CHAPTER 8

Toolbox

1. Categories

Definition 8.1.1. Let C consist of

- 1. a class $Ob \mathcal{C}$ whose elements $A, B, C, \ldots \in Ob \mathcal{C}$ are called *objects*,
- 2. a family $\{\operatorname{Mor}_{\mathcal{C}}(A, B) | A, B \in \operatorname{Ob} \mathcal{C}\}$ of mutually disjoint sets whose elements $f, g, \ldots \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ are called *morphisms*, and
- 3. a family $\{\operatorname{Mor}_{\mathcal{C}}(A, B) \times \operatorname{Mor}_{\mathcal{C}}(B, C) \ni (f, g) \mapsto gf \in \operatorname{Mor}_{\mathcal{C}}(A, C) | A, B, C \in \operatorname{Ob} \mathcal{C}\}$ of maps called *compositions*.

 \mathcal{C} is called a *category* if the following axioms hold for \mathcal{C}

1. Associative Law:

 $\forall A, B, C, D \in \operatorname{Ob} \mathcal{C}, f \in \operatorname{Mor}_{\mathcal{C}}(A, B), g \in \operatorname{Mor}_{\mathcal{C}}(B, C), h \in \operatorname{Mor}_{\mathcal{C}}(C, D)$:

$$h(gf) = (hg)f;$$

2. Identity Law: $\forall A \in \operatorname{Ob} \mathcal{C} \exists 1_A \in \operatorname{Mor}_{\mathcal{C}}(A, A) \forall B, C \in \operatorname{Ob} \mathcal{C}, \forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B), \forall g \in \operatorname{Mor}_{\mathcal{C}}(C, A)$:

$$1_A g = g$$
 and $f 1_A = f$.

Examples 8.1.2. 1. The category of sets Set.

2. The categories of *R*-modules *R*-Mod, *k*-vector spaces *k*-Vec or *k*-Mod, groups **Gr**, abelian groups **Ab**, monoids **Mon**, commutative monoids **cMon**, rings **Ri**, fields **Fld**, topological spaces **Top**.

Since modules are highly important for all what follows, we recall the definition and some basic properties.

Definition and Remark 8.1.3. Let R be a ring (always associative with unit). A *left* R-module $_RM$ is an (additively written) abelian group M together with an operation $R \times M \ni (r, m) \mapsto rm \in M$ such that

1. (rs)m = r(sm), 2. (r+s)m = rm + sm, 3. r(m+m') = rm + rm', 4. 1m = m

for all $r, s \in R, m, m' \in M$.

Each abelian group is a \mathbb{Z} -module in a unique way.

8. TOOLBOX

A homomorphism of left R-modules $f : {}_{R}M \to {}_{R}N$ is a group homomorphism such that f(rm) = rf(m).

Analogously we define right R-modules M_R and their homomorphisms.

We denote by $\operatorname{Hom}_R(.M, .N)$ the set of homomorphisms of left *R*-modules $_RM$ and $_RN$. Similarly $\operatorname{Hom}_R(M., N.)$ denotes the set of homomorphisms of right *R*-modules M_R and N_R . Both sets are abelian groups by (f+g)(m) := f(m) + g(m).

For arbitrary categories we adopt many of the customary notations.

Notation 8.1.4. $f \in Mor_{\mathcal{C}}(A, B)$ will be written as $f : A \to B$ or $A \xrightarrow{f} B$. A is called the *domain*, B the range of f.

The composition of two morphisms $f : A \to B$ and $g : B \to C$ is written as $gf : A \to C$ or as $g \circ f : A \to C$.

Definition and Remark 8.1.5. A morphism $f : A \to B$ is called an *isomorphism* if there exists a morphism $g : B \to A$ in \mathcal{C} such that $fg = 1_B$ and $gf = 1_A$. The morphism g is uniquely determined by f since g' = g'fg = g. We write $f^{-1} := g$.

An object A is said to be *isomorphic* to an object B if there exists an isomorphism $f: A \to B$. If f is an isomorphism the so is f^{-1} . If $f: A \to B$ and $g: B \to C$ are isomorphisms in \mathcal{C} then so is $gf: A \to C$. We have: $(f^{-1})^{-1} = f$ and $(gf)^{-1} = f^{-1}g^{-1}$. The relation of being isomorphic between objects is an equivalence relation.

Example 8.1.6. In the categories Set, *R*-Mod, *k*-Vec, Gr, Ab, Mon, cMon, Ri, Fld the isomorphisms are exactly those morphisms which are bijective as set maps.

In **Top** the set $M = \{a, b\}$ with $\mathfrak{T}_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and with $\mathfrak{T}_2 = \{\emptyset, M\}$ defines two different topological spaces. The map $f = \mathrm{id} : (M, \mathfrak{T}_1) \to (M, \mathfrak{T}_2)$ is bijective and continuous. The inverse map, however, is not continuous, hence f is no isomorphism (homeomorphism).

Many well known concepts can be defined for arbitrary categories. We are going to apply some of them. Here are two examples.

Definition 8.1.7. 1. A morphism $f : A \to B$ is called a *monomorphism* if $\forall C \in \text{Ob}\,\mathcal{C}, \ \forall g, h \in \text{Mor}_{\mathcal{C}}(C, A)$:

 $fg = fh \Longrightarrow g = h$ (f is left cancellable).

2. A morphism $f : A \to B$ is called an *epimorphism* if $\forall C \in Ob \mathcal{C}, \forall g, h \in Mor_{\mathcal{C}}(B, C)$:

 $gf = hf \implies g = h$ (f is right cancellable).

Definition 8.1.8. Given $A, B \in C$. An object $A \times B$ in C together with morphisms $p_A : A \times B \to A$ and $p_B : A \times B \to B$ is called a (categorical) product of A and B if for every object $T \in C$ and every pair of morphisms $f : T \to A$ and

 $\mathbf{2}$

 $g:T \to B$ there exists a unique morphism $(f,g):T \to A \times B$ such that the diagram

commutes.

An object $E \in \mathcal{C}$ is called a *final object* if for every object $T \in \mathcal{C}$ there exists a unique morphism $e: T \to E$ (i.e. $Mor_{\mathcal{C}}(T, E)$ consists of exactly one element).

A category C which has a product for any two objects A and B and which has a final object is called a category with finite products.

Remark 8.1.9. If the product $(A \times B, p_A, p_B)$ of two objects A and B in C exists then it is unique up to isomorphism.

If the final object E in C exists then it is unique up to isomorphism.

Problem 8.1.1. Let C be a category with finite products. Give a definition of a product of a family A_1, \ldots, A_n $(n \ge 0)$. Show that products of such families exist in C.

Definition and Remark 8.1.10. Let \mathcal{C} be a category. Then $\mathcal{C}^{\circ p}$ with the following data $\operatorname{Ob} \mathcal{C}^{\circ p} := \operatorname{Ob} \mathcal{C}$, $\operatorname{Mor}_{\mathcal{C}^{\circ p}}(A, B) := \operatorname{Mor}_{\mathcal{C}}(B, A)$, and $f \circ_{op} g := g \circ f$ defines a new category, the *dual category* to \mathcal{C} .

Remark 8.1.11. Any notion expressed in categorical terms (with objects, morphisms, and their composition) has a *dual notion*, i.e. the given notion in the dual category.

Monomorphisms f in the dual category \mathcal{C}^{op} are epimorphisms in the original category \mathcal{C} and conversely. A final objects I in the dual category \mathcal{C}^{op} is an *initial object* in the original category \mathcal{C} .

Definition 8.1.12. The *coproduct* of two objects in the category C is defined to be a product of the objects in the dual category C^{op} .

Remark 8.1.13. Equivalent to the preceding definition is the following definition.

Given $A, B \in \mathcal{C}$. An object $A \amalg B$ in \mathcal{C} together with morphisms $j_A : A \to A \amalg B$ and $j_B : B \to A \amalg B \to B$ is a (categorical) coproduct of A and B if for every object $T \in \mathcal{C}$ and every pair of morphisms $f : A \to T$ and $g : B \to T$ there exists a unique morphism $[f, g] : A \amalg B \to T$ such that the diagram

8. TOOLBOX

commutes.

The category C is said to have *finite coproducts* if C^{op} is a category with finite products. In particular coproducts are unique up to isomorphism.