Hopf Algebras, Algebraic, Formal, and Quantum Groups

2. Monoids and Groups in a Category

Before we use Hopf algebras to describe quantum groups and some of the better known groups, such as affine algebraic groups and formal groups, we introduce the concept of a general group (and of a monoid) in an arbitrary category. Usually this concept is defined with respect to a categorical product in the given category. But in some categories there are in general no products. Still, one can define the concept of a group in a very simple fashion. We will start with that definition and then show that it coincides with the usual notion of a group in a category in case that category has finite products.

Definition 2.2.1. Let \mathcal{C} be an arbitrary category. Let $G \in \mathcal{C}$ be an object. We use the notation $G(X):=\operatorname{Mor}_{\mathcal{C}}(X, G)$ for all $X \in \mathcal{C}, G(f):=\operatorname{Mor}_{\mathcal{C}}(f, G)$ for all morphisms $f: X \rightarrow Y$ in \mathcal{C}, and $f(X):=\operatorname{Mor}_{\mathcal{C}}(X, f)$ for all morphisms $f: G \rightarrow G^{\prime}$.
G together with a natural transformation $m: G(-) \times G(-) \rightarrow G(-)$ is called a group (monoid) in the category \mathcal{C}, if the sets $G(X)$ together with the multiplication $m(X): G(X) \times G(X) \rightarrow G(X)$ are groups (monoids) for all $X \in \mathcal{C}$.

Let (G, m) and $\left(G^{\prime}, m^{\prime}\right)$ be groups in \mathcal{C}. A morphism $f: G \rightarrow G^{\prime}$ in \mathcal{C} is called a homomorphism of groups in \mathcal{C}, if the diagrams

commute for all $X \in \mathcal{C}$.
Let (G, m) and $\left(G^{\prime}, m^{\prime}\right)$ be monoids in \mathcal{C}. A morphism $f: G \rightarrow G^{\prime}$ in \mathcal{C} is called a homomorphism of monoids in \mathcal{C}, if the diagrams

and

commute for all $X \in \mathcal{C}$.
Problem 2.2.1. 1) If a set Z together with a multiplication $m: Z \times Z \rightarrow Z$ is a monoid, then the unit element $e \in Z$ is uniquely determined. If it is a group then also
the inverse $i: Z \rightarrow Z$ is uniquely determined. Unit element and inverses of groups are preserved by maps that are compatible with the multiplication.
2) Find an example of monoids Y and Z and a map $f: Y \rightarrow Z$ with $f\left(y_{1} y_{2}\right)=$ $f\left(y_{1}\right) f\left(y_{2}\right)$ for all $y_{1}, y_{2} \in Y$, but $f\left(e_{Y}\right) \neq e_{Z}$.
3) If (G, m) is a group in \mathcal{C} and $i_{X}: G(X) \rightarrow G(X)$ is the inverse, then i is a natural transformation. The Yoneda Lemma provides a morphism $S: G \rightarrow G$ such that $i_{X}=\operatorname{Mor}_{\mathcal{C}}(X, S)=S(X)$ for all $X \in \mathcal{C}$.

Proposition 2.2.2. Let \mathcal{C} be a category with finite (categorical) products. An object G in \mathcal{C} carries the structure $m: G(-) \times G(-) \longrightarrow G(-)$ of a group in \mathcal{C} if and only if there are morphisms $m: G \times G \rightarrow G, u: E \rightarrow G$, and $S: G \rightarrow G$ such that the diagrams

commute where Δ is the morphism defined in A.D. The multiplications are related by $m_{X}=\operatorname{Mor}_{\mathcal{C}}(X, m)=m(X)$.

An analogous statement holds for monoids.
Proof. The Yoneda Lemma defines a bijection between the set of morphisms $f: X \rightarrow Y$ and the set of natural transformations $f(-): X(-) \rightarrow Y(-)$ by $f(Z)=$ $\operatorname{Mor}_{\mathcal{C}}(Z, f)$. In particular we have $m_{X}=\operatorname{Mor}_{\mathcal{C}}(X, m)=m(X)$. The diagram

commutes if and only if $\operatorname{Mor}_{\mathcal{C}}(-, m(m \times 1))=\operatorname{Mor}_{\mathcal{C}}(-, m)\left(\operatorname{Mor}_{\mathcal{C}}(-, m) \times 1\right)=m_{-}\left(m_{-} \times\right.$ $1)=m_{-}\left(1 \times m_{-}\right)=\operatorname{Mor}_{\mathcal{C}}(-, m)\left(1 \times \operatorname{Mor}_{\mathcal{C}}(-, m)\right)=\operatorname{Mor}_{\mathcal{C}}(-, m(1 \times m))$ if and only if
$m(m \times 1)=m(1 \times m)$ if and only if the diagram

commutes. In a similar way one shows the equivalence of the other diagram(s).
Problem 2.2.2. Let \mathcal{C} be a category with finite products. Show that a morphism $f: G \rightarrow G^{\prime}$ in \mathcal{C} is a homomorphism of groups if and only if

commutes.
Definition 2.2.3. A cogroup (comonoid) G in \mathcal{C} is a group (monoid) in $\mathcal{C}^{o p}$, i.e. an object $G \in \mathrm{Ob} \mathcal{C}=\mathrm{Ob} \mathcal{C}^{o p}$ together with a natural transformation $m(X): G(X) \times$ $G(X) \rightarrow G(X)$ where $G(X)=\operatorname{Mor}_{\mathcal{C} \text { op }}(X, G)=\operatorname{Mor}_{\mathcal{C}}(G, X)$, such that $(G(X), m(X))$ is a group (monoid) for each $X \in \mathcal{C}$.

Remark 2.2.4. Let \mathcal{C} be a category with finite (categorical) coproducts. An object G in \mathcal{C} carries the structure $m: G(-) \times G(-) \longrightarrow G(-)$ of a cogroup in \mathcal{C} if and only if there are morphisms $\Delta: G \rightarrow G \amalg G, \varepsilon: G \rightarrow I$, and $S: G \rightarrow G$ such that the diagrams

commute where ∇ is dual to the morphism Δ defined in A.2. The multiplications are related by $\Delta_{X}=\operatorname{Mor}_{\mathcal{C}}(\Delta, X)=\Delta(X)$.

Let \mathcal{C} be a category with finite coproducts and let G and G^{\prime} be cogroups in \mathcal{C}. Then a homomorphism of groups $f: G^{\prime} \rightarrow G$ is a morphism $f: G \rightarrow G^{\prime}$ in \mathcal{C} such
that the diagram

commutes. An analogous result holds for comonoids.
Remark 2.2.5. Obviously similar observations and statements can be made for other algebraic structures in a category \mathcal{C}. So one can introduce vector spaces and covector spaces, monoids and comonoids, rings and corings in a category \mathcal{C}. The structures can be described by morphisms in \mathcal{C} if \mathcal{C} is a category with finite (co-) products.

Problem 2.2.3. Determine the structure of a covector space on a vector space V from the fact that $\operatorname{Hom}(V, W)$ is a vector space for all vector spaces W.

Proposition 2.2.6. Let $G \in \mathcal{C}$ be a group with multiplication $a * b$, unit e, and inverse a^{-1} in $G(X)$. Then the morphisms $m: G \times G \rightarrow G, u: E \rightarrow G$, and $S: G \rightarrow G$ are given by

$$
m=p_{1} * p_{2}, \quad u=e_{E}, \quad S=\mathrm{id}_{G}^{-1}
$$

Proof. By the Yoneda Lemma A.9.1 these morphisms can be constructed from the natural transformation as follows. Under $\operatorname{Mor}_{\mathcal{C}}(G \times G, G \times G)=G \times G(G \times G) \cong$ $G(G \times G) \times G(G \times G) \xrightarrow{*} G(G \times G)=\operatorname{Mor}_{\mathcal{C}}(G \times G, G)$ the identity id ${ }_{G \times G}=\left(p_{1}, p_{2}\right)$ is mapped to $m=p_{1} * p_{2}$. Under $\operatorname{Mor}_{\mathcal{C}}(E, E)=E(E) \rightarrow G(E)=\operatorname{Mor}_{\mathcal{C}}(E, G)$ the identity of E is mapped to the neutral element $u=e_{E}$. Under $\operatorname{Mor}_{\mathcal{C}}(G, G)=$ $G(G) \rightarrow G(G)=\operatorname{Mor}_{\mathcal{C}}(G, G)$ the identity is mapped to its $*$-inverse $S=\mathrm{id}_{G}^{-1}$.

Corollary 2.2.7. Let $G \in \mathcal{C}$ be a cogroup with multiplication $a * b$, unit e, and inverse a^{-1} in $G(X)$. Then the morphisms $\Delta: G \rightarrow G \amalg G, \varepsilon: G \rightarrow I$, and $S: G \rightarrow G$ are given by

$$
\Delta=\iota_{1} * \iota_{2}, \quad \varepsilon=e_{I}, \quad S=\mathrm{id}_{G}^{-1} .
$$

