHAPTER 8

Toolbox

3. Natural Transformations

Definition 8.3.1. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{C} \to \mathcal{D}$ be two functors. A *natural transformation* or a *functorial morphism* $\varphi : \mathcal{F} \to \mathcal{G}$ is a family of morphisms $\{\varphi(A) : \mathcal{F}(A) \to \mathcal{G}(A) | A \in \mathcal{C}\}$ such that the diagram



commutes for all $f : A \to B$ in \mathcal{C} , i.e. $\mathcal{G}(f)\varphi(A) = \varphi(B)\mathcal{F}(f)$.

Lemma 8.3.2. Given covariant functors $\mathcal{F} = \mathrm{Id}_{\mathbf{Set}} : \mathbf{Set} \to \mathbf{Set}$ and $\mathcal{G} = \mathrm{Mor}_{\mathbf{Set}}(\mathrm{Mor}_{\mathbf{Set}}(-, A), A) : \mathbf{Set} \to \mathbf{Set}$ for a set A. Then $\varphi : \mathcal{F} \to \mathcal{G}$ with

$$\varphi(B): B \ni b \mapsto (\operatorname{Mor}_{\operatorname{\mathbf{Set}}}(B, A) \ni f \mapsto f(b) \in A) \in \mathcal{G}(B)$$

is a natural transformation.

PROOF. Given $g: B \to C$. Then the following diagram commutes

since

$$\begin{aligned} \varphi(C)\mathcal{F}(g)(b)(f) &= \varphi(C)g(b)(f) = fg(b) = \varphi(B)(b)(fg) \\ &= [\varphi(B)(b)\mathrm{Mor}_{\mathbf{Set}}(g,A)](f) = [\mathrm{Mor}_{\mathbf{Set}}(\mathrm{Mor}_{\mathbf{Set}}(g,A),A)\varphi(A)(b)](f). \end{aligned}$$

Lemma 8.3.3. Let $f : A \to B$ be a morphism in \mathcal{C} . Then $\operatorname{Mor}_{\mathcal{C}}(f, -) : \operatorname{Mor}_{\mathcal{C}}(B, -) \to \operatorname{Mor}_{\mathcal{C}}(A, -)$ given by $\operatorname{Mor}_{\mathcal{C}}(f, C) : \operatorname{Mor}_{\mathcal{C}}(B, C) \ni g \mapsto gf \in \operatorname{Mor}_{\mathcal{C}}(A, C)$ is a natural transformation of covariant functors.

Let $f : A \to B$ be a morphism in C. Then $Mor_{\mathcal{C}}(-, f) : Mor_{\mathcal{C}}(-, A) \to Mor_{\mathcal{C}}(-, B)$ given by $Mor_{\mathcal{C}}(C, f) : Mor_{\mathcal{C}}(C, A) \ni g \mapsto fg \in Mor_{\mathcal{C}}(C, B)$ is a natural transformation of contravariant functors.

8. TOOLBOX

PROOF. Let $h: C \to C'$ be a morphism in \mathcal{C} . Then the diagrams

 $\begin{array}{c|c} \operatorname{Mor}_{\mathcal{C}}(B,C) & \xrightarrow{\operatorname{Mor}_{\mathcal{C}}(f,C)} \operatorname{Mor}_{\mathcal{C}}(A,C) \\ & & & & & \\ \operatorname{Mor}_{\mathcal{C}}(B,h) & & & & & \\ \operatorname{Mor}_{\mathcal{C}}(B,C') & & & & \\ \operatorname{Mor}_{\mathcal{C}}(f,C') & & & \operatorname{Mor}_{\mathcal{C}}(A,C') \end{array}$

and

commute.

Remark 8.3.4. The composition of two natural transformations is again a natural transformation. The identity $id_{\mathcal{F}}(A) := 1_{\mathcal{F}(A)}$ is also a natural transformation.

Definition 8.3.5. A natural transformation $\varphi : \mathcal{F} \to \mathcal{G}$ is called a *natural iso*morphism if there exists a natural transformation $\psi : \mathcal{G} \to \mathcal{F}$ such that $\varphi \circ \psi = \mathrm{id}_{\mathcal{G}}$ and $\psi \circ \varphi = \mathrm{id}_{\mathcal{F}}$. The natural transformation ψ is uniquely determined by φ . We write $\varphi^{-1} := \psi$.

A functor \mathcal{F} is said to be *isomorphic* to a functor \mathcal{G} if there exists a natural isomorphism $\varphi : \mathcal{F} \to \mathcal{G}$.

Problem 8.3.1. 1. Let $\mathcal{F}, \mathcal{G} : \mathcal{C} \to \mathcal{D}$ be functors. Show that a natural transformation $\varphi : \mathcal{F} \to \mathcal{G}$ is a natural isomorphism if and only if $\varphi(A)$ is an isomorphism for all objects $A \in \mathcal{C}$.

2. Let $(A \times B, p_A, p_B)$ be the product of A and B in C. Then there is a natural isomorphism

$$Mor(-, A \times B) \cong Mor_{\mathcal{C}}(-, A) \times Mor_{\mathcal{C}}(-, B).$$

3. Let \mathcal{C} be a category with finite products. For each object A in \mathcal{C} show that there exists a morphism $\Delta_A : A \to A \times A$ satisfying $p_1 \Delta_A = 1_A = p_2 \Delta_A$. Show that this defines a natural transformation. What are the functors?

4. Let \mathcal{C} be a category with finite products. Show that there is a bifunctor $-\times -: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ such that $(-\times -)(A, B)$ is the object of a product of A and B. We denote elements in the image of this functor by $A \times B := (-\times -)(A, B)$ and similarly $f \times g$.

5. With the notation of the preceding problem show that there is a natural transformation $\alpha(A, B, C) : (A \times B) \times C \cong A \times (B \times C)$. Show that the diagram

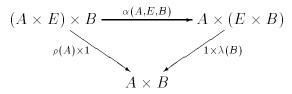
8

(coherence or constraints)

$$\begin{array}{cccc} ((A \times B) \times C) \times D & \xrightarrow{\alpha(A,B,C) \times 1} & (A \times (B \times C)) \times D & \xrightarrow{\alpha(A,B \times C,D)} & A \times ((B \times C) \times D) \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$$

commutes.

6. With the notation of the preceding problem show that there are a natural transformations $\lambda(A) : E \times A \to A$ and $\rho(A) : A \times E \to A$ such that the diagram (coherence or constraints)



Definition 8.3.6. Let \mathcal{C} and \mathcal{D} be categories. A covariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is called an *equivalence of categories* if there exists a covariant functor $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\varphi : \mathcal{GF} \cong \mathrm{Id}_{\mathcal{C}}$ and $\psi : \mathcal{FG} \cong \mathrm{Id}_{\mathcal{D}}$.

A contravariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is called a *duality of categories* if there exists a contravariant functor $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\varphi : \mathcal{GF} \cong \mathrm{Id}_{\mathcal{C}}$ and $\psi : \mathcal{FG} \cong \mathrm{Id}_{\mathcal{D}}$.

A category \mathcal{C} is said to be *equivalent* to a category \mathcal{D} if there exists an equivalence $\mathcal{F}: \mathcal{C} \to \mathcal{D}$. A category \mathcal{C} is said to be *dual* to a category \mathcal{D} if there exists a duality $\mathcal{F}: \mathcal{C} \to \mathcal{D}$.

Problem 8.3.2. 1. Show that the dual category \mathcal{C}^{op} is dual to the category \mathcal{C} .

2. Let \mathcal{D} be a category dual to the category \mathcal{C} . Show that \mathcal{D} is equivalent to the dual category \mathcal{C}^{op} .

3. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be an equivalence with respect to $\mathcal{G} : \mathcal{D} \to \mathcal{C}, \varphi : \mathcal{GF} \cong \mathrm{Id}_{\mathcal{C}},$ and $\psi : \mathcal{FG} \cong \mathrm{Id}_{\mathcal{D}}$. Show that $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is an equivalence. Show that \mathcal{G} is uniquely determined by \mathcal{F} up to a natural isomorphism.