CHAPTER 3

Hopf Algebras, Algebraic, Formal, and Quantum Groups

5. The coalgebra coend

Proposition 3.5.1. Let C be a monoidal category and $\omega : D \to C$ be a diagram in C. Assume that there is a universal object coend(ω) and natural transformation $\delta : \omega \to \omega \otimes \text{coend}(\omega)$.

Then there is exactly one coalgebra structure on $coend(\omega)$ such that the diagrams

$$\omega \xrightarrow{\delta} \omega \otimes \operatorname{coend}(\omega)$$

$$\downarrow 1 \otimes \Delta$$

$$\omega \otimes \operatorname{coend}(\omega) \xrightarrow{\delta \otimes 1} \omega \otimes \operatorname{coend}(\omega) \otimes \operatorname{coend}(\omega)$$

$$\omega \xrightarrow{\delta} \omega \otimes \operatorname{coend}(\omega)$$

$$\downarrow 1 \otimes \epsilon$$

$$\omega \otimes I$$

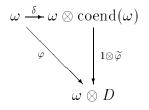
and

commute.

PROOF. Because of the universal property of $\operatorname{coend}(\omega)$ there are structure morphisms $\Delta : \operatorname{coend}(\omega) \to \operatorname{coend}(\omega) \otimes \operatorname{coend}(\omega)$ and $\epsilon : \operatorname{coend}(\omega) \to I$. This implies the coalgebra property similar to the proof of Corollary 3.3.8.

Observe that by this construction all objects and all morphisms of the diagram $\omega : \mathcal{D} \to \mathcal{C}_0 \subseteq \mathcal{C}$ are comodules or morphisms of comodules over the coalgebra coend(ω). In fact $C := \text{coend}(\omega)$ is the universal coalgebra over which the given diagram becomes a diagram of comodules.

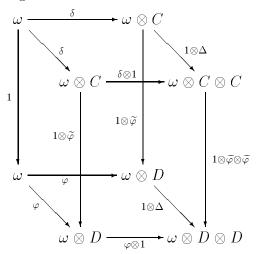
Corollary 3.5.2. Let (\mathcal{D}, ω) be a diagram \mathcal{C} with objects in \mathcal{C}_0 . Then all objects of the diagram are comodules over the coalgebra $C := \operatorname{coend}(\omega)$ and all morphisms are morphisms of comodules. If D is another coalgebra and all objects of the diagram are D-comodules by $\varphi(X) : \omega(X) \to \omega(X) \otimes D$ and all morphisms of the diagram are morphisms of D-comodules then there exists a unique morphism of coalgebras $\widetilde{\varphi} : \operatorname{coend}(\omega) \to D$ such that the diagram



commutes.

PROOF. The morphisms $\varphi(X) : \omega(X) \to \omega(X) \otimes D$ define a natural transformation since all morphisms of the diagram are morphisms of comodules. So the existence

and the uniqueness of a morphism $\tilde{\varphi}$: coend(ω) $\rightarrow D$ is clear. The only thing to show is that this is a morphism of coalgebras. This follows from the universal property of $C = \text{coend}(\omega)$ and the diagram



where the right side of the cube commutes by the universal property. Similarly we get that $\tilde{\varphi}$ preserves the counit since the following diagram commutes

