CHAPTER 3

Hopf Algebras, Algebraic, Formal, and Quantum Groups

5. The coalgebra coend

Proposition 3.5.1. Let \mathcal{C} be a monoidal category and $\omega: \mathcal{D} \rightarrow \mathcal{C}$ be a diagram in \mathcal{C}. Assume that there is a universal object coend (ω) and natural transformation $\delta: \omega \rightarrow \omega \otimes \operatorname{coend}(\omega)$.

Then there is exactly one coalgebra structure on $\operatorname{coend}(\omega)$ such that the diagrams

and

commute.
Proof. Because of the universal property of $\operatorname{coend}(\omega)$ there are structure morphisms $\Delta: \operatorname{coend}(\omega) \rightarrow \operatorname{coend}(\omega) \otimes \operatorname{coend}(\omega)$ and $\epsilon: \operatorname{coend}(\omega) \rightarrow I$. This implies the coalgebra property similar to the proof of Corollary 3.3.8.

Observe that by this construction all objects and all morphisms of the diagram $\omega: \mathcal{D} \rightarrow \mathcal{C}_{0} \subseteq \mathcal{C}$ are comodules or morphisms of comodules over the coalgebra coend (ω). In fact $C:=\operatorname{coend}(\omega)$ is the universal coalgebra over which the given diagram becomes a diagram of comodules.

Corollary 3.5.2. Let (\mathcal{D}, ω) be a diagram \mathcal{C} with objects in \mathcal{C}_{0}. Then all objects of the diagram are comodules over the coalgebra $C:=\operatorname{coend}(\omega)$ and all morphisms are morphisms of comodules. If D is another coalgebra and all objects of the diagram are D-comodules by $\varphi(X): \omega(X) \rightarrow \omega(X) \otimes D$ and all morphisms of the diagram are morphisms of D-comodules then there exists a unique morphism of coalgebras $\widetilde{\varphi}: \operatorname{coend}(\omega) \rightarrow D$ such that the diagram

commutes.
Proof. The morphisms $\varphi(X): \omega(X) \rightarrow \omega(X) \otimes D$ define a natural transformation since all morphisms of the diagram are morphisms of comodules. So the existence
and the uniqueness of a morphism $\widetilde{\varphi}: \operatorname{coend}(\omega) \rightarrow D$ is clear. The only thing to show is that this is a morphism of coalgebras. This follows from the universal property of $C=\operatorname{coend}(\omega)$ and the diagram

where the right side of the cube commutes by the universal property. Similarly we get that $\tilde{\varphi}$ preserves the counit since the following diagram commutes

$\omega \otimes \mathbb{K}$

