CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups

2. HOPF ALGEBRAS, ALGEBRAIC, FORMAL, AND QUANTUM GROUPS

2. Monoids and Groups in a Category

Before we use Hopf algebras to describe quantum groups and some of the better known groups, such as affine algebraic groups and formal groups, we introduce the concept of a general group (and of a monoid) in an arbitrary category. Usually this concept is defined with respect to a categorical product in the given category. But in some categories there are in general no products. Still, one can define the concept of a group in a very simple fashion. We will start with that definition and then show that it coincides with the usual notion of a group in a category in case that category has finite products.

Definition 2.2.1. Let \mathcal{C} be an arbitrary category. Let $G \in \mathcal{C}$ be an object. We use the notation $G(X) := \operatorname{Mor}_{\mathcal{C}}(X, G)$ for all $X \in \mathcal{C}$, $G(f) := \operatorname{Mor}_{\mathcal{C}}(f, G)$ for all morphisms $f : X \to Y$ in \mathcal{C} , and $f(X) := \operatorname{Mor}_{\mathcal{C}}(X, f)$ for all morphisms $f : G \to G'$.

G together with a natural transformation $m : G(-) \times G(-) \to G(-)$ is called a group (monoid) in the category \mathcal{C} , if the sets G(X) together with the multiplication $m(X): G(X) \times G(X) \to G(X)$ are groups (monoids) for all $X \in \mathcal{C}$.

Let (G, m) and (G', m') be groups in \mathcal{C} . A morphism $f : G \to G'$ in \mathcal{C} is called a homomorphism of groups in \mathcal{C} , if the diagrams

$$\begin{array}{c|c} G(X) \times G(X) \xrightarrow{m(X)} G(X) \\ f(X) \times f(X) & & & \downarrow f(X) \\ G'(X) \times G'(X) \xrightarrow{m'(X)} G'(X) \end{array}$$

commute for all $X \in \mathcal{C}$.

Let (G, m) and (G', m') be monoids in \mathcal{C} . A morphism $f : G \to G'$ in \mathcal{C} is called a homomorphism of monoids in \mathcal{C} , if the diagrams

$$\begin{array}{c|c} G(X) \times G(X) \xrightarrow{m(X)} G(X) \\ f(X) \times f(X) & & & \\ G'(X) \times G'(X) \xrightarrow{m'(X)} G'(X) \end{array}$$

and

commute for all $X \in \mathcal{C}$.

Problem 2.2.1. 1) If a set Z together with a multiplication $m : Z \times Z \to Z$ is a monoid, then the unit element $e \in Z$ is uniquely determined. If it is a group then also

the inverse $i: Z \to Z$ is uniquely determined. Unit element and inverses of groups are preserved by maps that are compatible with the multiplication.

2) Find an example of monoids Y and Z and a map $f: Y \to Z$ with $f(y_1y_2) = f(y_1)f(y_2)$ for all $y_1, y_2 \in Y$, but $f(e_Y) \neq e_Z$.

3) If (G, m) is a group in \mathcal{C} and $i_X : G(X) \to G(X)$ is the inverse, then *i* is a natural transformation. The Yoneda Lemma provides a morphism $S : G \to G$ such that $i_X = \operatorname{Mor}_{\mathcal{C}}(X, S) = S(X)$ for all $X \in \mathcal{C}$.

Proposition 2.2.2. Let C be a category with finite (categorical) products. An object G in C carries the structure $m : G(-) \times G(-) \to G(-)$ of a group in C if and only if there are morphisms $m : G \times G \to G$, $u : E \to G$, and $S : G \to G$ such that the diagrams

commute where Δ is the morphism defined in A.2. The multiplications are related by $m_X = \operatorname{Mor}_{\mathcal{C}}(X, m) = m(X).$

An analogous statement holds for monoids.

PROOF. The Yoneda Lemma defines a bijection between the set of morphisms $f: X \to Y$ and the set of natural transformations $f(-): X(-) \to Y(-)$ by $f(Z) = \text{Mor}_{\mathcal{C}}(Z, f)$. In particular we have $m_X = \text{Mor}_{\mathcal{C}}(X, m) = m(X)$. The diagram

commutes if and only if $\operatorname{Mor}_{\mathcal{C}}(-, m(m \times 1)) = \operatorname{Mor}_{\mathcal{C}}(-, m)(\operatorname{Mor}_{\mathcal{C}}(-, m) \times 1) = m_{-}(m_{-} \times 1) = m_{-}(1 \times m_{-}) = \operatorname{Mor}_{\mathcal{C}}(-, m)(1 \times \operatorname{Mor}_{\mathcal{C}}(-, m)) = \operatorname{Mor}_{\mathcal{C}}(-, m(1 \times m))$ if and only if

 $m(m \times 1) = m(1 \times m)$ if and only if the diagram

commutes. In a similar way one shows the equivalence of the other diagram(s). \Box

Problem 2.2.2. Let \mathcal{C} be a category with finite products. Show that a morphism $f: G \to G'$ in \mathcal{C} is a homomorphism of groups if and only if

commutes.

Definition 2.2.3. A cogroup (comonoid) G in \mathcal{C} is a group (monoid) in \mathcal{C}^{op} , i.e. an object $G \in \operatorname{Ob} \mathcal{C} = \operatorname{Ob} \mathcal{C}^{op}$ together with a natural transformation $m(X) : G(X) \times G(X) \to G(X)$ where $G(X) = \operatorname{Mor}_{\mathcal{C}^{op}}(X, G) = \operatorname{Mor}_{\mathcal{C}}(G, X)$, such that (G(X), m(X))is a group (monoid) for each $X \in \mathcal{C}$.

Remark 2.2.4. Let \mathcal{C} be a category with finite (categorical) coproducts. An object G in \mathcal{C} carries the structure $m: G(-) \times G(-) \to G(-)$ of a cogroup in \mathcal{C} if and only if there are morphisms $\Delta: G \to G \amalg G$, $\varepsilon: G \to I$, and $S: G \to G$ such that the diagrams

commute where ∇ is dual to the morphism Δ defined in A.2. The multiplications are related by $\Delta_X = \operatorname{Mor}_{\mathcal{C}}(\Delta, X) = \Delta(X)$.

Let \mathcal{C} be a category with finite coproducts and let G and G' be cogroups in \mathcal{C} . Then a homomorphism of groups $f: G' \to G$ is a morphism $f: G \to G'$ in \mathcal{C} such

42

that the diagram

$$\begin{array}{c} G & \xrightarrow{\Delta} & G \times G \\ f & & & & \\ f & & & & \\ G' & \xrightarrow{\Delta'} & G' \times G' \end{array}$$

commutes. An analogous result holds for comonoids.

Remark 2.2.5. Obviously similar observations and statements can be made for other algebraic structures in a category C. So one can introduce vector spaces and covector spaces, monoids and comonoids, rings and corings in a category C. The structures can be described by morphisms in C if C is a category with finite (co-) products.

Problem 2.2.3. Determine the structure of a covector space on a vector space V from the fact that Hom(V, W) is a vector space for all vector spaces W.

Proposition 2.2.6. Let $G \in C$ be a group with multiplication a * b, unit e, and inverse a^{-1} in G(X). Then the morphisms $m : G \times G \to G$, $u : E \to G$, and $S : G \to G$ are given by

$$m = p_1 * p_2, \qquad u = e_E, \qquad S = \mathrm{id}_G^{-1}.$$

PROOF. By the Yoneda Lemma A.9.1 these morphisms can be constructed from the natural transformation as follows. Under $\operatorname{Mor}_{\mathcal{C}}(G \times G, G \times G) = G \times G(G \times G) \cong$ $G(G \times G) \times G(G \times G) \xrightarrow{*} G(G \times G) = \operatorname{Mor}_{\mathcal{C}}(G \times G, G)$ the identity $\operatorname{id}_{G \times G} = (p_1, p_2)$ is mapped to $m = p_1 * p_2$. Under $\operatorname{Mor}_{\mathcal{C}}(E, E) = E(E) \to G(E) = \operatorname{Mor}_{\mathcal{C}}(E, G)$ the identity of E is mapped to the neutral element $u = e_E$. Under $\operatorname{Mor}_{\mathcal{C}}(G, G) =$ $G(G) \to G(G) = \operatorname{Mor}_{\mathcal{C}}(G, G)$ the identity is mapped to its *-inverse $S = \operatorname{id}_{G}^{-1}$. \Box

Corollary 2.2.7. Let $G \in \mathcal{C}$ be a cogroup with multiplication a * b, unit e, and inverse a^{-1} in G(X). Then the morphisms $\Delta : G \to G \amalg G$, $\varepsilon : G \to I$, and $S : G \to G$ are given by

$$\Delta = \iota_1 * \iota_2, \qquad \varepsilon = e_I, \qquad S = \mathrm{id}_G^{-1}.$$