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Introduction

0.0.1. Remark (History.). – 1945 Categories first appear “officially” in S. Eilenberg and S.
Mac Lane’s paper “General theory of natural equivalences”, (Trans. AMS 58, 1945, 231-294).
– 1950’s The main applications were originally in the fields of algebraic topology, particularly
homology theory, and abstract algebra.
– 1960’s Grothendieck et al. began using category theory with great success in algebraic
geometry.
– 1970’s Lawvere and others began applying categories to logic, revealing some deep and
surprising connections.
– 1980’s Applications began appearing in computer science, linguistics, cognitive science,
philosophy, . . .
– 1990’s Applications to theoretical physics – quantum groups, algebraic quantum field
theories, higher category theory.

0.0.2. Remark (Why do we study categories?). (1) Abundance: Categories abound
in mathematics and in related fields such as computer science. Categories are formed
e.g. by
(a) Vector spaces,
(b) Abelian groups,
(c) groups,
(d) sets,
(e) monoids,
(f) semigroups,
(g) topological spaces,
(h) Banach spaces,
(i) manifolds,
(j) ordered sets,
(k) graphs,
(l) (computer-)languages,

(m) automata.
(2) Insight into similar constructions:

(a) products,
(b) free objects,
(c) direct sums,
(d) kernel and cokernels,
(e) limits,
(f) associated groups and algebras, such as homology groups, Grothendieck rings,

fundamental groups, associative envelopes, compactifications, completions.
(3) Category theory proves that all information about a mathematical object can also

be drawn from the knowledge of all structure preserving maps into this object. The
knowledge of the maps is equivalent to the knowledge of the interior structure of an
object. “Functions are everywhere!”

(4) Category theory is a language that allows to express similar properties and phe-
nomena that occur in different mathematical areas. It helps to recognize certain
properties and notions to have a general description and to be “categorical”. E.g:
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(a) each finite dimensional vector space is isomorphic to its dual and hence also to
its double dual. The second correspondence is considered “natural” and the first
is not. Category theory can explain what the notion of “natural” really means.
This was in fact the starting point of category theory.

(b) Topological spaces can be defined in many different ways, e.g. via open sets, via
closed sets, via neighborhoods, via convergent filters, and via closure operations.
Why do these definitions describe “essentially the same” objects? Category
theory provides an answer via the notion of concrete isomorphism.

(c) Initial structures, final structures, and factorization structures occur in many
different situations. Category theory allows one to formulate and investigate
such concepts with an appropriate degree of generality.

(5) Category theory offers many convenient symbols that allow one to quickly perform
the necessary calculations:
(a) commutative diagrams,
(b) braid diagrams,
(c) computations with symbolic elements.

(6) Transportation of problems from one area of mathematics (via suitable functors) to
another area, where solutions are sometimes easier and then a transport back to the
original area (sometimes via adjoint functors). For example, algebraic topology can
be described as an investigation of topological problems (via suitable functors) by
algebraic methods, such as associated homotopy groups.

(7) Duality: The concept of category is well-balanced, which allows an economical and
useful duality.Thus is category theory the “two for the price of one” principle holds:
every concept is two concepts, and every result is two results.

(8) Category theory provides the means to distinguish between general problems (“cate-
gorical” problems that may occur in many different areas in similar form) and specific
problems (that a closely linked to the very special area and object one is studying).

0.0.3. Remark (Quotes). (1) (Steenrod) “Category theory is generalized abstract non-
sense.”

(2) (Hoare) “Category theory is quite the most general and abstract branch of pure
mathematics. The corollary of a high degree of generality and abstraction is that the
theory gives almost no assistance in solving the more specific problems within any of
the subdisciplines to which it applies. It is a tool for the generalist, of little benefit
for the practitioner.”

(3) (Barr-Wells) ”‘Categories originally arose in mathematics out of the need of a for-
malism to describe the passage from one type of mathematical structure to another.
A category in this way represents a kind of mathematics, and may be described as
category as mathematical workspace.

A category is also a mathematical structure. As such, it is a common generalization
of both ordered sets and monoids (the latter are a simple type of algebraic structure
that include transition systems as examples), and questions motivated by those top-
ics often have interesting answers for categories. This is category as mathematical
structure.

Finally, a category can be seen as a structure that formalizes a mathematician’s
description of a type of structure. This is the role of category as theory. Formal
descriptions in mathematical logic are traditionally given as formal languages with
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rules for forming terms, axioms and equations. Algebraists long ago invented a for-
malism based on tuples, the method of signatures and equations, to describe algebraic
structures. Category theory provides another approach: the category is a theory and
functors with that category as domain are models of the theory.”’

(4) (Stanford Encyclopedia of Philosophy) “Categories, functors, natural transforma-
tions, limits and colimits appeared almost out of nowhere in 1945 in Eilenberg & Mac
Lane’s paper entitled ”General Theory of Natural Equivalences”. We said ”almost”,
because when one looks at their 1942 paper ”Group Extensions and Homology”, one
discovers specific functors and natural transformations at work, limited to groups.
In fact, it was basically the need to clarify and abstract from their 1942 results that
Eilenberg & Mac Lane came up with the notions of category theory. The central
notion for them, as the title indicates, was the notion of natural transformation. In
order to give a general definition of the latter, they defined the notion of functor,
borrowing the terminology from Carnap, and in order to give a general definition
of functor, they defined the notion of category, borrowing this time from Kant and
Aristotle.”
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1. Foundations

1.1. Graphs.

1.1.1. Definition. A (directed) graph (digraph) is a monad

G := (V,E, π)

consisting of the set V of vertices , the set E of edges or arrows and the map to the endpoints
π : E −→ V × V. For each edge f ∈ E the vertices A and B with π(f) = (A,B) are called
source and target or domain and codomain of f . We write the edge f also as f : A −→ B.
Later on we will prefer the notation G0 for the set V of vertices and G1 for the set E of edges.
There may be one or more arrows – or none at all – with given nodes as source and target.
Moreover, the source and target of a given arrow need not be distinct. An arrow with the
same source and target node will be called an endoarrow or endomorphism of that node.
The set of arrows with source A and target B will be denoted by G(A,B) or MorG(A,B).
A graph G is called simple, if π is injektive. (In the literature one also requires that there
are no endoarrows.)

1.1.2. Definition. Let G = (V,E, π) and H = (V ′, E ′, π′) be directed graphs. A homomor-
phism F : G −→ H consists of two maps

FV : V −→ V ′,FE : E −→ E ′

(or

F0 : G0 −→ H0, F1 : G1 −→ H1)

with

∀f ∈ E[π(f) = (A,B) =⇒ π′FE(f) = (FV (A),FV (B))].

Thus homomorphisms send vertices to vertices and arrows to arrows in such a way that
incidence and the direction of arrows are preserved.
In particular we get for every pair (A,B) ∈ V × V a map

FE : G(A,B) −→ H(FV (A),FV (B)).

An isomorphism F : G −→ H is a homomorphism, for which there is a second homomorphism
F : H −→ G such that FF = idG and FF = idH. Two graphs are called isomorphic, if there
exists an isomorphism between them.

1.1.3. Examples. (1) Let VG := {1, 2} and EG := {a, b, c},
source(a) = target(a) = source(b) = target(c) = 1,

and

target(b) = source(c) = 2.

Then we can represent G as

-b
1 2�

c

���
- a

(2) The graph of sets and functions has all sets as nodes and all functions between sets
as arrows. The source of a function is its domain, and its target is its codomain. This
is a large graph: because of Russell’s paradox, its nodes and its arrows do not form
sets.
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(3) It is often convenient to picture a relation on a set as a graph. For example, let
A = {1, 2, 3, 4} and α = {(1, 2), (2, 2), (2, 3), (1, 4)}. Then α can be pictured as

1 2- 3-
���
-

4
?

22.04.04
(4) A data structure can sometimes be represented by a graph. The following graph

represents the set N of natural numbers in terms of zero and the successor function
(adding 1):

1 n-0 ���
- succ

The name ‘1’ for the left node is the conventional notation to require that the node
denote a singleton set, that is, a set with exactly one element. One can give a formal
mathematical meaning to the idea that this graph generates the natural numbers.

1.1.4. Remark. What are the natural numbers?

(1) Traditional, set-theoretic answer (Peano, one century ago):
The natural numbers form a set N such that:

(a) ∃ zero ∈ N,
(b) ∀n ∈ N,∃ succ(n) ∈ N,
(c) ∀n ∈ N : succ(n) 6= zero ∈ N
(d) ∀m,n ∈ N : succ(m) = succ(n) =⇒ m = n (injectivity),
(e) ∀A ⊆ N : ( zero ∈ A ∧ (∀a ∈ A : succ(a) ∈ A)) =⇒ A = N.

These axioms determine N uniquely up to isomorphism.
(2) Categorical answer (Lawvere, 60’s): A natural number object

0 ∈ N s→ N
(in Set) consists of
• a set N
• with a distinguished element 0 ∈ N
• and an endofunction s : N −→ N

which is universal in the sense that for every structure

e ∈ X g→ X

there exists a unique function f : N −→ X such that
• f(0) = e
• f(s(n)) = g(f(n)) for all n ∈ N.

The two characterizations are equivalent. This is a consequence of the theorem on simple
recursion [Pareigis, 2000] Theorem 2.2.1 and the uniqueness given by the universal property
[Pareigis, 2000] Theorem 2.2.3.

1.1.5. Remark. Notation of the form f : A −→ B is overloaded in several ways. It can denote
a set-theoretic function, a graph homomorphism or an arrow in a graph. In fact, all three
are instances of the third since there is a large graph whose nodes are sets and arrows are
functions and another whose nodes are (small) graphs and arrows are graph homomorphisms.
Another form of overloading is that if F : G −→ H is a graph homomorphism, φ actually
stands for a pair of functions which we call FV : VG −→ VH and FE : EG −→ EH. In fact, it
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is customary to omit the subscripts and use F for all three (the graph homomorphism as
well as its components FV and FE). This does not lead to ambiguity in practice; in reading
about graphs you are nearly always aware of whether the author is talking about nodes or
arrows.

1.1.6. Example. (1) If G is any graph, the identity homomorphism idG : G −→ G is
defined by (idG)V = idVG (the identity function on the set of nodes of G ) and (idG)E =
idEG .

(2) If G is the graph

1 2- 3-
���
-

4
?

and H is the graph

S F-
���
-

���-

Q
?

then there is a homomorphism F : G −→ H for which FV (1) = S,FV (2) = FV (3) = F
and FV (4) = Q, and FE takes the loop on 2 and the arrow from 2 to 3 both to the
upper loop on F ; what FE does to the other two arrows is forced by the definition of
homomorphism. Because there are two loops on F there are actually four possibilities
for FE on arrows (while keeping FV fixed).

(3) If H is any graph with a node n and a loop u : n −→ n, then there is a homomorphism
from any graph G to H that takes every node of G to n and every arrow to u. This
construction gives two other homomorphisms from G to H in Example 1.5 (2) besides
the four mentioned there. (There are still others.)

1.2. Monoids.

1.2.1. Definition. A monoid is a monadM = (M,µ, e) consisting of

(1) a set M ,
(2) a multiplication map µ : M ×M −→M , and
(3) a unit or neutral element e ∈M

satisfying the following axioms

- ∀a, b, c ∈M :
a ◦ (b ◦ c) = (a ◦ b) ◦ c, (associativity)

- ∀a, b ∈M :

e ◦ a = a and b ◦ e = b. (left and right unit element)

Here we use the notation a ◦ b := µ(a, b).

1.2.2. Definition. LetM = (M,µ, e) and M′ = (M ′, µ′, e′) be monoids. A homomorphism
of monoids F :M−→M′ is a map F : M −→M ′ satisfying the following axioms

- ∀a, b ∈M : F(a ◦ b) = F(a) ◦ F(b),
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- F(e) = e′.

An isomorphism F :M−→M′ is a homomorphism such that there exists another homomor-
phism F :M′ −→M with FF = idM and FF = idM′ . Two monoids are called isomorphic
if there exists an isomorphism from one monoid to the other.

23.04.04

1.2.3. Definition. LetM be a monoid. AnM-graded monoid is a monad U = ((Ui), (µi,j), 1)
consisting of

(1) a family of mutually disjoint sets (Ui|i ∈M),
(2) a family of (multiplication) maps (µi,j : Ui × Uj −→ Ui·j|i, j ∈M), and
(3) an element 1 ∈ Ue

satisfying the following axioms (using the notation g ◦ f := µi,j(f, g)):

- ∀i, j, k ∈M ∀f ∈ Ui, g ∈ Uj, h ∈ Uk :

h ◦ (g ◦ f) = (h ◦ g) ◦ f ∈ U(i·j)·k = Ui·(j·k),

- ∀i, j ∈M ∀f ∈ Ui, g ∈ Uj :

1 ◦ f = f and g ◦ 1 = g.

1.2.4. Definition. Let M and M′ be monoids, U be an M-graded monoid, and U ′ be an
M′-graded monoid. A homomorphism of graded monoids F : (M,U) −→ (M′,U ′) consists
of

(1) a homomorphism of monoids FM :M−→M′ and
(2) maps Fi : Ui −→ U ′

FM (i) for all i ∈M
such that the following conditions are satisfied

- ∀i, j ∈M, f ∈ Ui, g ∈ Uj:
Fi·j(g ◦ f) = Fj(g) ◦ Fi(f)

- Fe(1) = 1 ∈ U ′
e′ .

It follows from the definition that a monoid is not allowed to be empty: it must contain an
identity element. It also follows that we can extend the notation of powers to 0 by defining
x0 to be the identity element of the monoid. The laws sksn = sk+n and (sk)

n
= skn then

hold for all nonnegative k and n.

1.2.5. Examples. One example of a monoid is the set of non-negative integers with addition
as the operation. This includes 0 as a neutral element.
The Kleene closure A∗ of a set A is the set of strings (or lists) of finite length of elements
of A. We write the lists in parentheses; for example (a, b, d, a) is an element of {a, b, c, d}∗.
Some parts of the computer science literature call these strings instead of lists and write
them this way: ‘abda’. A∗ includes the empty list () and for each element a ∈ A the list (a)
of length one.
The operation of concatenation makes the Kleene closure a monoid F (A), called the free
monoid determined by A. The empty list is the identity element. We write concatenation
as juxtaposition; thus

(a, b, d, a)(c, a, b) = (a, b, d, a, c, a, b).

Note that the underlying set of the free monoid is A∗, not A. In the literature, A is usually
assumed finite, but the Kleene closure is defined for any set A. The elements of A∗ are lists
of finite length in any case. When A is nonempty, A∗ is an infinite set.
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The concept of freeness is a general concept applied to many kinds of structures. It is treated
systematically later on.

1.2.6. Definition. A submonoid of a monoidM is a subset S of M with the properties:

SM-1 The identity element ofM is in S.
SM-2 If m,n ∈ S then mn ∈ S. (One says that S is closed under the operation.)

1.2.7. Example. The natural numbers with addition form a submonoid of the integers with
addition. For another example, consider the integers with multiplication as the operation, so
that 1 is the identity element. Again the natural numbers form a submonoid, and so does the
set of positive natural numbers, since the product of two positive numbers is another one.
Finally, the singleton set {0} is a subset of the integers that is closed under multiplication,
and it is a monoid, but it is not a submonoid of the integers on multiplication because it
does not contain the identity element 1.

In this section, we discuss categories whose objects are semigroups or monoids. These are
typical of categories of algebraic structures; we have concentrated on semigroups and monoids
because transition systems naturally form monoids.

1.2.8. Definition. A semigroup is a set S together with an associative binary operation
m : S × S −→ S. The set S is called the underlying set of the semigroup.

1.2.9. Remark. Normally for s and t in S, m(s, t) is written ‘st’ and called ‘multiplication’,
but note that it does not have to satisfy the commutative law; that is, we may have st 6= ts.
A commutative semigroup is a semigroup whose multiplication is commutative.
It is standard practice to talk about ‘the semigroup S’, naming the semigroup by naming its
underlying set. This will be done for other mathematical structures such as posets as well.
Mathematicians call this practice ‘abuse of notation’. It is occasionally necessary to be more
precise.
We set s1 = s and, for any positive integer k, sk = ssk−1. Such powers of an element obey
the laws sksn = sk+n and (sk)

n
= skn (for positive k and n). On the other hand, the law

(st)k = sktk requires commutativity.
We specifically allow the empty semigroup, which consists of the empty set and the empty
function from the empty set to itself. (Note that the cartesian product of the empty set with
itself is the empty set.) This is not done in most of the non-category theory literature; it
will become evident later why we should include the empty semigroup.
An identity element e for a semigroup S is an element of S that satisfies the equation
se = es = s for all s ∈ S. There can be at most one identity element in a semigroup.

1.2.10. Definition (Homomorphisms of semigroups). If S and T are semigroups, a
function h : S −→ T is a homomorphism if for all s, s′ ∈ S, h(ss′) = h(s)h(s′).

1.2.11. Examples. The identity function on any monoid is a monoid homomorphism. If M
is a monoid and S is a submonoid, the inclusion function from S to M is a monoid homomor-
phism. Another example is the function that takes an even integer to 0 and an odd integer
to 1. This is a monoid homomorphism from the monoid of integers on multiplication to the
set {0, 1} on multiplication. It is easy to see that identity functions are homomorphisms
and homomorphisms compose to give homomorphisms. Thus we have two categories: Sem
is the category of semigroups and semigroup homomorphisms, and Mon is the category of
monoids and monoid homomorphisms.
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1.2.12. Example. Let S be a semigroup with element s. Let N+ denote the semigroup of
positive integers with addition as operation. There is a semigroup homomorphism p : N+

−→ S for which p(k) = sk. That this is a homomorphism is just the statement sk+n = sksn.

1.2.13. Remark. A semigroup homomorphism between monoids need not preserve the iden-
tities. An example of this involves the trivial monoid E with only one element e (which
is perforce the identity element) and the monoid of all integers with multiplication as the
operation, which is a monoid with identity 1. The function that takes the one element of E
to 0 is a semigroup homomorphism that is not a monoid homomorphism. And, by the way,
even though {0} is a subsemigroup of the integers with multiplication and even though it is
actually a monoid, it is not a submonoid.

1.2.14. Remark (Inverses of homomorphisms). As an example of how to use the defini-
tion of homomorphism, we show that the inverse of a bijective semigroup homomorphism is
also a semigroup homomorphism. Let f : S −→ T be a bijective semigroup homomorphism
with inverse g. Let t, t′ ∈ T . We have to show that g(t)g(t′) = g(tt′). Since f is injective, it
is sufficient to show that f(g(t)g(t′)) = f(g(tt′)).
The right hand side is tt′ because g is the inverse of f , and the left hand side is f(g(t)g(t′)) =
f(g(t))f(g(t′)) because f is a homomorphism, but that is also tt′ since g is the inverse of f .
This sort of theorem is true of other algebraic structures, such as monoids. It is not true for
posets.

1.2.15. Remark (Isomorphisms of semigroups). If a homomorphism of semigroups has
an inverse that is a homomorphism (equivalently, as we just saw, if it is bijective), we say
that the homomorphism is an isomorphism. In this case, the two semigroups in question
have the same abstract structure and are said to be isomorphic. As we will see later, the
property of possessing an inverse is taken to define the categorical notion of isomorphism.
It is important to understand that there may in general be many different isomorphisms
between isomorphic semigroups. For example, there are two distinct isomorphisms between
the monoid with underlying set {0, 1, 2, 3} and addition (mod 4) as operation and the monoid
with underlying set {1, 2, 3, 4} and multiplication (mod 5) as operation.

We now discuss two important types of examples of monoid homomorphisms that will reap-
pear later in the notes. The first example is a basic property of free monoids.

1.2.16. Remark (Kleene closure induces homomorphisms). Let A and B denote sets,
thought of as alphabets. Let f : A −→ B be any set function. We define f ∗ : A∗ −→ B∗ by
f ∗((a1, a2, . . . , ak)) = (f(a1), f(a2), . . . , f(ak)). In particular, f ∗() = () and for any a ∈ A,
f ∗(a) = f(a). Then f ∗ is a homomorphism of monoids, a requirement that, in this case,
means it preserves identity elements (by definition) and concatenation, which can be seen
from the following calculation: Let a = (a1, a2, . . . , am) and a′ = (a′1, a

′
2, . . . , a

′
n) be lists in

A∗. Concatenating them gives the list

aa′ = (a1, a2, . . . , am, a
′
1, a

′
2, . . . , a

′
n).

Then
f ∗(a)f ∗(a′) = f ∗(a1, a2, . . . , am)f ∗(a′1, a

′
2, . . . , a

′
n)

= (f(a1), f(a2), . . . , f(am))(f(a′1), f(a′2), . . . , f(a′n))
= (f(a1), f(a2), . . . , f(am), f(a′1), f(a′2), . . . , f(a′n))
= f ∗(a1, a2, . . . , am, a

′
1, a

′
2, . . . , a

′
n)

= f ∗(aa′)
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Thus any set function between sets induces a monoid homomorphism between the corre-
sponding free monoids. The reader may wish to verify that if f is an isomorphism then so
is f ∗. The function f ∗ is called αf in [Backus, 1981a] and in modern functional languages
is usually called map f or map list f .

The other important example is a basic construction of number theory.

1.2.17. Remark (The remainder function). The set Z of all integers forms a monoid
with respect to either addition or multiplication. If k is any positive integer, the set Zk =
{0, 1, . . . , k−1} of remainders of k is also a monoid with respect to addition or multiplication
(mod k). Here are more precise definitions.

1.2.18. Definition. Let k be a positive integer and n any integer. Then n mod k is the
unique integer r ∈ Zk for which there is an integer q such that n = qk + r and 0 ≤ r < k.

It is not difficult to see that there is indeed a unique integer r with these properties. Define
an operation ‘+k’ of addition (mod k) by requiring that r +k s = (r + s) mod k.
The operation of addition of the contents of two registers in a microprocessor may be addition
(mod k) for k some power of 2 (often complicated by the presence of sign bits).

1.2.19. Proposition. (Zk,+k) is a monoid with identity 0.

We also have the following.

1.2.20. Proposition. The function n 7→ (n mod k) is a monoid homomorphism from (Z,+)
to (Zk,+k): A similar definition and proposition can be given for multiplication.

29.04.04

1.3. Categories.

1.3.1. Definition. A category is a quadruple C = (Ob(C),Mor(C), (µ), (1)) consisting of

(1) a class of objects

A,B,C ∈ Ob(C),
(2) a family of mutually disjoint sets

(MorC(A,B)|A,B ∈ Ob(C))
whose elements f, g, h . . . ∈ MorC(A,B) are called morphisms,

(3) a family of (composition) maps

(µA,B,C : MorC(A,B)×MorC(B,C) 3 (f, g) 7→ gf ∈ MorC(A,C)|A,B,C ∈ Ob(C)),
and

(4) a family of elements called identities:

(1A ∈ MorC(A,A)|A ∈ Ob(C))
satisfying the following axioms

- ∀A,B,C,D ∈ Ob(C) ∀f ∈ MorC(A,B), g ∈ MorC(B,C), and h ∈ MorC(C,D) :

h(gf) = (hg)f ∈ MorC(A,D),

- ∀A,B,C ∈ Ob(C)∀f ∈ MorC(A,B), g ∈ MorC(B,C) :

1Bf = f and g1B = g.
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1.3.2. Remark. Alternative definition (Barr-Wells):
Let k > 0. In a graph G, a path from a node A to a node B of length k is a sequence
(f1, f2, . . . , fk;A,B) of (not necessarily distinct) arrows for which

(1) source(fk) = A,
(2) target(fi) = source(fi−1) for i = 2, . . . , k, and
(3) target(f1) = B.

By convention, for each node A there is a unique path of length 0 from A to A that is denoted
( ; A, A). It is called the empty path at A.
Observe that if you draw a path as follows:

· fk→ · fk−1→ · · · f2→ · f1→ ·

with the arrows going from left to right, fk will be on the left and the subscripts will go
down from left to right. We do it this way for consistency with composition.
For any arrow f : A −→ B, (f ;A,B) is a path of length 1.
Definition: The set of paths of length k in a graph G is denoted Gk.
In particular, G2, which will be used in the definition of category, is the set of pairs of arrows
(f, g; source(g), target(f)) for which the target of g is the source of f . These are called

composable pairs of arrows: · g→ · f→ · .
We have now assigned two meanings to G0 and G1. This will cause no conflict as G1 refers
indifferently either to the collection of arrows of G or to the collection of paths of length 1,
which is essentially the same thing. Similarly, we use G0 to represent either the collection
of nodes of G or the collection of empty paths, of which there is one for each node. In each
case we are using the same name for two collections that are not the same but are in a
natural one to one correspondence. Compare the use of ‘2’ to denote either the integer or
the real number. As this last remark suggests, one might want to keep the two meanings of
G1 separate for purposes of implementing a graph as a data structure.
The one to one correspondences mentioned in the preceding paragraph were called ‘natural’.
The word is used informally here, but in fact these correspondences are natural in the
technical sense.
Definition: A category is a graph C together with two functions c : C2 −→ C1 and u : C0

−→ C1 with properties C-1 through C-4 below. (Recall that C2 is the set of paths of length
2.) The elements of C0 are called objects and those of C1 are called arrows. The function c is
called composition, and if (f, g;A,C) is a composable pair, c(f, g;A,C) is written gf = g ◦ f
and is called the composite of f and g. If A is an object of C , u(A) is denoted 1A, which is
called the identity of the object A.

C-1 The source of gf is the source of f and the target of gf is the target of g.
C-2 (hg)f = h(gf) whenever either side is defined.
C-3 The source and target of 1A are both A.
C-4 If f : A −→ B, then f1A = 1Bf = f .

The significance of the fact that the composite c is defined on G2 is that gf is defined if and
only if the source of g is the target of f . This means that composition is a function whose
domain is an equationally defined subset of G1 × G1: the equation requires that the source
of g equal the target of f . It follows from this and C-1 that in C-2, one side of the equation
is defined if and only if the other side is defined.
In the category theory literature, 1A is often written just A.
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1.3.3. Remark (Terminology). In much of the categorical literature, ‘morphism’ is more
common than ‘arrow’. We will normally denote objects of categories by capital letters but
nodes of graphs (except when we think of a category as a graph) by lower case letters. Arrows
are always lower case.
In the computing science literature, the composite g◦f is sometimes written f; g , a notation
suggested by the perception of a typed functional programming language as a category.
We have presented the concept of category as a two-sorted data structure; the sorts are the
objects and the arrows. Categories are sometimes presented as one-sorted – arrows only.
The objects can be recovered from the fact that C-3 and C-4 together characterize 1A (not
hard to prove), so that there is a one to one correspondence between the objects and the
identity arrows 1A.

1.3.4. Definition. A category is small if its objects and arrows constitute sets; otherwise it
is large.
A category with the property that MorC(A,B) is a set for all objects A and B is called locally
small. All categories in these notes are locally small.

1.3.5. Remark. The category of sets and functions is an example of a large category. Al-
though one must in principle be wary in dealing with large classes, it is not in practice a
problem; category theorists have rarely, if ever, run into set theoretic difficulties.

1.3.6. Definition. For any path (f1, f2, . . . , fn) in a category C , define f1 ◦ f2 ◦ . . . ◦ fn
recursively by

f1 ◦ f2 ◦ . . . ◦ fn := (f1 ◦ f2 ◦ . . . ◦ fn−1) ◦ fn, n > 2.

1.3.7. Proposition (The general associative law.). For any path (f1, f2, . . . , fn) in a category
C and any integer k with 1 < k < n,

(f1 ◦ . . . ◦ fk) ◦ (fk+1 ◦ . . . ◦ fn) = f1 ◦ . . . ◦ fn.
In other words, you can unambiguously drop the parentheses.

In this proposition, the notation fk+1 ◦ . . . ◦ fn when k = n− 1 means simply fn.
This is a standard fact for associative binary operations (see [Jacobson, 1974], Section 1.4)
and can be proved in exactly the same way for categories.

1.3.8. Examples. (1) Degenerate categories such as:
• Sets X – i.e. X is the class of objects and all arrows are identities.
• MonoidsM – any monoidM determines a category C(M).
CM-1 C(M) has one object, which we will denote ∗, ∗ can be chosen arbitrarily.

A simple uniform choice is to take ∗ = M .
CM-2 The arrows of C(M) are the elements of M with ∗ as source and target.
CM-3 Composition is the binary operation ofM.
Thus a category can be regarded as a generalized monoid, or a ‘monoid with
many objects’. This point of view has not been as fruitful in mathematics as the
perception of a category as a generalized poset. It does have some applications
in computing science.
• Preorders – any preorder (P,≤) determines a category C(P ). The class of objects

of C(P ) is the set P . There is exactly one arrow between x ∈ P and y ∈ P if
and only if x ≤ y (otherwise there is no arrow). So there is at most one arrow
between any two objects (see 1.3.8(11)).
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Many categorists define a monoid to be a category with one object and a preordered
set to be a category in which every hom set is either empty or a singleton.

(2) Categories determined by graphs:
• 0 – the category with empty class of objects (and no morphisms).
• 1 – the category with exactly one object and exactly one morphism (the identity

of the object).
• 2 = (· −→ ·) – the category with two objects and one arrow between them.

Together with the identity arrows there are 3 arrows.
This can be represented by the category C(S, α) for S = {C,D} and α =
{〈C,C〉, 〈C,D〉, 〈D,D〉}.
• ω – the category with a countably infinite number of objects and ascending

arrows (succ) between them.
• Categories freely generated by directed graphs G.

(3) The opposite category Cop obtained by reversing the arrows of a given category C,
while keeping the same objects.

(4) Set – the category of (small) sets and functions; composition is the usual function
composition (as well as in the remaining examples). Note that type matters: the
identity on the natural numbers is a different function from the inclusion of the
natural numbers into the integers.

(5) Set∗ – pointed sets (i.e. sets with a selected base-point) and functions preserving the
base point.

(6) A partial function from a set S to a set T is a function with domain S0 and codomain
T , where S0 is some subset of S. The category Pfn of sets and partial functions
has all sets as objects and all partial functions as arrows. If f : S −→ T and g : T
−→ V are partial functions with f defined on S0 ⊆ S and g defined on T0 ⊆ T , the
composite g ◦ f : S −→ V is the partial function from S to V defined on the subset
S0 ∩ f−1(T0) of S by the requirement (g ◦ f)(x) = g(f(x)).

(7) ∆ – finite ordinals (the ordinal n is the totally ordered set of all the preceding ordinals
{0, 1, . . . , n− 1} and 0 is the empty set) and monotone or order preserving functions.
This category is called the simplicial category.

(8) Fin – finite sets and functions. 30.4.04
(9) Let α be a relation from a set S to a set T and β a relation from T to U . The

composite β ◦ α is the relation from S to U defined as follows: If x ∈ S and z ∈ U
then (x, z) ∈ β ◦ α if and only if there is an element y ∈ T for which (x, y) ∈ α and
(y, z) ∈ β. With this definition of composition, the category Rel of sets and relations
has sets as objects and relations as arrows. The identity for a set S is the diagonal
relation ∆S = {(x, x)|x ∈ A}.

In order to make the morphism sets disjoint, one has to take monads (α, S, T ) for
the morphisms, where α ⊆ S × T .

(10) Other examples of categories whose objects are sets are the category of sets and
injective functions and the category of sets and surjective functions.

(11) Preordered sets: If S is a set, a subset α ⊂ S×S is called a binary relation on S. It is
often convenient to write xαy as shorthand for (x, y) ∈ α. We say that α is reflexive
if xαx for all x ∈ S and transitive if xαy and yαz implies xαz for all x, y, z ∈ S.

A set S with a reflexive, transitive relation α on it is a structure (S;α), i.e. a
preordered set determines a category C(S;α) defined as follows.
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CO-1 The objects of C(S, α) are the elements of S.
CO-2 If x, y ∈ S and xαy, then C(S, α) has exactly one arrow from x to y, denoted

(y, x). (The reader might have expected (x, y) here. This choice of notation fits
better with the right-to-left composition that we use. Note that the domain of
(y, x) is x and the codomain is y.)

CO-3 If x is not related by α to y there is no arrow from x to y. The identity arrows
of C(S, α) are those of the form (x, x); they belong to α because it is reflexive.
The transitive property of α is needed to ensure the existence of the composite
described in 2.1.3, so that (z, y) ◦ (y, x) = (z, x).

(12) Preord – preorders and monotone functions: The objects of this category are pre-
ordered sets. If (S, α) and (T, β) are preordered sets, a function f : S −→ T is
monotone if whenever xαy in S, f(x)βf(y) in T . If we write, as usual, x ≤ y for
(x, y) ∈ α and use the same for β: u ≤ v if (u, v) ∈ β, then the condition for a
monotone function is

∀x, y ∈ S : x ≤ y =⇒ f(x) ≤ f(y).

The identity function on a preordered set is clearly monotone, and the composite
of two monotone functions is easily seen to be monotone, so that preordered sets with
monotone functions form a category.

A variation on this is to consider only strictly monotone functions, which are func-
tions f with the property that if

xαy and x 6= y then f(x)βf(y) and f(x) 6= f(y).

We saw how a single preordered set is a category. Now we are considering the category
of preordered sets.

We must give a few words of warning on terminology. The usual word in math-
ematical texts for what we have called ‘monotone’ is ‘increasing’ or ‘monotonically
increasing’. The word ‘monotone’ is used for a function that either preserves or
reverses the order relation. That is, in mathematical texts a function f : (X,α)
−→ (T, β) is also called monotone if whenever xαy in S, f(y)βf(x) in T .

(13) Poset – partial orders and monotone functions: A preordered set (S, α) for which
α is antisymmetric (that is xαy and yαx imply x = y) is called a partially ordered
set or poset. Two examples of posets are (R,≤), the real numbers with the usual
ordering, and for any set S, the poset (P(S),⊆), the set of subsets of S with inclusion
as ordering. The posets and the monotone functions form the category Poset.

(14) Mon – monoids and monoid homomorphisms.
(15) Grp – groups and group homomorphisms.
(16) SL – semi-lattices and join-preserving functions.
(17) Top – topological spaces and continuous functions.
(18) Met – metric spaces and non-expansive (contracting) functions.
(19) CMet: complete metric spaces and non-expansive functions.
(20) Vec – vector spaces,
(21) Ab – Abelian groups,
(22) SGrp – semigroups:
(23) Ban – Banach spaces and linear functions,
(24) Ban1 – Banach spaces and linear functions of norm ≤ 1,
(25) Mf – manifolds (topological or differential),
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(26) Grf – graphs: The category of graphs has graphs as objects and homomorphisms of
graphs as arrows. It is denoted Grf .

The identity homomorphism idG is the identity function for both nodes and arrows.
Let us check that the composite of graph homomorphisms is a graph homomorphism
(identities are easy). Suppose φ : G −→ H and ψ : H −→ K are graph homomorphisms,
and suppose that u : m −→ n in G . Then by definition φE(u) : φV (m) −→ φV (n) in
H , and so by definition

ψE(φE(u)) : ψV (φV (m)) −→ ψV (φV (n)) in K.

Hence ψ ◦ φ is a graph homomorphism.
(27) An example from computer science:

A functional programming language has:
FPL-1 Primitive data types, given in the language.
FPL-2 Constants of each type.
FPL-3 Operations, which are functions between the types.
FPL-4 Constructors, which can be applied to data types and operations to produce

derived data types and operations of the language.
The language consists of the set of all operations and types derivable from the

primitive data types and primitive operations. The word ‘primitive’ means given
in the definition of the language rather than constructed by a constructor. Some
authors use the word ‘constructor’ for the primitive operations.

Given a functional programming language L, there’s an associated category, where
the objects are the data types of L, and the arrows are the computable functions of
L (“processes”, “procedures”, “programs”). The composition of two such programs

X
f→ Y

g!−→ Z is given by applying g to the output of f , sometimes also written
g ◦ f = f ; g. The identity is the “do nothing” program. This example is closely
related to the notion of “cartesian closed category” to be considered later.

As a concrete example, we will suppose we have a simple such language with
three data types, NAT (natural numbers), BOOLEAN (true or false) and CHAR
(characters). We give a description of its operations in categorical style.
(i) NAT should have a constant 0 : 1 −→ NAT and an operation succ : NAT
−→ NAT.

(ii) There should be two constants true; false : 1 −→ BOOLEAN and an opera-
tion ¬ subject to the equations ¬ ◦ true = false and ¬ ◦ false = true.

(iii) CHAR should have one constant c : 1 −→ CHAR for each desired character c.
(iv) There should be two type conversion operations ord : CHAR −→ NAT and

chr : NAT −→ CHAR. These are subject to the equation chr ◦ ord =
idCHAR. (You can think of chr as operating modulo the number of characters,
so that it is defined on all natural numbers.)

An example program is the arrow ‘next’ defined to be the composite chr ◦ succ ◦
ord : CHAR −→ CHAR.

It calculates the next character in order. This arrow ‘next’ is an arrow in the
category representing the language, and so is any other composite of a sequence of
operations. The objects of the category C(L) of this language are the types NAT,
BOOLEAN, CHAR and 1. Observe that typing is a natural part of the syntax in
this approach.
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The arrows of C(L) consist of all programs, with two programs being identified if
they must be the same because of the equations. For example, the arrow

chr ◦ succ ◦ ord : CHAR −→ CHAR

just mentioned and the arrow

chr ◦ succ ◦ ord ◦ chr ◦ ord : CHAR −→ CHAR

must be the same because of the equation in (iv).
Observe that NAT has constants succ ◦ succ ◦ . . . ◦ succ ◦ 0 where succ occurs

zero or more times.
Composition in the category is composition of programs. Note that for composition

to be well defined, if two composites of primitive operations are equal, then their
composites with any other program must be equal. For example, we must have

ord ◦ (chr ◦ succ ◦ ord) = ord ◦ (chr ◦ succ ◦ ord ◦ chr ◦ ord)

as arrows from CHAR to NAT.

1.4. Constructions on categories.
If you are familiar with some branch of abstract algebra (for example the theory of semi-
groups, groups or rings) then you know that given two structures of a given type (e.g., two
semigroups), you can construct a ‘direct product’ structure, defining the operations coor-
dinatewise. Also, a structure may have substructures, which are subsets closed under the
operations, and quotient structures, formed from equivalence classes modulo a congruence
relation. Another construction that is possible in many cases is the formation of a ‘free’
structure of the given type for a given set. All these constructions can be performed for
categories. We will outline the constructions here, except for quotients. We will also de-
scribe the construction of the slice category, which does not quite correspond to anything
in abstract algebra (although it is akin to the adjunction of a constant to a logical theory).
You do not need to be familiar with the constructions in other branches of abstract algebra,
since they are all defined from scratch here.

1.4.1. Slice categories.

1.4.1. Definition. If C is a category and A any object of C , the slice category C/A is
described this way:

SC-1 An object of C/A is an arrow f : C −→ A of C for some object C.
SC-2 An arrow of C/A from f : C −→ A to f ′ : C ′ −→ A is an arrow h : C −→ C ′ with the

property that f = f ′ ◦ h.
SC-3 The composite of h : f −→ f ′ and h′ : f ′ −→ f ′′ is h′ ◦ h.

It is necessary to show that h′ ◦ h, as defined in SC-2, satisfies the requirements of being an
arrow from f to f ′′. Let h : f −→ f ′ and h′ : f ′ −→ f ′′. This means f ′ ◦h = f and f ′′ ◦h′ = f ′.
To show that h′ ◦ h : f −→ f ′′ is an arrow of C/A, we must show that f ′′ ◦ (h′ ◦ h) = f . That
follows from this calculation:

f ′′ ◦ (h′ ◦ h) = (f ′′ ◦ h′) ◦ h = f ′ ◦ h = f.

The usual notation for arrows in C/A is deficient: the same arrow h can satisfy f = f ′ ◦ h
and g = g′ ◦ h with f ′ 6= g′ or f 6= g (and then f ′ 6= g′). Then h : f −→ f ′ and h : g −→ g′ are
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different arrows of C/A
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Indeed h : (B, f) −→ (C, f ′) and h : (B, g) −→ (C, g′), or h ∈ MorC/A((B, f), (C, f ′)) and
h ∈ MorC/A((B, g), (C, g′)). But MorC/A((B, f), (C, f ′)) ∩MorC/A((B, g), (C, g′)) = ∅ so that
the two morphisms, both denoted h, are different.
Thus one often says, that an “arrow” in the slice category is a “commutative diagram” as
above.

1.4.2. Example. Let (P, α) be a poset and let C(P ) be the corresponding category as in
1.3.8(11). For an element x ∈ P , the slice category C(P )/x is the category corresponding to
the set of elements greater than or equal to x. The dual notion of coslice, i.e. the category
A\C of arrows f : A −→ C for some C in C, gives the set of elements less than or equal to a
given element.

1.4.3. Remark. The importance of slice categories comes in part with their connection with
indexing. An S-indexed set or graded set is a set X together with a function τ : X −→ S. If
x ∈ X and τ(x) = s then we say x is of type s, and we also refer to X as a typed set. The
terminology ‘S-indexed set’ is that used by category theorists. Many mathematicians would
cast the discussion in terms of the collection (τ−1(s)|s ∈ S) of subsets of X, which would be
called a family of sets indexed by S.

1.4.4. Example. The set G = G0 ∪G1 of objects and arrows of a graph G is an example of
a typed set, typed by the function τ : G −→ {0, 1} that takes a node to 0 and an arrow to 1.
Note that this depends on the fact that a node is not an arrow: G0 and G1 are disjoint.

1.4.5. Remark (Indexed functions). A function from a set X typed by S to a set X ′ typed
by the same set S that preserves the typing (takes an element of type s to an element of
type s) is exactly an arrow of the slice category Set /S. Such a function is called an indexed
function, typed function, or graded function. It has been fruitful for category theorists to
pursue this analogy by thinking of objects of any slice category C/A as objects of C indexed
by A.

1.4.6. Example. A graph homomorphism f : G −→ H corresponds to a typed function
according to the construction in Example 1.4.4.
However, there are typed functions between graphs that are not graph homomorphisms, for
example the function from the graph in 1.1.3(1)

-b
1 2�

c

���
- a

to the graph in 1.1.3(4)

1 n-0 ���
- succ

defined by
1 7→ 1, 2 7→ n, a 7→ 0, b 7→ 0, c 7→ succ.

This is not a graph homomorphism because it does not preserve source and target.
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1.4.2. Subcategories.

1.4.7. Definition. A subcategory D of a category C is a category for which:

S-1 All the objects of D are objects of C and all the arrows of D are arrows of C (in other
words, D0 ⊆ C0 and D1 ⊆ C1).

S-2 The source and target of an arrow of D are the same as its source and target in C (in
other words, the source and target maps for D are the restrictions of those for C). It
follows that for any objects A and B of D, MorD(A,B) ⊆ MorC(A,B).

S-3 If A is an object of D then its identity arrow 1A in C is in D.
S-4 If f : A −→ B and g : B −→ C in D, then the composite g ◦ f (in C) is in D and is

the composite in D.

1.4.8. Examples. As an example, the category Fin of finite sets and all functions between
them is a subcategory of Set, and in turn Set is a subcategory of the category of sets
and partial functions between sets (see 2.1.12 and 2.1.13). These examples illustrate two
phenomena:

(i) If A and B are finite sets, then MorFin(A,B) = MorSet(A,B). In other words, every
arrow of Set between objects of Fin is an arrow of Fin.

(ii) The category of sets and the category of sets and partial functions, on the other hand,
have exactly the same objects.

The phenomenon of (i) does not occur here: there are generally many more partial
functions between two sets than there are full functions.

Example (i) motivates the following definition.

1.4.9. Definition. If D is a subcategory of C and for every pair of objects A, B of D,
MorD(A,B) = MorC(A,B), then D is a full subcategory of C .

Thus Fin is a full subcategory of Set but Set is not a full subcategory of the category of
sets and partial functions.
Example 1.4.8(ii) also motivates a (less useful) definition, as follows.

1.4.10. Definition. If D is a subcategory of C with the same objects, then D is a wide
subcategory of C.

Thus in the case of a wide subcategory, only the arrows are different from those of the larger
category. In 2.4.9 we provide an improvement on this concept. As an example, Set is a wide
subcategory of the category Pfn of sets and partial functions.

1.4.11. Example. Among all the objects of the category of semigroups are the monoids, and
among all the semigroup homomorphisms between two monoids are those that preserve the
identity. Thus the category of monoids is a subcategory of the category of semigroups that
is neither wide nor full (see ??). As it stands, being a subcategory requires the objects and
arrows of the subcategory to be identical with some of the objects and arrows of the category
containing it. This requires an uncategorical emphasis on what something is instead of on
the specification it satisfies.

06.05.04

1.4.3. The product of categories.

1.4.12. Definition. If C and D are categories, the product C×D is the category whose objects
are all ordered pairs (C,D) with C an object of C and D an object of D, and in which an
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arrow (f, g) : (C,D) −→ (C ′, D′) is a pair of arrows f : C −→ C ′ in C and g : D −→ D′ in D.
The identity of (C,D) is (1C , 1D). If (f ′, g′) : (C ′, D′) −→ (C ′′, D′′) is another arrow, then
the composite is defined by

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g) : (C,D) −→ (C ′′, D′).

1.4.4. The dual of a category.

1.4.13. Definition. The dual or opposite Cop of a category C is defined by:

D-1 The objects and arrows of Cop are the objects and arrows of C .
D-2 If f : A −→ B in C, then f : B −→ A in Cop, i.e. MorCop(B,A) := MorC(A,B).
D-3 If h = g ◦ f in C , then h = f ◦ g in Cop.

The meaning of D-2 is that source and target have been reversed. It is easy to see that the
identity arrows have to be the same in the two categories C and Cop and that C-1 through
C-4 of definition 1.3.1 hold, so that Cop is a category.

1.4.14. Example. IfM is a monoid, then the opposite of the category C(M) is the category
determined by a monoid Mop, if xy = z in M, then yx = z in Mop. (Hence if M is
commutative then C(M) is its own dual. Similar remarks may be made about the opposite
of the category C(P) determined by a poset P . The opposite of the poset (Z,≤), for example,
is (Z,≥).

Both the construction of the product of two categories and the construction of the dual of a
category are purely formal constructions. Even though the original categories may have, for
example, structure-preserving functions of some kind as arrows, the arrows in the product
category are simply pairs of arrows of the original categories.
Consider Set, for example. Let A be the set of letters of the English alphabet. The function
v : A −→ {0, 1} that takes consonants to 0 and vowels to 1 is an arrow of Set. Then the
arrow (1A, v) : (A,A) −→ (A, {0, 1}) of Set×Set is not a function, not even a function of
two variables, since there are no reasonable elements in (A,A). It is merely the arrow of a
product category and as such is an ordered pair of functions.
A similar remark applies to duals. In Setop, v is an arrow from {0, 1} to A. And that is all
it is. It is in particular not a function from {0, 1} to A.
Nevertheless, it is possible in some cases to prove that the dual of a familiar category is
essentially the same as some other familiar category. One such category is Fin, which is
equivalent to the opposite of the category of finite Boolean algebras.
The product of categories is a formal way to make constructions dependent on more than
one variable. The major use we make of the concept of dual is that many of the definitions
we make have another meaning when applied to the dual of a category that is often of
independent interest. The phrase dual concept or dual notion is often used to refer to a
concept or notion applied in the dual category.

1.4.5. The free category generated by a graph.

1.4.15. Definition. For any given graph G there is a category F(G) whose objects are the
nodes of G and whose arrows are the paths in G. Composition is defined by the formula

(f1, f2, . . . , fk) ◦ (fk+1, . . . , fn) = (f1, f2, . . . , fn).

This composition is associative, and for each object A, 1A is the empty path from A to A.
The category F(G) is called the free category generated by the graph G. It is also called the
path category of G.
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1.4.16. Examples. – The free category generated by the graph with one node and no arrows
is the category with one object and only the identity arrow, which is the empty path.
– The free category generated by the graph with one node and one loop on the node is the
free monoid with one generator (Kleene closure of a one-letter alphabet); this is isomorphic
with the nonnegative integers with + as operation.
– The free category generated by the graph in Example 1.1.3(4) has the following arrows

(a) An arrow 11 : 1 −→ 1.
(b) For each nonnegative integer k, the arrow succk : n −→ n. This is the path

(succ, succ, . . . , sucsucc) (k occurrences of succ). This includes k = 0 which gives
1n.

(c) For each nonnegative integer k, the arrow succk ◦ 0 : 1 −→ n. Here k = 0 gives 0 : 1
−→ n. Composition obeys the rule succk ◦ succm = succk+m.

It is useful to regard the free category generated by any graph as analogous to the Kleene
closure (free monoid) generated by a set (as in 1.2.5). The paths in the free category
correspond to the strings in the Kleene closure. The difference is that you can concatenate
any symbols together to get a string, but arrows can be strung together only head to tail,
thus taking into account the typing. In ?? we give a precise technical meaning to the word
‘free’.

1.5. Functors.
A functor F from a category C to a category D is a graph homomorphism which preserves
identities and composition. It plays the same role as monoid homomorphisms for monoids
and monotone maps for posets: it preserves the structure that a category has. Functors have
another significance, however: since one sort of thing a category can be is a mathematical
workspace (see Introduction), many of the most useful functors used by mathematicians are
transformations from one type of mathematics to another. Less obvious, but perhaps more
important is the fact that many categories that are mathematically interesting appear as
categories whose objects are a natural class of functors into the category of sets.
A functor is a structure-preserving map between categories, in the same way that a homo-
morphism is a structure-preserving map between graphs or monoids. Here is the formal
definition.

1.5.1. Definition. Let C = (Ob(C),Mor(C), (µ), (1)) and D = (Ob(D),Mor(D), (µ), (1)) be
categories. Let F consist of

(1) a map F : Ob(C) −→ Ob(D) and a
(2) a family of maps

(MorC(A,B) 3 f 7→ F(f) ∈ MorD(F(A),F(B)) | A,B ∈ Ob(C)).
F is called a covariant functor if
• ∀A ∈ Ob(C) :

F(1A) = 1F(A);

• ∀A,B,C ∈ Ob(C), ∀f ∈ MorC(A,B), g ∈ MorC(B,C) :

F(gf) = F(g)F(f).

An equivalent definition is:

1.5.2. Definition. A functor F : C −→ D is a pair of functions F0 : C0 −→ D0 and F1 : C1
−→ D1 for which



Functors 23

F-1 If f : A −→ B in C , then F1(f) : F0(A) −→ F0(B) in D.
F-2 For any object A of C , F1(1A) = 1F0(A).
F-3 If g◦f is defined in C , then F1(g)◦F1(f) is defined in D and F1(g◦f) = F1(g)◦F1(f).

By F-1, a functor is in particular a homomorphism of graphs. Following the practice for graph
homomorphisms, the notation is customarily overloaded: if A is an object, F(A) = F0(A) is
an object, and if f is an arrow, F(f) = F1(f) is an arrow. The notation for the constituents
F0 : C0 −→ D0 and F1 : C1 −→ D1 is not standard, and we will use it only for emphasis.

1.5.3. Example. It is easy to see that a monoid homomorphism f : M −→ N determines
a functor from C(M) to C(N ) as defined in 1.3.8(1). On objects, a homomorphism f must
take the single object of C(M) to the single object of C(N ), and F-1 is trivially verified
since all arrows in C(M) have the same domain and codomain and similarly for C(N ). Then
F-2 and F-3 say precisely that f is a monoid homomorphism. Conversely, every functor is
determined in this way by a monoid homomorphism.

1.5.4. Example. Let us see what a functor from C(S, α) to C(T, β) must be when (S, α) and
(T, β) are posets as in 1.3.8(1). It is suggestive to write both relations α and β as ‘≤’ and
the posets simply as S and T . Then there is exactly one arrow from x to y in S (or in T ) if
and only if x ≤ y; otherwise there are no arrows from x to y.
Let f : S −→ T be the functor. F-1 says if there is an arrow from x to y, then there is an
arrow from f(x) to f(y); in other words, if x ≤ y then f(x) ≤ f(y).
Thus f is a monotone map. F-2 and F-3 impose no additional conditions on f because they
each assert the equality of two specified arrows between two specified objects and in a poset
as category all arrows between two objects are equal.

1.5.5. Remark (The category of categories). The category Cat has all small categories
as objects and all functors between such categories as arrows. The composite of functors is
their composite as graph homomorphisms: if F : C −→ D and G : D −→ E , then G ◦ F : C
−→ E satisfies G ◦ F(C) = G(F(C)) for any object C of C , and G ◦ F(f) = G(F(f)) for
any arrow f of C. Thus (G ◦ F)i = Gi ◦ Fi for i = 0, 1. We note that the composition
circle is usually omitted when composing functors so that we write GF(C) = G(F(C)). It is
sometimes convenient to refer to a category CAT which has all small categories and ordinary
large categories as objects, and functors between them. Since trying to have CAT be an
object of itself would raise delicate foundational questions, we do not attempt here a formal
definition of CAT.

1.5.6. Example. If C is a category, the functor P1 : C ×C −→ C which takes an object (C,D)
to C and an arrow (f, g) : (C,D) −→ (C ′, D′) to f is called the first projection. There is an
analogous second projection functor P2 taking an object or arrow to its second coordinate.

1.5.7. Example. Let 2 + 2 be the category that can be pictured as

0 −→ 1 1′ −→ 2

with no other nonidentity arrows, and the category 3 the one that looks like

0 1-

2
@@R ��	

Define the functor F : 2 + 2 −→ 3 to take 0 to 0, 1 and 1’ to 1, and 2 to 2. Then what it
does on arrows is forced.
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Note that the image of F includes all of 3 except the composite arrow from 0 −→ 2. This
example shows that the image of a functor need not be a subcategory of the codomain
category.

1.5.8. Example. The inclusion map of a subcategory is a functor. The categorical point
of view does not require that the object and arrows of a subcategory actually be objects
and arrows of the bigger category, only that there be an injective identification of objects or
morphisms of one category with the objects or morphisms of the other. For example, Set is
a subcategory of Rel: the functor takes every set to itself and each function f : S −→ T to
its graph {(s, t)|t = f(s)}, which is indeed a relation from S to T .
This approach has the strange result that two different categories can each be regarded as
subcategories of the other one.
Observe that the category Ri of rings is not a subcategory of the category Ab of abelian group,
although each ring is also an abelian group (under the addition) and every homomorphism
of rings is also a homomorphism of abelian groups. There can be two nonisomorphic rings,
that have the same additive abelian group.

1.6. Special types of functors.

1.6.1. Underlying functors.

1.6.1. Example. Forgetting some of the structure in a category of structures and structure-
preserving functions gives a functor called an underlying functor or forgetful functor. The
functor U : Mon −→ Sem which embeds the category of monoids into the category of
semigroups by forgetting that a monoid has an identity is an example of an underlying
functor.
Another example is the functor which forgets all the structure of a semigroup. This is a
functor U : Sem −→ Set. There are lots of semigroups with the same set of elements; for
example, the set {0, 1, 2} is a semigroup on addition (mod 3) and also a different semigroup
on multiplication (mod 3). The functor U applied to these two different semigroups gives the
same set, so U is not injective on objects, in contrast to the forgetful functor from monoids
to semigroups. We will not give a formal definition of underlying functor. It is reasonable
to expect any underlying functor U to be faithful, i.e. injective on the morphism sets, and
that if f is an isomorphism and U(f) is an identity arrow then f is an identity arrow.

1.6.2. Example. A small graph has two underlying sets: its set of nodes and its set of
arrows. Thus there is an underlying functor U : Grf −→ Set×Set for which for a graph
G , U(G) = (G0,G1), an arrowset functor A : Grf −→ Set which takes a graph to its set of
arrows and a graph homomorphism to the corresponding function from arrows to arrows,
and a similarly defined nodeset functor N : Grf −→ Set which takes a graph to its set of
nodes.

1.6.3. Example. If you forget you can compose arrows in a category and you forget which
arrows are the identities, then you have remembered only that the category is a graph. This
gives an underlying functor U : Cat −→ Grf , since every functor is a graph homomorphism
although not vice versa. As for graphs, there are also set-of-objects and set-of-arrows functors
O : Cat −→ Set and A : Cat −→ Set which take a category to its set of objects and set of
arrows respectively, and a functor to the appropriate set map.

7.5.04
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1.6.4. Example. In 1.4.1, we described the notion of a slice category C/A based on a category
C and an object A. An object is an arrow B −→ A and an arrow from f : B −→ A to g : C
−→ A is an arrow h : B −→ C for which g ◦h = f . There is a functor U : C/A −→ C that takes
the object f : B −→ A to B and the arrow h from B −→ A to C −→ A to h : B −→ C. This
is called the underlying functor of the slice. In the case that C = Set, an object T −→ S of
Set /S for some set S is an S-indexed object, and the effect of the underlying functor is to
forget the indexing.

1.6.2. Free functors.

1.6.5. Example. The free monoid functor from Set to the category of monoids takes a set
A to the free monoid F (A), which is the Kleene closure A∗ with concatenation as operation
(see 1.2.5), and a function f : A −→ B to the function F (f) = f ∗ : F (A) −→ F (B) defined in
1.2.16. To see that the free monoid functor is indeed a functor it is necessary to show that
if f : A −→ B and g : B −→ C, then F (g ◦ f) : F (A) −→ F (C) is the same as F (g) ◦ F (f),
which is immediate from the definition, and that it preserves identity arrows, which is also
immediate. The Kleene closure is itself a functor from Set toSet, taking A to A∗ and f to
f ∗. It is the composite U ◦F of the underlying functor U : Mon −→ Set and the free functor
F : Set −→Mon, but of course it can be defined independently of U and F .

1.6.6. Example. The free category on a graph is also the object part of a functor F : Grf
−→ Cat. What it does to a graph is described in 1.4.15. Suppose ϕ : G −→ H is a graph
homomorphism. The objects of the free category on a graph are the nodes of the graph, so it is
reasonable to define F (ϕ)0 = ϕ0. Now suppose (fn, fn−1, . . . , f1) is a path, that is, an arrow,
in F (G). Since functors preserve domain and codomain, we can define F (ϕ)1(fn, fn−1, . . . , f1)
to be (ϕ1(fn), ϕ1(fn−1), . . . , ϕ1(f1)) and know we get a path in F (H). That F preserves
composition of paths is also clear.

1.6.7. Remark (The map-lifting property). The free category functor F : Grf −→ Cat
and also other free functors, such as the free monoid functor 1.6.5, have a map lifting property
called its universal mapping property which will be seen as the defining property of freeness.
We will describe the property for free categories since we use it later.
Let G be a graph and F (G) be the free category generated by G . There is a graph homomor-
phism with the special name ηG : G −→ U(F (G)) which includes a graph G into U(F (G)), the
underlying graph of the free category F (G). The map (ηG)0 is the identity, since the objects
of F (G) are the nodes of G. For an arrow f of G, (ηG)1(f) is the path (f) of length one.
This is an inclusion arrow in the generalized categorical sense, since f and (f) are really two
distinct entities.

1.6.8. Proposition. Let G be a graph and C a category. Then for every graph homomorphism

h : G −→ U(C), there is a unique functor ĥ : F (G) −→ C with the property that U(ĥ)◦ηG = h.

Proof. If () is the empty path at an object a, we set ĥ() = 1a. For an object a of F (G) (that

is, node of G), define ĥ(a) = h(a). And for a path (an, an−1, . . . , a1), ĥ is ‘map h’:

ĥ(an, an−1, . . . , a1) = (h(an), h(an−1), . . . , h(a1)).

As noted in 1.1.1, there is a unique empty path for each node a of G. Composing the empty
path at a with any path p from a to b gives p again, and similarly on the other side. �
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1.6.3. Powerset functors.
Any set S has a powerset PS, the set of all subsets of S. There are three different functors F
for which F0 takes a set to its powerset; they differ on what they do to arrows. One of them
is fundamental in topos theory; that one we single out to be called the powerset functor.
If f : A −→ B is any set function and C is a subset of B, then the inverse image of C, denoted
f−1(C), is the set of elements of A which f takes into C: f−1(C) = {a ∈ A|f(a) ∈ C}. Thus
f−1 is a function from PB to PA. Note that for a bijection f , the symbol f−1 is also used
to denote the inverse function. Context makes it clear which is meant, since the input to
the inverse image function must be a subset of the codomain of f , whereas the input to the
actual inverse of a bijection must be an element of the codomain.

1.6.9. Definition. The powerset functor P : Setop −→ Set takes a set S to the powerset PS,
and a set function f : A −→ B (that is, an arrow from B to A in Setop) to the inverse image
function f−1 : PB −→ PA.
Although we will continue to use the notation f−1, it is denoted f ∗ in much of the categorical
literature. To check that P is a functor requires showing that 1−1

A = 1PA and that if g : B
−→ C, then (g ◦ f)−1 = f−1 ◦ g−1, where both compositions take place in Set.

1.6.10. Definition. A functor F : Cop −→ D is also called a contravariant functor from C to
D.

As illustrated in the preceding definition, the functor is often defined in terms of arrows of
C rather than of arrows of Cop. Opposite categories are most commonly used to provide a
way of talking about contravariant functors as ordinary (covariant) functors: the opposite
category in this situation is a purely formal construction of no independent interest.13.05.04

1.6.11. Remark. The other two functors which take a set to its powerset are both covariant.
The direct or existential image functor takes f : A −→ B to the function f∗ : PA −→ PB,
where f∗(A0) = {f(x)|x ∈ A0}, the set of values of f on A0.
The universal image functor takes A0 to those values of f which come only from A0: formally,
it takes f : A −→ B to f! : PA −→ PB, with

f!(A0) = {y ∈ B|f(x) = y implies x ∈ A0} = {y ∈ B|f−1({y}) ⊆ A0}.

1.6.4. Hom functors or Mor functors.
Let C be a category with an object C and an arrow f : A −→ B. f induces a set function
Mor(A, f) : Mor(A,B) −→ Mor(A,C) defined by composing by f on the left: for any g ∈
Mor(A,B), that is, for any g : A −→ B, Mor(A, f)(g) = f ◦ g, which does indeed go from A
to C. Similarly, for any object D, f : B −→ C induces a set function Mor(f,D) : Mor(C,D)
−→ Mor(B,D) (note the reversal) by requiring that Mor(f,D)(h) = h◦f for h ∈ Mor(C,D).

1.6.12. Definition. For a given object C the covariant Mor functor Mor(C, -) : C −→ Set is
defined as follows:

HF-1 Mor(C, -)(A) := Mor(C,A) for each object A of C;
HF-2 Mor(C, -)(f) := Mor(C, f) : Mor(C,A) −→ Mor(C,B) for f : A −→ B.

The following calculations show that Mor(C, -) is a functor. For an object A, Mor(C, 1A) :
Mor(C,A) −→ Mor(C,A) takes an arrow f : C −→ A to 1A ◦ f = f ; hence Mor(C, 1A) =
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1Mor(C,A). Now suppose f : A −→ B and g : B −→ D. Then for any arrow k : C −→ A,(
Mor(C, g) ◦Mor(C, f)

)
(k) = Mor(C, g)

(
Mor(C, f)(k)

)
= Mor(C, g)(f ◦ k)
= g ◦ (f ◦ k)
= (g ◦ f) ◦ k
= Mor(C, g ◦ f)(k).

There is a distinct covariant Mor functor Mor(C, -) for each object C. In this expression, C
is a parameter for a family of functors. The argument of each of these functors is indicated
by the dash. An analogous definition in calculus would be to define the function which raises
a real number to the nth power as f(-) = (-)n (here n is the parameter). One difference in
the Mor functor case is that the Mor functor is overloaded and so has to be defined on two
different kinds of things: objects and arrows.

1.6.13. Definition. For a given object D, the contravariant mor functor Mor(-, D) : Cop
−→ Set is defined for each object A by Mor(-, D)(A) := Mor(A,D) and for each arrow
f : A −→ B, Mor(-, D)(f) := Mor(f,D) : Mor(B,D) −→ Mor(A,D). Thus if g : B −→ D,
Mor(f,D)(g) = g ◦ f .

1.6.14. Definition. The two-variable Mor functor

Mor(-, -) : Cop × C −→ Set

takes a pair (C,D) of objects of C to Mor(C,D), and a pair (f, g) of arrows with f : C −→ A
and g : B −→ D to

Mor(f, g) : Mor(A,B) −→ Mor(C,D)

where for h : A −→ B,
Mor(f, g)(h) = g ◦ h ◦ f

which is indeed an arrow from C to D.

In this case we also use the product of categories as a formal construction to express functors
of more than one argument. From the categorical point of view, a functor always has one
argument, which as in the present case might well be an object in a product category (an
ordered pair).

1.7. Natural transformations.
In order to see one of the aims of this section we first introduce natural transformation of
functors and study their most elementary properties.

1.7.1. Natural transformations between functors I.

1.7.1. Definition. Let D,E : C −→ D be two covariant functors. A natural transformation
α : D −→ E is given by a family of morphisms αA of D indexed by the objects of C such that:

NTF-1 αA : D(A) −→ E(A) for each node A of C.
NTF-2 For any morphism f : A −→ B in C, the diagram

(1)

D(A) E(A)-αA

D(B) E(B)-
αB

?
D(f)

?
E(f)

commutes.
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1.7.2. Definition. Let D, E and F be functors from C to D , and α : D −→ E and β : E
−→ F natural transformations. The composite β ◦ α : D −→ F is defined componentwise:
(β ◦ α)A = βA ◦ αA.

1.7.3. Proposition. The composite of two natural transformations is also a natural trans-
formation.

Proof. The diagram that has to be shown commutative is the outer rectangle of

(2)

D(A) E(A)-αA F (A)-βA

D(B) E(B)-
αB

F (B)-
βB

?
D(f)

?
E(f)

?
F (f)

for each arrow f : A −→ B in C. The rectangle commutes because the two squares do; the
squares commute as a consequence of the naturality of α and β. �

1.7.4. Example. Examples for natural transformations – like for functors – are built into
the definition of categories. Let f : A −→ B be a morphism in a category C. In 1.6.12 we
have already studied covariant functors MorC(A, -),MorC(B, -) : C −→ Set.
The morphism f induces a family of maps

MorC(f, C) : MorC(B,C) 3 g 7→ g ◦ f ∈ MorC(A,C)

which is a natural transformation by Exercise ??.

1.7.5. Definition. A natural transformation α : F −→ G : C −→ D is called a natural
isomorphism if there is a natural transformation β : G −→ F which is an inverse to α.

1.7.6. Definition. A functor F : C −→ D is an equivalence of categories if there are:

E-1 A functor G : D −→ C.
E-2 A family (uC : C −→ G(F (C))|C ∈ Ob(C)) of isomorphisms of C indexed by the

objects of C with the property that for every arrow f : C −→ C ′ of C, G(F (f)) =
uC′ ◦ f ◦ u−1

C .
E-3 A family vD : D −→ F (G(D)) of isomorphisms of D indexed by the objects of D,

with the property that for every arrow g : D −→ D′ of D, F (G(g)) = vD′ ◦ g ◦ v−1
D .

If F is an equivalence of categories, the functor G of E-1 is called a pseudo-inverse of F .
The idea behind the definition is that not only is every object of D isomorphic to an object
in the image of F , but the isomorphisms are compatible with the arrows of D; and similarly
for C.

14.05.04

1.7.7. Example. An isomorphism of categories is an equivalence of categories, and its inverse
is its pseudo-inverse.

1.7.8. Example (Monoids and one-object categories.). For each monoid M we constructed
a small category C(M) in 1.3.8. We make the choice mentioned there that the one object
of C(M) is M . Note that although an element of C(M) is now an arrow from M to M ,
it is not a set function. For each monoid homomorphism h : M −→ N , construct a functor
C(h) : C(M) −→ C(N) as follows:

CF-1 On objects, C(h)(M) = N .
CF-2 C(h) must be exactly the same as h on arrows (elements of M).



Natural transformations 29

It is straightforward to see that C(h) is a functor and that this construction makes C a
functor from Mon to the full subcategory of Cat of categories with exactly one object. We
will denote this full subcategory as Ooc.
There is also a functor U : Ooc −→Mon going the other way.

UO-1 For a category C with one object, U(C) is the monoid whose elements are the arrows
of C and whose binary operation is the composition of C.

UO-2 If F : C −→ D is a functor between one- object categories, U(F ) = F1, that is, the
functor F on arrows.

The functors U and C are not inverse to each other, and it is worthwhile to see in detail why.
The construction of C is in part arbitrary. We needed to regard each monoid as a category
with one object. The choice of the elements of M to be the arrows of the category is obvious,
but what should be the one object? We chose M itself, but we could have chosen some other
thing, such as the set {e}, where e is the identity of M . The only real requirement is that it
not be an element of M (such as its identity) in order to avoid set-theoretic problems caused
by the category being an element of itself. The consequence is that we have given a functor
C : Mon −→ Ooc in a way which required arbitrary choices. The arbitrary choice of one
object for C(M) means that if we begin with a one-object category C , construct M = U(C),
and then construct C(M), the result will not be the same as C unless it happens that the
one object of C is M . Thus C ◦ U 6= idOoc, so that U is not the inverse of C. (In this case
U ◦ C is indeed idMon.)
C is not surjective on objects, since not every small category with one object is in the image
of C; in fact a category D is C(M) for some monoid M only if the single object of D is
actually a monoid and the arrows of D are actually the arrows of that monoid. This is
entirely contrary to the spirit of category theory: we are talking about specific elements
rather than specifying behavior. Indeed, in terms of specifying behavior, the category of
monoids and the category of small categories with one object ought to be essentially the
same thing.
The fact that C is not an isomorphism of categories is a signal that isomorphism is the wrong
idea for capturing the concept that two categories are essentially the same. However, every
small category with one object is isomorphic to one of those constructed as C(M) for some
monoid M . This is the starting point for the definition of equivalence.

1.7.9. Proposition. A functor F : C −→ D is an equivalence of categories with pseudo-
inverse G : D −→ C if and only if G ◦F is naturally isomorphic to idC and F ◦G is naturally
isomorphic to idD.

Proof. Conditions E-2 and E-3 of 1.7.6 can be recast as the statement that G(F (f)) ◦ uC =
uC′ ◦f and that F (G(g))◦vD = vD′ ◦g, in other words that the following diagrams commute:

(3)

C G(F (C))-uC

C ′ G(F (C ′))-
uC′

?
f

?
G(F (f))

D F (G(D))-vD

D′ F (G(D′))-
vD′

?

g
?
F (G(g))

In this form, they are the statements that u is a natural transformation from idC to G ◦ F
and that v is a natural transformation from idD to F ◦ G. Since each component of u and
each component of v is an isomorphism, u and v are natural isomorphisms. �
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1.7.2. Diagrams.
Commutative diagrams are the categorist’s way of expressing equations. Natural transfor-
mations are maps between functors; one way to think of them is as a deformation of one
construction (construed as a functor) into another.
We begin with diagrams in a graph and discuss commutativity later.

1.7.10. Definition. Let I and G be graphs. A diagram in G of shape I is a homomorphism
D : I −→ G of graphs. I is called the shape graph of the diagram D. We have thus given
a new name to a concept which was already defined (not uncommon in mathematics). A
diagram is a graph homomorphism from a different point of view.

1.7.11. Example. At first glance, Definition 1.7.10 may seem to have little to do with what
are informally called diagrams, for example

A B-f

C
h@@R

g��	

The connection is this: a diagram in the sense of Definition 1.7.10 is pictured on the page
with a drawing of nodes and arrows as for example in the previous diagram, which could be
the picture of a diagram D with shape graph

i j-u

k

w@@R v��	

defined by D(i) = A, D(j) = B, D(k) = C, D(u) = f , D(v) = g and D(w) = h.

1.7.12. Example. Here is an example illustrating some subtleties involving the concept of
diagram. Let G be a graph with objects A, B and C (and maybe others) and arrows f : A
−→ B, g : B −→ C and h : B −→ B. Consider these two diagrams, where here we use the
word ‘diagram’ informally:

A B-f
C-g

A B-f ���
- h

These are clearly of different shapes (again using the word ‘shape’ informally). But the
diagram

A B-f
B-h

is the same shape as I even though as a graph it is the same as J . To capture the difference
thus illustrated between a graph and a diagram, we introduce two shape graphs

I : 1 2-u
3-v J : 1 2-u ���

- w

(where, as will be customary, we use numbers for the nodes of shape graphs). Now the first
diagram is seen to be the diagram D : I −→ G with D(1) = A, D(2) = B, D(3) = C,
D(u) = f , and D(v) = g; whereas the second diagram is E : J −→ G with E(1) = A,
E(2) = B, E(u) = f , and E(w) = h. Moreover, the third diagram is just like D (has the
same shape), except that v goes to h and 3 goes to B.

1.7.13. Remark. Our definition in 1.7.10 of a diagram as a graph homomorphism, with the
domain graph being the shape, captures both the following ideas:
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(1) A diagram can have repeated labels on its nodes and (although the examples did not
show it) on its arrows, and

(2) Two diagrams can have the same labels on their nodes and arrows but be of different
shapes: the second diagram and the third diagram are different diagrams because
they have different shapes.

1.7.3. Commutative diagrams.
When the target graph of a diagram is the underlying graph of a category some new pos-
sibilities arise, in particular the concept of commutative diagram, which is the categorist’s
way of expressing equations. In this situation, we will not distinguish in notation between
the category and its underlying graph: if I is a graph and C is a category we will refer to a
diagram D : I −→ C. We say that D is commutative (or commutes) provided for any nodes i
and j of I and any two paths

i

s1
�

��

k1 k2
-s2 . . .- kn−2

- kn−1
-sn−1

j

sn@
@R

t1@@R
l1 l2-t2 . . .- lm−2

- lm−1
-tm−1

tm�
��

from i to j in I, the two paths

Di
Ds1�

��

Dk1 Dk2
-Ds2 . . .- Dkn−2

- Dkn−1
-Dsn−1

Dj
Dsn@

@R

Dt1@@R
Dl1 Dl2-Dt2 . . .- Dlm−2

- Dlm−1
-Dtm−1

Dtm�
��

compose to the same arrow in C. This means that

Dsn ◦ Dsn−1 ◦ . . . ◦ Ds1 = Dtm ◦ Dtm−1 ◦ . . . ◦ Dt1.

1.7.14. Remark (Much ado about nothing). There is one subtlety to the definition of com-
mutative diagram: what happens if one of the numbers m or n in the last diagram should
happen to be 0? If, say, m = 0, then we interpret the above equation to be meaningful only
if the nodes i and j are the same (you go nowhere on an empty path) and the meaning in
this case is that

Dsn ◦ Dsn−1 ◦ . . . ◦ Ds1 = idDi
(you do nothing on an empty path). In particular, a diagram D based on the graph

i
���
- e

commutes if and only if D(e) is the identity arrow from D(i) to D(i). Note, and note well,
that both shape graphs

i
���
- e

and i j-d

have models that one might think to represent the diagram

A
���
- f
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but the diagram based on the first graph commutes if and only if f = idA, while the diagram
based on the second graph commutes automatically (no two nodes have more than one path
between them so the commutativity condition is vacuous). We will always picture diagrams
so that distinct nodes of the shape graph are represented by distinct (but possibly identically
labeled) nodes in the picture. Thus a diagram based on the second graph in which d goes
to f and i and j both go to A will be pictured as

A A.-f

In consequence, one can always deduce the shape graph of a diagram from the way it is
pictured, except of course for the actual names of the nodes and arrows of the shape graph.

1.7.15. Example (Examples of commutative diagrams – and others). The prototypical com-
mutative diagram is the triangle

A B-f

C
h@@R

g��	

that commutes if and only if h is the composite g ◦ f . The reason this is prototypical is that
any commutative diagram – unless it involves an empty path – can be replaced by a set of
commutative triangles. This fact is easy to show and not particularly enlightening, so we
are content to give an example. The diagram

A B-h

C D-
k

?
f

?

g

commutes if and only if the two diagrams

C D-
k

A

g ◦ h
@

@
@

@@R?

f

A B-h

D

k ◦ f
@

@
@

@@R ?

g

commute (in fact if and only if either one does).

1.7.16. Definition. Let C be a category. A morphism f : X −→ Y is called an isomorphism,
if there exists a morphism g : Y −→ X with g ◦ f = 1X and f ◦ g = 1Y .

g is uniquely determined by f and is itself an isomorphism. We use the notation f−1 := g.
Thus we have (f−1)−1 = g−1 = f .

1.7.17. Example. An arrow f : A −→ B is an isomorphism with inverse g : B −→ A if and
only if

-f
A B�

g
commutes. The reason for this is that for this diagram to commute, the two paths () and
(g, f) from A to A must compose to the same value in the diagram, which means that
g ◦ f = 1A. A similar observation shows that f ◦ g must be 1B.

20.05.04
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1.7.4. Graph homomorphisms by commutative diagrams.

1.7.18. Remark. The definition of graph homomorphism in 1.1.2 can be expressed by a
commutative diagram. Let ϕ = (ϕ0;ϕ1) be a graph homomorphism from G to H . For any
arrow u : m −→ n in G , 1.1.2 requires that ϕ1(u) : ϕ0(m) −→ ϕ0(n) in H. This says that
ϕ0(source(u)) = source(ϕ1(u)), and a similar statement about targets. In other words, these
diagrams must commute:

(4)

G1 H1
-ϕ1

G0 H0
-

ϕ0

?

source
?

source

G1 H1
-ϕ1

G0 H0
-

ϕ0

?

target
?

target

In these two diagrams the two arrows labeled ‘source’ are of course different functions; one
is the source function for G and the other for H. A similar remark is true of ‘target’.
This point of view provides a pictorial proof that the composite of two graph homomorphisms
is a graph homomorphism (see 1.3.8(26)). If ϕ : G −→ H and ψ : H −→ K are graph
homomorphisms, then to see that ψ ◦ϕ is a graph homomorphism requires checking that the
outside rectangle below commutes, and similarly with target in place of source:

(5)

G1 H1
-ϕ1

G0 H0
-

ϕ0

?

source
?

source

H1 K1
-ψ1

H0 K0
-

ψ0

?

source

The outside rectangle commutes because the two squares commute. This can be checked
by tracing (mentally or with a finger or pointer) the paths from G1 to K0 to verify that
source ◦ψ1◦ϕ1 = ψ0◦source ◦ϕ1 because the right square commutes, and that ψ0◦source ◦ϕ1 =
ψ0 ◦ ϕ0 ◦ source because the left square commutes. The verification process just described
is called ‘chasing the diagram’. Of course, one can verify the required fact by writing the
equations down, but those equations hide the source and target information given in diagram
and thus provide a possibility of writing an impossible composite down. For many people,
the diagram is much easier to remember than the equations. However, diagrams are more
than informal aids; they are formally-defined mathematical objects just like automata and
categories. The proof in 1.4.1 that the composition of arrows in a slice gives another arrow
in the category can be represented by a similar diagram:

C C ′-h C ′′-h
′

A

f
@

@
@@R ?

f ′ f ′′
�

�
��	

These examples are instances of pasting commutative diagrams together to get bigger ones.

1.7.5. Associativity by commutative diagrams.
The fact that the multiplication in a monoid or semigroup is associative can be expressed as
the assertion that a certain diagram in Set commutes.
Let S be a semigroup. Define the following functions:

(1) mult : S × S −→ S satisfies mult(x, y) = xy.
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(2) S ×mult : S × S × S −→ S × S satisfies (S ×mult)(x, y, z) = (x, yz).
(3) mult×S : S × S × S −→ S × S satisfies (mult×S)(x, y, z) = (xy, z).

That the following diagram commutes is exactly the associative law.

S × S × S S × S-S ×mult

S × S S-
mult

?
mult×S

?
mult

Normally, associativity is expressed by the equation x(yz) = (xy)z for all x, y, z in the semi-
group. The commutative diagram expresses this same fact without the use of variables. Of
course, we did use variables in defining the functions involved, but we remedy that deficiency
in Chapter 6 when we give a categorical definition of products. Another advantage of using
diagrams to express equations is that diagrams show the source and target of the functions
involved. This is not particularly compelling here but in other situations the two-dimensional
picture of the compositions involved makes it much easier to follow the discussion.

1.7.19. Remark (Functors by commutative diagrams). We express the definition of functor
using commutative diagrams. Let C and D be categories with sets of objects C0 and D0, sets
of arrows C1 and D1, sets of composable pairs of arrows C2 and D2, and identity morphisms
given by id : C0 −→ C1 and id : D0 −→ D1, respectively. A functor F : C −→ D consists of
functions F0 : C0 −→ D0, F1 : C1 −→ D1 along with the uniquely determined function F2 : C2
−→ D2 (think of F2((f, g)) = (F1(f),F1(g))) such that

C2

C1

proj1

�
�

�
��	

D1

?

F1

D2

?

F2

D1

?

F1

C1

proj2

@
@

@
@@R

D2

�
�

�
��	

@
@

@
@@R

proj1 proj2

commutes. In addition, the following diagrams must commute:

C1 C0-dom

D1 D0
-

dom

?
F1

?
F0

C1�cod

D1
�
cod

?
F1

C2 C1-comp

D2 D1
-

comp

?
F2

?
F1

C0 C1-id

D0 D1
-

id

?
F0

?
F1

where the second diagram represents F1(f ◦ g) = F1(f) ◦ F1(g) and the third diagram
represents F1(1A) = 1F0(A).
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1.7.20. Remark (Diagrams as functors). In much of the categorical literature, a diagram
in a category C is a functor D : E −→ C where E is a category. Because of Proposition
1.6.8, a graph homomorphism into a category extends uniquely to a functor based on the
free category generated by the graph, so that diagrams in our sense generate diagrams in the
functorial sense. On the other hand, any functor is a graph homomorphism on the underlying
graph of its domain (although not conversely!), so that every diagram in the sense of functor
is a diagram in the sense of graph homomorphism.

21.05.04

1.7.6. Natural transformations.
We saw that diagrams in a category are graph homomorphisms to the category from a
different point of view. Now we introduce a third way to look at graph homomorphisms to
a category, namely as models. To give an example, we need a definition.

1.7.21. Definition. A unary operation on a set S is a function u : S −→ S.

This definition is by analogy with the concept of binary operation on a set. A set with a
unary operation is a (very simple) algebraic structure, which we call a u-structure. If the
set is S and the operation is f : S −→ S, we say that (S, f) is a u-structure, meaning (S, f)
denotes a u-structure whose underlying set is S, and whose unary operation is f . This uses
positional notation in much the same way as procedures in many computer languages: the
first entry in the expression ‘(S, f)’ is the name of the underlying set of the u-structure and
the second entry is the name of its operation.
A homomorphism of u-structures should be a function which preserves the structure. There is
really only one definition that is reasonable for this idea: if (S, u) and (T, v) are u-structures,
f : S −→ T is a homomorphism of u-structures if f(u(s)) = v(f(s)) for all s ∈ S. Thus this
diagram must commute:

S T-f

S T-
f

?

u
?

v

It is not difficult to show that the composite of two homomorphisms of u-structures is another
one, and that the identity map is a homomorphism, so that u-structures and homomorphisms
form a category.
We now use the concept of u-structure to motivate the third way of looking at graph homo-
morphisms to a category.
Let U be the graph with one node u0 and one arrow e:

u0
���
- e

Let us define a graph homomorphism D : U −→ Set as follows: D(u0) = R and D(e) = x 7→
x2. Now (R, x 7→ x2) is a u-structure, and the notation we have introduced in 1.7.21 tells
us that we have chosen R to be its underlying set and x 7→ x2 to be its unary operation.
Except for the arbitrary names ‘u0’ and ‘e’, the graph homomorphism D communicates the
same information: ‘R is the particular set chosen to be the value of u0, and x 7→ x2 is the
particular function chosen to be the value of e.’ In this sense, a u-structure is essentially
the same thing as a diagram in Set of shape U : a u-structure ‘models’ the graph U . This
suggests the following definition.
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1.7.22. Definition. A model M of a graph G is a graph homomorphism M : G −→ Set.

A monoid can be defined as a model involving a graph homomorphism (and other ingredients)
using the concept of finite product. We had to introduce u-structures here to have an example
for which we had the requisite techniques.

1.7.23. Example. As another example, consider this graph:

-source
a n-

target

A model M of this graph consists of sets G0 = M(n) and G1 = M(a) together with functions
source = M(source) : G1 −→ G0 and target = M(target) : G1 −→ G0. To understand what this
structure is, imagine a picture in which there is a dot corresponding to each element of G0

and an arrow corresponding to each element a ∈ G1 which goes from the dot corresponding
to source(a) to the one corresponding to target(a). It should be clear that the picture so
described is a graph and thus the given graph is a graph whose models are graphs!

1.7.24. Remark (Models in arbitrary categories). The concept of model can be generalized
to arbitrary categories: if C is any category, a model of G in C is a graph homomorphism
from G to C . For example, a model of the graph for u-structures in the category of posets
and monotone maps is a poset and a monotone map from the poset to itself. In these notes,
the bare word ‘model’ always means a model in Set.

1.7.25. Remark (Natural transformations between models of a graph). In a category, there
is a natural notion of an arrow from one model of a graph to another. This usually turns
out to coincide with the standard definition of homomorphism for that kind of structure.

1.7.26. Definition. Let D,E : G −→ C be two models of the same graph in a category. A
natural transformation α : D −→ E is given by a family of arrows αa of C indexed by the
nodes of G such that:

NT-1 αa : Da −→ Ea for each node a of G.
NT-2 For any arrow s : a −→ b in G, the diagram

(6)

Da Ea-αa

Db Eb-
αb

?
Ds

?
Es

commutes.

The commutativity of the diagram in NT-2 is referred to as the em naturality condition on
α. The arrow αa for an object a is the component of the natural transformation α at a.
Note that you talk about a natural transformation from D to E only if D and E have the
same domain (here G) as well as the same codomain (here C) and if, moreover, the codomain
is a category. In this situation, it is often convenient to write α : D −→ E : G −→ C.

1.7.27. Definition. Let D, E and F be models of G in C , and α : D −→ E and β : E
−→ F natural transformations. The composite β ◦ α : D −→ F is defined componentwise:
(β ◦ α)a = βa ◦ αa.

1.7.28. Proposition. The composite of two natural transformations is also a natural trans-
formation.
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Proof. The diagram that has to be shown commutative is the outer rectangle of

(7)

Da Ea-αa Fa-βa

Db Eb-
αb

Fb-
βb

?
Ds

?
Es

?
Fs

for each arrow s : a −→ b in G. The rectangle commutes because the two squares do; the
squares commute as a consequence of the naturality of α and β. �

It is interesting that categorists began using modes of reasoning like that in the preceding
proof because objects of categories generally lacked elements; now one appreciates them for
their own sake because they allow element-free (and thus variable-free) arguments.

It is even easier to show that there is an identity natural transformation between any model
D and itself, defined by 1Da = 1Da. We then have the following proposition, whose proof is
straightforward.

1.7.29. Proposition. The models of a given graph G in a given category C, and the natural
transformations between them, form a category. We denote this category by Mod(G, C).

1.7.30. Example. The natural transformations between models in Set of the u-structure
graph U (one vertex and one non-trivial arrow) are exactly the homomorphisms of u-
structures defined in 1.7.21. The graph U has one object u0 and one arrow e, so that a
natural transformation from a model D to a model E has only one component which is a
function from D(u0) to E(u0). If we set S = D(u0), u = D(e), T = E(u0), v = E(e), and
we define αu0 = f , this is the single component of a natural transformation from D to E.
Condition NT-2 in 1.7.26 coincides in this case with the diagram in 1.7.21: the naturality
condition is the same as the definition of homomorphism of u-structures. It follows that the
category of u-structures and homomorphisms is essentially Mod(U ,Set).

1.7.31. Example. A homomorphism of graphs is a natural transformation between models
of the graph

-source
a n-

target

The two graphs in diagram (4) are the two necessary instances (one for the source and the
other for the target) of the diagram (6). In a similar way, the diagram (7), used to show
that the composite of two natural transformations is a natural transformation, reduces in
this case to the commutativity of diagram (5): specifically, the only possibilities (other than
those in which s is an identity arrow) for a and b in diagram (7) are a = a and b = n, giving
two diagrams shaped like diagram (7), one for s = source (that is diagram (5)) and the other
for s = target.

1.7.32. Example. A model of the graph

(8) 0
u−→ 1

in an arbitrary category C is essentially the same as an arrow in C (see 5.2.23 below). A
natural transformation from the model represented by the arrow f : A −→ B to the one
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represented by g : C −→ D is a pair of arrows h : A −→ C and k : B −→ D making a
commutative diagram:

(9)

Da Ea-αa

Db Eb-
αb

?
Ds

?
Es

The component at 0 is h and the component at 1 is k. The category of models in C is called
the arrow category of C; it is often denoted C−→.

1.7.33. Example. Let G be the graph with two nodes and no arrows, and C any category.
Then Mod(G, C) is isomorphic to C × C.

1.7.7. Natural isomorphisms.

1.7.34. Definition. A natural transformation α : F −→ G : G −→ D is called a natural
isomorphism if there is a natural transformation β : G −→ F which is an inverse to α in the
category Mod(G,D). Natural isomorphisms are often called natural equivalences.

1.7.35. Example. The arrow (h, k) : f −→ g in the arrow category of a category C , as shown
in (9), is a natural isomorphism if and only if h and k are both isomorphisms in C. This is
a special case of an important fact about natural isomorphisms, which we now state.

1.7.36. Theorem. Suppose F : G −→ D and G : G −→ D are models of G in D and α : F
−→ G is a natural transformation of models. Then α is a natural isomorphism if and only if
for each node a of G, αa : F (a) −→ G(a) is an isomorphism of D.

Proof. Suppose α has an inverse β : G −→ F in Mod(G,D). Then for any node a, by
definition 1.7.27 the definition of the identity natural transformation, and the definition of
inverse,

αa ◦ βa = (α ◦ β)a = idG a = idG(a)

and
βa ◦ αa = (β ◦ α)a = idF a = idF (a)

which means that the arrow βa is the inverse of the arrow αa, so that αa is an isomorphism
in D as required.
Conversely, suppose that for each node a of G , αa : F (a) −→ G(a) is an isomorphism of D.
The component of the inverse β at a node a is defined by letting βa = (αa)−1. This is the
only possible definition, but it must be shown to be natural. Let f : a −→ b be an arrow of
the domain of F and G. Then we have

Ff ◦ (αa)−1 = (αb)−1 ◦ (αb) ◦ Ff ◦ (αa)−1

= (αb)−1 ◦Gf ◦ (αa) ◦ (αa)−1

= (αb)−1 ◦Gf.
which says that β is natural. The second equality uses the naturality of α. �
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1.7.37. Remark. In 1.7.32, we said that a model in an arbitrary category C of the graph (8)
is ‘essentially the same’ as an arrow in C . This is common terminology and usually refers
implicitly to an equivalence of categories. We spell it out in this case.
Let us say that for a category C , C ′ is the category whose objects are the arrows of C and
for which an arrow from f to g is a pair (h, k) making diagram (9) commute.
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A model M of the graph (8) in a category C specifies the objects M(0) and M(1) and the
arrow M(u). M(u) has domain M(0) and codomain M(1). But the domain and codomain
of an arrow in a category are uniquely determined by the arrow. So that the only necessary
information is which arrow M(u) is.
Now we can define a functor F : C−→ −→ C ′. On objects it takes M to M(u). The remarks
in the preceding paragraph show that this map on objects is bijective. If M(u) = f and
N(u) = g, an arrow from M to N in C−→ and an arrow from f to g in C ′ are the same thing
– a pair (h, k) making diagram (9) commute. So we say F is the identity on arrows. It is
straightforward to see that F is actually an isomorphism of categories.

1.7.8. Natural transformations between functors II.

1.7.38. Definition. A functor is among other things a graph homomorphism, so a natural
transformation between two functors is a natural transformation of the corresponding graph
homomorphisms. The following proposition is an immediate consequence of 1.7.28.

1.7.39. Proposition. If C and D are categories, the functors from C to D form a category
with natural transformations as arrows.

We denote this category by Func(C,D). Other common notations for it are DC and [C,D].
Tennent [1986] provides an exposition of the use of functor categories for programming
language semantics. Of course, the graph homomorphisms from C to D, which do not
necessarily preserve the composition of arrows in C , also form a category Mod(C,D) (see
1.7.29), of which Func(C,D) is a full subcategory. A natural transformation from one functor
to another is a special case of a natural transformation from one graph homomorphism to
another, so the ideas we have presented concerning natural transformations between graph
homomorphisms apply to natural transformations between functors as well. In particular,
Theorems 1.7.28 and 1.7.36 are true of natural transformations of functors.
If C is not a small category (see 1.3.4), then Func(C,D) may not be locally small (see 1.3.4).
In fact functors will be large, too, so they cannot be elements (objects) of a class of objects.
This is a rather esoteric question that will not concern us in these notes since we will have
no occasion to form functor categories of that sort.
We motivated the concept of natural transformation by considering models of graphs, and
most of the discussion in the rest of this section concerns that point of view. Historically,
the concept first arose for functors and not from the point of view of models.

1.7.40. Examples. We have already described some examples of natural transformations,
as summed up in the following propositions. In 1.6.7, we defined the graph homomorphism
ηG : G −→ U(F (G)) which includes a graph G into U(F (G)), the underlying graph of the free
category F (G).
1.7.41. Proposition. The family of arrows ηG form a natural transformation from the iden-
tity functor on Grf to U ◦ F , where U is the underlying graph functor from Cat to Grf .

The proof is left as an exercise.
Further examples of natural transformations are given by actions on sets. We begin with a
definition.

1.7.42. Definition. Let M be a monoid with identity 1 and let S be a set. An action of M
on S is a function α : M × S −→ S for which

A-1 α(1, s) = s for all s ∈ S.
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A-2 α(mn, s) = α(m,α(n, s)) for all m,n ∈M and s ∈ S.

It is customary in mathematics to write ms for α(m, s); then the preceding requirements
become

A’-1 1s = s for all s ∈ S.
A’-2 (mn)s = m(ns) for all m,n ∈M and s ∈ S.

When actions are written this way, S is also called anM-set. The same syntaxms form ∈M
and s ∈ S is used even when different actions are involved. This notation is analogous to
(and presumably suggested by) the notation cv for scalar multiplication, where c is a scalar
and v is a vector.
It is useful to think of the set S as a state space and the elements of M as acting to induce
transitions from one state to another.

1.7.43. Example. One major type of action by a monoid is the case when the state space is
a vector space and M is a collection of linear transformations closed under multiplication.
However, in that case the linear structure (the fact that states can be added and multiplied
by scalars) is extra structure which the definition above does not require. Our definition
also does not require that there be any concept of continuity of transitions. Thus, the
definition is very general and can be regarded as a nonlinear, discrete approach to state
transition systems. Less structure means, as always, that fewer theorems are true and fewer
useful tools are available. On the other hand, less structure means that more situations fit
the axioms, so that the theorems that are true and the tools that do exist work for more
applications.

1.7.44. Definition. Let M be a monoid with actions on sets S and T . An equivariant map
from S to T is a function ϕ : S −→ T with the property that mϕ(s) = ϕ(ms) for all m ∈M
and s ∈ S. The identity function is an equivariant map and the composite of two equivariant
maps is equivariant. This means that for each monoid M , monoid actions and equivariant
maps form a category M -Act.

1.7.45. Remark. Let α be an action of a monoid M on a set S. Let C(M) denote the
category determined by M with one object and morphisms the elements of M . The action
α determines a functor Fα : C(M) −→ Set defined by:

AF-1 Fα(∗) = S.
AF-2 Fα(m) = s 7→ α(m, s) for m ∈M and s ∈ S.

1.7.46. Example. Let α : M ×S −→ S and β : M ×T −→ T be two actions by a monoidM.
Let ϕ : S −→ T be an equivariant map. If F and G are the functors corresponding to α and
β, as in 1.7.45, then ϕ is the (only) component of a natural transformation from F to G.
Conversely, the only component of any natural transformation from F to G is an equivariant
map between the corresponding actions.
If ϕ : S −→ T is an isomorphism of actions by M then ϕ determines a natural isomorphism.

1.7.47. Example. Let U : Mon −→ Set be the underlying functor from the category of
monoids. Define U × U : Mon −→ Set as follows:

(1) For a monoid M , (U × U)(M) = U(M)× U(M).
(2) For a monoid homomorphism h : M −→ N ,

(U × U)(h)(m,n) = (h(m), h(n)).
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Then monoid multiplication is a natural transformation from U × UtoU .
Formally: Let µ : U × U −→ U be the family of maps whose value at a monoid M is the
function µM : U(M) × U(M) −→ U(M) defined by µM(m,m′) = mm′, the product of m
and m′ in M . Then µ is a natural transformation. (The function µM is not in general a
monoid homomorphism, unless M is commutative.)
It is instructive to see why µ is a natural transformation. Let h : M −→ N be a monoid
homomorphism. We must show that the following diagram commutes:

(10)

(U × U)(M) U(M)-µM

(U × U)(N) U(N)-
µN

?
(U × U)(h)

?
h

The top route takes an element (m,m′) ∈ (U × U)(M) to h(mm′). The lower route takes
it to h(m)h(m′). The commutativity of the diagram then follows from the fact that h is a
homomorphism.

1.7.48. Definition. Let C be a category. A subfunctor of a functor F : C −→ Set is a functor
G : C −→ Set with the property that for each object C of C, G(C) ⊆ F (C) and such that
for each arrow f : C −→ C ′ and each element x ∈ G(C), we have that Gf(x) = Ff(x).
It is straightforward to check that the inclusion function iC : G(C) −→ F (C) is a natural
transformation.

1.7.49. Example. Let B be a fixed set. We define a functor R : Setop −→ Set such that
for a set A, R(A) = Rel(A,B), the set of relations from A to B. (A relation from A to B
is essentially set of ordered pairs in A × B.) For a set function f : A′ −→ A and relation
α ∈ Rel(A,B), define R(f)(α) to be the relation α′ ∈ Rel(A′, B) defined by a′α′b if and
only if f(a′)αb. It is easy to see that this makes R : Setop −→ Set a functor. (Note that
R(A) = Rel(A,B), but R is not MorRel(-, B).)
For each A, let ϕA : Rel(A,B) −→ Mor(A,PB) be the bijection that takes a relation α from
A to B to the function that takes an element a ∈ A to the set {b ∈ B|aαb}. (You should
check that this is a bijection.) If we check that the functions ϕA are the components of a
natural transformation from R to Mor(A,PB), the transformation will automatically be a
natural isomorphism by Theorem 1.7.36. To show that it is natural, let α ∈ Rel(A,B) and
a′ ∈ A′. Then

Mor(f,PB)(ϕA(α)(a′)) = ϕA(α)(f(a′)) = {b|f(a′)αb} = {b|a′α′b} = ϕA′(R(f)(a′))

as required.
This natural isomorphism can be taken to be the defining property of a topos. A topos is a
cartesian closed category with some extra structure which produces an object of subobjects
for each object. This structure makes toposes very much like the category of sets.

1.7.50. Example. For each set S, let {}S : S −→ PS be the function which takes an
element x of S to the singleton subset {x}. Then fg is a natural transformation from the
identity functor on Set to the direct image powerset functor P . (See 1.6.3.) However, fg
is not a natural transformation from the identity functor on Set to the universal image
powerset functor (see 1.6.11), and it does not even make sense to ask whether it is a natural
transformation to the inverse image powerset functor.
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1.7.9. Natural transformations of graphs.
We now consider some natural transformations involving the category Grf of graphs and
homomorphisms of graphs.

1.7.51. Example. The map which takes an arrow of a graph to its source is a natural
transformation from A to N . (See 1.6.2.) The same is true for targets. Actually, every
operation in any multisorted algebraic structure gives a natural transformation. Example
1.7.47 was another example of this.

1.7.52. Example. In 1.6.2, we defined the functor N : Grf −→ Set. It takes a graph G to
its set G0 of nodes and a homomorphism ϕ to ϕ0. Now pick a graph with one node ∗ and
no arrows and call it E . Let V = MorGrf (E , -).
A graph homomorphism from the graph E to an arbitrary graph G is evidently determined
by the image of E and that can be any node of G. In other words, nodes of G are ‘essentially
the same thing’ as graph homomorphisms from E to G, that is, as the elements of the set
V (G).
We can define a natural transformation α : V −→ N by defining αG(f) = f0(∗) where G is a
graph and f : E −→ G is a graph homomorphism (arrow of Grf). There must be a naturality
diagram (6) for each arrow of the source category, which in this case is Grf . Thus to see
that α is natural, we require that for each graph homomorphism g : G1 −→ G2, the diagram

(11)

V G1 V G2
-V g

NG1 NG2
-
Ng

?
αG1

?
αG2

commutes. Now Ng is g0 (the node map of g) by definition, and the value of V (which is
a hom functor) at a homomorphism g composes g with a graph homomorphism from the
graph E . Then we have, for a homomorphism f : E −→ G1 (i.e., an element of the upper left
corner of the diagram),

(αG2 ◦ V g)(f) = αG2(g ◦ f) = (g ◦ f)0(∗)
while

(Ng ◦ αG1)(f) = Ng(f0(∗)) = g0(f0(∗))
and these are equal from the definition of composition of graph homomorphisms.
The natural transformation α is in fact a natural isomorphism. This shows that N is natu-
rally isomorphic to a hom functor. Such functors are called representable, and are considered
in greater detail in 2.1.1

1.7.53. Remark (Connected components). A node a can be connected to the node b of a
graph G if it is possible to get from a to b following a sequence of arrows of G in either
direction. In order to state this more precisely, let us say that an arrow a ‘has’ a node n if
n is the domain or the codomain (or both) of a. Then a is connected to b means that there
is a sequence (c0, c1, . . . , cn) of arrows of G with the property that a is a node (either the
source or the target) of c0, b is a node of cn, and for i = 1, . . . , n, ci−1 and ci have a node in
common. We call such a sequence an undirected path between a and b.
It is a good exercise to see that ‘being connected to’ is an equivalence relation. (For reflex-
ivity: a node is connected to itself by the empty sequence.) An equivalence class of nodes
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with respect to this relation is called a connected component of the graph G, and the set of
connected components is called WG.
Connected components can be defined for categories in the same way as for graphs. In that
case, each connected component is a full subcategory.
If f : G −→ H is a graph homomorphism and if two nodes a and b are in the same component
of G , then f(a) and f(b) are in the same component of H , this is because f takes an
undirected path between a and b to an undirected path between f(a) and f(b). Thus the
arrow f induces a function Wf : WG −→ WH, namely the one which takes the component
of a to the component of f(a); and this makes W a functor from Grf to Set.
For a graph G, let βG : NG −→ WG be the set function which takes a node of G to the
component of G that contains that node. (The component is the value of βG at the node,
not the codomain.) Then β : N −→ W is a natural transformation. It is instructive to check
the commutativity of the requisite diagram.

1.7.10. Combining natural transformations and functors.

1.7.54. Remark (Composites of natural transformations). Let F : A −→ B and G : B −→ C
be functors. There is a composite functor G ◦ F : A −→ C defined in the usual way by
G ◦ F (A) = G(F (A)). Similarly, let H, K and L be functors from A to B and α : H −→ K
and β : K −→ L be natural transformations. Recall that this means that for each object A
of A , αA : HA −→ KA and βA : KA −→ LA. Then as in ??.2.11, we define β ◦ α : H −→ L
by (β ◦ α)A = βA ◦ αA.

1.7.55. Remark (Functors and natural transformations). Things get more interesting when
we mix functors and natural transformations. For example, suppose we have three categories
A , B and C , four functors, two of them, F,G : A −→ B and the other two H,K : B −→ C ,
and two natural transformations α : F −→ G and β : H −→ K. We picture this situation as
follows:

(12)
A B

�� HHj

HH ��*
B C

�� HHj

HH ��*

F H

G K

⇓ α ⇓ β

1.7.56. Definition. The natural transformation βF : H◦F −→ K◦F is defined by the formula
(βF )A = β(FA) for an object A of A. The notation β(FA) means the component of the
natural transformation β at the object FA. This is indeed an arrow H(F (A)) −→ K(F (A))
as required. To show that βF is natural requires showing that for an arrow f : A −→ A′ of
A, the diagram

(13)

H(F (A)) K(F (A))-βFA

H(F (A′)) K(F (A′))-
βFA′

?
H(F (f))

?
K(F (f))

commutes, but this is just the naturality diagram of β applied to the arrow F (f) : F (A)
−→ F (A′).

1.7.57. Definition. The natural transformation Hα : H ◦ F −→ H ◦G is defined by letting
(Hα)A = H(αA) for an object A of A, that is the value of H applied to the arrow αA. To
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see that Hα thus defined is natural requires showing that

H(F (A)) H(G(A))-
H(αA)

H(F (A′)) H(G(A′))-
H(αA′)

?
H(F (f))

?
H(G(f))

commutes. This diagram is obtained by applying the functor H to the naturality diagram of
α. Since functors preserve commutative diagrams, the result follows. Note that the proofs
of naturality for βF and for Hα are quite different. For example, the second requires that
H be a functor, while the first works if F is merely an object function.



Representable functors 45

2. Representable functors and the Yoneda Lemma

2.1. Representable functors.
For an arbitrary category C, the functors from C to Set are special because the hom functors
Mor(C, -) for each object C of C are set-valued functors. In this section, we introduce
the concept of representable functor and discuss how certain set theoretic concepts can be
transferred to arbitrary categories by representable functors. The main tool for this is the
Yoneda Lemma, and universal elements, all of which are based on these hom functors.
These ideas have turned out to be fundamental tools for categorists. They are also closely
connected with the concept of adjunction, to be discussed later.
If you are familiar with group theory, it may be illuminating to realize that representable
functors are a generalization of the regular representation, and the Yoneda embedding is
a generalization of Cayley’s Theorem. We have already considered set-valued functors as
actions in 1.7.42.

2.1.1. Definition. A functor F from a category C to the category of sets Set (a set-valued
functor) is said to be representable if there exists an object C of C and a natural isomorphism
α : F −→ MorC(C, -) to the hom functor MorC(C, -); in this case one says that C represents
the functor.
A contravariant functor is representable if there exists an object C of C and a natural
isomorphism α : F −→ MorC(-, C) to the hom functor MorC(-, C); again one says that C
represents the functor.

We have already looked at one example of representable functor in some detail in 1.7.52,
where we showed that the set-of-nodes functor for graphs is represented by the graph with
one node and no arrows. The set-of-arrows functor is represented by the graph with two
nodes and one arrow between them.

2.1.2. Example. The arrow functor A : Grf −→ Set of 1.6.2 is a representable functor
represented by the graph 2 which is pictured as

1
e−→ 2.

Representable functors are used to think of objects as if they were sets. The main aim is to
write morphisms then as set maps.

2.1.3. Definition. In definition 2.5.2 and many like it, what replaces the concept of element
of A is an arbitrary arrow into A. In this context, an arbitrary arrow a : T −→ A is called
a variable element of A, parametrized by T . The set of variable elements of A parametrized
by T is A(T ) := MorC(T,A).
When a is treated as a variable element of A and f has source A, one may write f(a) for
f ◦ a. So we may consider f as a map of variable elements:

f = MorC(T, f) : MorC(T,A) −→ MorC(T,B).

So f takes the variable elements of A with parameter T to the variable elements of B with
the same parameter T .

2.1.4. Proposition. If f, g : A −→ B are morphisms in C then the following are equivalent:

(1) f = g,
(2) f(a) = g(a) for all parameters T and all variable elements a ∈ A(T ).
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Proof. Clearly (1) implies (2). Assume that (2) holds. Take T := A and a = 1A. Then
f(a) = g(a) implies f = f ◦ 1A = f(1A) = g(1A) = g ◦ 1A = g. �

2.2. Terminal and initial objects.
One of the most fundamental objects in the category of sets is a singleton set T = {∗}, a set
with exactly one element. It has the categorical property, that there is exactly one arrow A
−→ T for each set A. The last property can be generalized to arbitrary categories as follows.

2.2.1. Definition. An object T of a category C is called a terminal object if there is exactly
one arrow A −→ T for each object A of C. We usually denote the terminal object by 1 and
the unique arrow A −→ 1 by 〈〉.
The dual notion (see 1.4.13), an object of a category that has a unique arrow to each object
(including itself), is called an initial object and is often denoted 0.

2.2.2. Examples. In the category of sets, the empty set is initial and any one-element set is
terminal. Thus the category of sets has a unique initial object but many terminal objects.
The one-element monoid is both initial and terminal in the category of monoids.
In the category determined by a poset, an object is initial if and only if it is an absolute
minimum for the poset, and it is terminal if and only if it is an absolute maximum. Since
there is no largest or smallest whole number, the category determined by the set of integers
with its natural order (there is an arrow from m to n if and only if m ≤ n) gives an example
of a category without initial or terminal object.
In the category of semigroups, the empty semigroup (see 1.2.9) is the initial object and any
one- element semigroup is a terminal object. On the other hand, the category of nonempty
semigroups does not have an initial object.
Warning: To prove this, it is not enough to say that the initial object in the category of
semigroups is the empty semigroup and that semigroup is missing here! You have to show
that no other object can be the initial object in the smaller category. One way to do this
is to let U be the semigroup with two elements 1 and e with 1 · e = e · 1 = e, 1 · 1 = 1 and
e · e = e. Then any nonempty semigroup S has two homomorphisms to U : the constant
function taking everything to 1 and the one taking everything to e. Thus no nonempty
semigroup S can be the initial object.
In the category of graphs and graph homomorphisms, the graph with one node and one
arrow is the terminal object.

2.2.3. Proposition. Any two terminal (respectively initial) objects in a category C are iso-
morphic.

Proof. Suppose 1 and 1′ are terminal objects. Since 1 is terminal, there is an arrow f : 1′

−→ 1. Similarly, there is an arrow g : 1 −→ 1′. The arrow f ◦ g : 1 −→ 1 is an arrow with
target 1. Since 1 is a terminal object of the category, there can be only one arrow from 1 to
1. Thus it must be that f ◦ g is the identity of 1. An analogous proof shows that g ◦ f is the
identity of 1′. �

2.2.4. Remark. In Set, an element x of a set A is the image of a function from a singleton
set to A that takes the unique element of the singleton to x. Thus if we pick a specific
singleton {∗} and call it 1, the elements of the set A are in one to one correspondence with
Mor(1, A), which is the set of functions from the terminal object to A. Moreover, if f : A
−→ B is a set function and x is an element of A determining the function x : 1 −→ A, then
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the element f(x) of B is essentially the same thing as the composite f ◦x : 1 −→ B. Because
of this, the categorist typically thinks of an element x ∈ A as being the constant x : 1 −→ A.

2.2.5. Definition. An arrow 1 −→ A in a category, where 1 is the terminal object, is called
a constant of type A.

Thus each element of a set is a constant in Set. On the other hand, each monoid M has
just one constant 1 −→ M in the category of monoids, since monoid homomorphisms must
preserve the identity. The more common name in the categorical literature for a constant is
global element of A, a name that comes from sheaf theory.

2.2.6. Example. The identity functor on Set is a representable functor represented by a
terminal object in Set; in other words, MorSet(1, -) is naturally isomorphic to the identity
functor. This can be described by saying that ‘a set is its set of global elements.’

A terminal object is an object with exactly one arrow 〈〉 : A −→ 1 to it from each object A.
So the arrows to 1 are not interesting. Global elements are arrows from the terminal object.
There may be none or many, so they are interesting.
If 1 and 1′ are two terminal objects in a category and x : 1 −→ A and x′ : 1′ −→ A are two
constants with the property that x′ ◦ 〈〉 = x (where 〈〉 is the unique isomorphism from 1 to
1′), then we regard x and x′ as the same constant. Think about this comment as it applies
to elements in the category of sets, with two different choices of terminal object, and you
will see why.
There is an interesting technique to generalize notions in the categories Set to arbitrary
categories C by using representable functors. We apply this technique to terminal objects.

2.2.7. Proposition. An object 1 in an arbitrary category C is a terminal object if and only
if the (contravariant) representable functor MorC(-, 1) : Cop −→ Set maps every object A in
C to a terminal object MorC(A, 1) in Set.

Proof. Since MorC(A, 1) is a singleton for all A, this is nothing but the definition of the
terminal object. �

2.2.8. Remark. The definition of an initial object I is dual to the definition of a terminal
object, so it is a terminal object in Cop. It is characterized by the fact that all MorCop(A, I) =
MorC(I, A) are singleton sets.

28.05.04

2.3. The extension principle.

2.3.1. Remark (Covariant extension of set-theoretic properties). For the notion of
terminal object we should proceed according to the following principle of covariant extension
of set-theoretic properties or extension principle:

(1) We define a (set-theoretic) property P of a set A (or a map f or a diagram D : I
−→ Set) in such a way that this property holds for all sets (resp. maps resp. diagrams)
of the isomorphism class of A (resp. f resp. D), i.e. it holds for all sets (resp. maps
resp. diagrams) isomorphic to A (resp. f resp. D).

(2) We say that the (categorical) property P holds for an object C (resp. morphism f resp.
diagram D : I −→ C) of an arbitrary category C by requiring that the contravariant
representable functor MorC(-, C) (resp. the natural transformation MorC(-, f) resp.
the diagram functor MorC(-, D) : C × I −→ Set) has as images sets MorC(B,C) (resp.
maps MorC(B, f) resp. diagrams MorC(B,D) : I −→ Set) with property P in Set for
all objects B in C.
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(3) We check that the objects (resp. morphisms resp. diagrams) with (categorical)
property P in Set are exactly the sets (resp. maps resp. diagrams) with (set-
theoretic) property P .

The last condition means in our example of a terminal object, that a set 1 is a singleton iff
all MorSet(B, 1) are singletons.
Very often the property P is given by a definition referring to specific elements. The con-
struction of products is an example. Such a property might not hold for all objects of an
isomorphism class. Then we will have to extend the definition to the whole isomorphism
class (see for example section 2.7).

2.3.2. Example. The set of objects of a small category is ‘essentially the same thing’ as
the set of global elements of the category (as an object of Cat). In other words, the set of
objects functor is represented by the terminal object of Cat, which is the category with one
object and one arrow.
The set of arrows of a small category is the object part of a functor that is represented by
the category 2, which is the graph 2 with the addition of two identity arrows.

2.4. Isomorphisms.
In 1.7.16 we have defined the notion of an isomorphism. This is another example of the
principle of covariant extension of set-theoretic properties.
In general, the word ‘isomorphic’ is used in a mathematical context to mean indistinguishable
in form.

2.4.1. Definition. A map f : A −→ B in Set is called an isomorphism if it is bijective.

It is clear that f : A −→ B is an isomorphism iff there is an inverse map g : B −→ A such
that g ◦ f = 1A and f ◦ g = 1B.
In the category of arrows of Set two arrows f : A −→ B and f ′ : A′ −→ B′ are isomorphic if
and only if there are maps g : A −→ A′, h : B −→ B′, g′ : A′ −→ A, and h′ : B′ −→ B such that

h ◦ f = f ′ ◦ g, h′ ◦ f ′ = f ◦ g′,
g′ ◦ g = 1A, g ◦ g′ = 1A′ ,
h′ ◦ h = 1B, h ◦ h′ = 1B′ .

with

(14)

A A′-g

B B′-
h

A-g
′

B-
h′

A A′-g

B B′-
h

?
f

?
f ′

?
f

?
f ′

It is clear that f ′ is bijective if f is bijective, since f ′ = f ′ ◦ g ◦ g′ = h ◦ f ◦ g′ with bijective
maps h, f , and g′. Hence f is bijective if and only if all f ′ that are isomorphic to f are
bijective maps. This is the extension principle 2.3.1 (1). The extension principle 2.3.1 (2)
provides the following definition.

2.4.2. Definition. A morphism f : A −→ B in an arbitrary category C is called invertible or
an isomorphism if MorC(C, f) : MorC(C,A) −→ MorC(C,B) is bijective for all objects C in C.

This definition coincides with the original definition 1.7.16 of an isomorphism by the following
Lemma:
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2.4.3. Lemma. Let f : A −→ B be a morphism in C. f is an isomorphism (as in definition
2.4.2) if and only if there exists a morphism g : B −→ A such that g ◦ f = 1A and f ◦ g = 1B.

Proof. Let f be an isomorphism. Choose C := B. Then MorC(B, f) : MorC(B,A) −→
MorC(B,B) is a bijective map. Thus there is g ∈ MorC(B,A) with f ◦ g = MorC(B, f)(g) =
1B. Furthermore MorC(A, f) : MorC(A,A) −→ MorC(A,B) is bijective hence MorC(A, f)(g ◦
f) = f ◦ g ◦ f = 1B ◦ f = f ◦ 1A = MorC(A, f)(1A) implies g ◦ f = 1A.
Conversely assume that there is a morphism g : B −→ A such that g ◦f = 1A and f ◦g = 1B.
Let C be an object in C and h : C −→ A. Then MorC(C, g) ◦ MorC(C, f)(h) = g ◦ f ◦
h = h hence MorC(C, g) ◦ MorC(C, f) = 1MorC(C,A). Furthermore let k : C −→ B. Then
MorC(C, f)◦MorC(C, g)(k) = f ◦g ◦k = k hence MorC(C, f)◦MorC(C, g) = 1MorC(C,B). Thus
MorC(B, f) : MorC(C,A) −→ MorC(C,B) is a bijective map. �

We now have to show that this definition satisfies extension principle 2.3.1 (3).
Let f : A −→ B be a (categorical) isomorphism in Set. By Lemma 2.4.3 f has an inverse
map g : B −→ A, hence it is bijective.

2.4.4. Proposition. If f : A −→ B and g : B −→ C are isomorphisms in a category with
inverses f−1 : B −→ A and g−1 : C −→ B, then g◦f is an isomorphism with inverse f−1◦g−1.

The proof is omitted. This proposition is sometimes called the ‘Shoe-Sock Theorem’: to
undo the act of putting on your socks, then your shoes, you have to take off your shoes, then
your socks.

2.4.5. Definition. Let C be a category and suppose that A and B are two objects of C. We
say that A is isomorphic to B, written A ∼= B, if there is an isomorphism f : A −→ B.

2.4.6. Definition. An arrow f : A −→ A in a category (with the source and target the same)
is called an endomorphism. If it is invertible, it is called an automorphism.

2.4.7. Examples. Identity arrows in a category are isomorphisms (hence an automorphisms).
In the category determined by a partially ordered set, the only isomorphisms are the identity
arrows.
If, in the category determined by a monoid, every arrow is an isomorphism then the monoid
is a group. Because of this, a category in which every arrow is an isomorphism is called a
groupoid.
In the category of semigroups and semigroup homomorphisms, and likewise in the category
of monoids and monoid homomorphisms, the isomorphisms are exactly the bijective homo-
morphisms. On the other hand, in the category of posets and monotone maps, there are
bijective homomorphisms that have no inverse.

2.4.8. Definition. A property that objects of a category may have is preserved by isomor-
phisms if for any object A with the property, any object isomorphic to A must also have the
property.

From the categorist’s point of view there is no reason to distinguish between two isomorphic
objects in a category, since the interesting fact about a mathematical object is the way it
relates to other mathematical objects and two isomorphic objects relate to other objects
in the same way. For this reason, the concept of wide subcategory (definition 1.4.10) is
not in the spirit of category theory. What really should matter is whether the subcategory
contains an isomorphic copy of every object in the big category. This motivates the following
definition.
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2.4.9. Definition. A subcategory D of a category C is said to be a representative subcategory
if every object of C is isomorphic to some object of D.

2.4.10. Example. Let D be the category whose objects are the empty set and all sets of the
form {1, 2, . . . , n} for some positive integer n and whose arrows are all the functions between
them. Then D is a representative subcategory of Fin (Definition 2.1.12), since there is a
bijection from any nonempty finite set to some set of the form {1, 2, . . . , n}. Note that D is
also full in Fin and that D is a small category.

2.5. Monomorphisms and epimorphisms.
Recall that a function f : A −→ B in Set is injective if for any x, y ∈ A, if x 6= y, then
f(x) 6= f(y).

2.5.1. Definition. A map f : A −→ B in Set is called a (set-theoretic) monomorphism if it
is injective.

Let the two arrows f : A −→ B and f ′ : A′ −→ B′ be isomorphic with bijective g : A −→ A′,
h : B −→ B′, g′ : A′ −→ A, and h′ : B′ −→ B as in diagram (14). Then f ′ is injective if f is
injective. In fact assume f ′(x) = f ′(y). Then fg′(x) = h′f ′(x) = h′f ′(y) = fg′(y) implies
g′(x) = g′(y) and hence x = y since g′ is bijective and f is injective.
So the notion of monomorphism satisfies the extension principle 2.3.1 (1). The extension
principle 2.3.1 (2) provides the following definition.

2.5.2. Definition. (1) A morphism f : A −→ B in an arbitrary category C is called a
(categorical) monomorphism if MorC(C, f) : MorC(C,A) −→ MorC(C,B) is injective
for all objects C in C.

(2) A morphism f : A −→ B in an arbitrary category C is called an epimorphism if
MorCop(C, f) : MorCop(C,A) −→ MorCop(C,B) is injective for all objects C in C.

2.5.3. Proposition. (1) A morphism f : A −→ B is a monomorphism if and only if it
satisfies the left cancelation property:
• ∀C ∈ C, ∀g, h : C −→ A:

f ◦ g = f ◦ h =⇒ g = h.

(2) A morphism f : A −→ B is an epimorphism if and only if it satisfies the right
cancelation property:
• ∀C ∈ C, ∀g, h : B −→ C:

g ◦ f = h ◦ f =⇒ g = h.

Proof. The left cancelation property says that

MorC(C, f) : MorC(C,A) −→ MorC(C,B)

is injective for all C in C.
The right cancelation properties follows by duality. �

03.06.04
We now have to show that the definition of a monomorphism satisfies the extension principle
2.3.1 (3).

2.5.4. Proposition. A map in Set is a (categorical) monomorphism if and only if it is
injective.
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Proof. Let f : A −→ B be a monomorphism in Set. Then MorSet(C, f) : MorSet(C,A)
−→ MorSet(C,B) is injective for all sets C. Let x, y ∈ A with f(x) = f(y). Let C be
a terminal object {∗} in Set. Then there are maps g, h : {∗} −→ A with g(∗) = x and
h(∗) = y. The composites satisfy f ◦ g(∗) = f(x) = f(y) = f ◦ h(∗) hence f ◦ g = f ◦ h and
g = h. So we get x = g(∗) = h(∗) = y which shows that f is injective.
Conversely assume that f is injective. Let g, h : C −→ A maps with f ◦ g = f ◦ h. Then
f(g(x)) = f(h(x)) for all x ∈ C, hence g(x) = h(x) and g = h. Thus f is left cancelable and
hence a monomorphism. �

Using the notation of variable elements of 2.1.3, f is a monomorphism if for any variable
elements x, y : T −→ A, if x 6= y, then f(x) 6= f(y), i.e. f : A(T ) −→ B(T ) is injective for all
parameters T .

2.5.5. Remark. Now that we have completed all three steps of the extension principle we
may abbreviate the term ‘categorical monomorphism’ just to ‘monomorphism’.
An arrow, that is a monomorphism in a category, is a monomorphism in any subcategory it
happens to be in. However, an arrow can be a monomorphism in a subcategory of a category
C without being a monomorphism in C.

2.5.6. Examples. In most familiar categories of sets with structure and functions that pre-
serve structure, the monomorphisms are exactly the injective functions. In particular, the
monomorphisms in Mon are the injective homomorphisms (see 2.5.7). This is more evidence
that definition 2.5.2 is the correct categorical definition generalizing the set-theoretic concept
of injectivity.
In the category determined by a poset, every arrow is a monomorphism. A monomorphism
of the category determined by a monoid is generally called left cancelable.
An isomorphism in any category is a monomorphism. For suppose f is an isomorphism and
assume f ◦ x = f ◦ y. Then x = f−1 ◦ f ◦ x = f−1 ◦ f ◦ y = y.

2.5.7. Proposition. A monomorphism in the category of monoids is an injective homomor-
phism, and conversely.

Proof. Let f : M −→ M ′ be a monoid homomorphism. Suppose it is injective. Let g, h : V
−→ M be homomorphisms for which f ◦ g = f ◦ h. For any v ∈ V , f(g(v)) = f(h(v)), so
g(v) = h(v) since f is injective. Hence g = h. It follows that f is a monomorphism.
Essentially the same proof works in other categories of structures and structure-preserving
maps – if the map is injective it is a monomorphism for the same reason as in Set (see
Exercise ??).
However, the converse definitely does not work that way. The proof for Set in Theorem
2.5.4 above uses distinct global elements x and y, but a monoid need not have distinct global
elements. For example, let N denote the monoid of nonnegative integers with addition as
operation. Then the only global element of N on addition is 0. So we have to work harder
to get a proof.
Suppose f is a monomorphism. Let x, y ∈ M be distinct elements. Let px : N −→ M take
k to xk and similarly define py; px and py are homomorphisms since for all x, xk+n = xkxn.
Since x 6= y, px and py are distinct homomorphisms.
If f(x) = f(y) then for all positive integers k, f(px(k)) = f(xk) = f(x)k = f(y)k = f(yk) =
f(py(k)) so that f ◦ px = f ◦ py which would mean that f is not a monomorphism. Thus we
must have f(x) 6= f(y) so that f is injective. �



52 Representable functors and the Yoneda Lemma

The trick in the preceding proof was to find an object (N here) that allows one to distinguish
elements of the arbitrary monoid M . In Set, the corresponding object was the terminal
object, but that does not work for Mon: each monoid has exactly one global element
because a map from the one-element monoid must have the identity element as value.
We now state two propositions that give some elementary properties of monomorphisms.

2.5.8. Proposition. Suppose f : A −→ B and g : B −→ C in a category C. Then

(1) If f and g are monomorphisms, so is g ◦ f .
(2) If g ◦ f is a monomorphism, so is f .

Proof. (1) The extension principle and the definition 2.5.2 of monomorphisms give a short
proof. Using MorC(T, g) ◦MorC(T, f) = MorC(T, g ◦ f) we get:

f, g are monomorphisms ⇐⇒
MorC(T, f),MorC(T, g) are injective for all objects T in C =⇒
MorC(T, g ◦ f) is injective for all objects T in C ⇐⇒
g ◦ f is a monomorphism.

(2) With the same arguments we get:

g ◦ f is a monomorphism ⇐⇒
MorC(T, g ◦ f) is injective for all objects T in C =⇒
MorC(T, f) is injective for all objects T in C ⇐⇒
f is a monomorphism.

�

2.5.9. Proposition. Let m : C −→ 0 be a monomorphism into an initial object. Then m is
an isomorphism.

Proof. Let i : 0 −→ C be the unique arrow given by definition of initial object. Then m◦i and
10 are both arrows from 0 to 0 and so must be the same. It remains to show that i◦m = 1C .
This follows from the fact that m ◦ i ◦m = m ◦ 1C and that m is a monomorphism. �

2.5.10. Remark (Properties of Cat). We note some properties without proof. The initial
category has no objects and, therefore, no arrows. The terminal category has just one object
and the identity arrow of that object. To any category C there is just one functor that
takes every object to that single object and every arrow to that one arrow. A functor is
a monomorphism in Cat if and only if it is injective on both objects and arrows. The
corresponding statement for epimorphisms is not true.

2.5.11. Example. Not all monomorphisms, however, coincide with injective maps between
objects in C, even if there is an underlying (faithful) functor from C to Set. For an example
consider the category of divisible abelian groups.
An abelian group G is called divisible if nG = G for each natural number n ≥ 1, i.e. for each
g ∈ G and n there is an element g′ ∈ G with ng′ = g.
Consider the residue class homomorphism ν : Q −→ Q/Z from rational numbers to rational
numbers modulo integers. This is a monomorphism in the category of divisible abelian
groups (with group homomorphisms as morphisms). Let f, g : A −→ Q be homomorphisms
with f 6= g. Then there is a ∈ A with 0 6= f(a) − g(a) = r/s ∈ Q. Let b ∈ A with rb = a.
Then r(f(b)− g(b)) = f(a)− g(a) = r/s, hence f(a)− g(a) = 1/s and νf(b) 6= νg(b). This
implies νf 6= νg hence ν is a monomorphism.
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For the dual notion of epimorphisms we have similar properties.

2.5.12. Proposition. A set function is an epimorphism in Set if and only if it is surjective.

Proof. Suppose f : S −→ T is surjective, and g, h : T −→ X are two functions. If g 6= h, then
there is some particular element t ∈ T for which g(t) 6= h(t). Since f is surjective, there is
an element s ∈ S for which f(s) = t. Then g(f(s)) 6= h(f(s)), so that g ◦ f 6= h ◦ f .
Conversely, suppose f is not surjective. Then there is some t ∈ T for which there is no s ∈ S
such that f(s) = t. Now define two functions g : T −→ {0, 1} and h : T −→ {0, 1} as follows:

(i) g(x) = h(x) = 0 for all x in T except t.
(ii) g(t) = 0.
(iii) h(t) = 1.

Then g 6= h but g ◦ f = h ◦ f , so f is not an epimorphism. �
04.06.04

2.5.13. Proposition. Let f : A −→ B and g : B −→ C. Then

(1) If f and g are epimorphisms, so is g ◦ f .
(2) If g ◦ f is an epimorphism, so is g.

Proof. This is the dual of Proposition 2.5.8. �

2.5.14. Remark. In Set an arrow that is both monic and epic is bijective, and hence an
isomorphism. In general, this need not happen. One example is the inclusion of Z in Q in
Ri described in ?? (an inverse would also have to be an inverse in Set, but there isn’t one
since the inclusion is not bijective).
An easier example is the arrow in

C D-
���
- ���

-

from C to D. It is both monic and epic (vacuously) but there is no arrow from D to C so
it is not an isomorphism because there is no arrow in the category that could be its inverse.

If we try to generalize the notion of a surjective map according to the extension principle we
obtain the notion of a split epimorphism. We first introduce this notion.
An arrow f : A −→ B in a category is an isomorphism if it has an inverse g : B −→ A which
must satisfy both the equations g ◦ f = 1A and f ◦ g = 1B. If it only satisfies the second
equation, f ◦ g = 1B, then f is a left inverse of g and (as you might expect) g is a right
inverse of f .

2.5.15. Definition. Suppose f has a right inverse g. Then f is called a split epimorphism
(f is split by g) and g is called a split monomorphism.

2.5.16. Lemma. Every surjection in Set is a split epimorphism.

Proof. If f : A −→ B, then choose, for each b ∈ B, some element a ∈ A such that f(a) = b.
The existence of such an a is guaranteed by surjectivity. Define g(b) to be a. Then f(g(b)) =
f(a) = b for any b ∈ B, so f ◦ g = 1B. �

The so-called axiom of choice is exactly what is required to make all those generally infinitely
many choices.
And in fact, one possible formulation of the axiom of choice is that every epimorphism splits.
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2.5.17. Proposition. A morphism f : A −→ B in C is a split epimorphism if and only if

MorC(C, f) : MorC(C,A) −→ MorC(C,B)

is surjective for all objects C in C.

Proof. Let f have the splitting g : B −→ A. Let h ∈ MorC(C,B). Then g ◦ h ∈ MorC(C,A)
and f ◦ (g ◦ h) = (f ◦ g) ◦ h = h so that MorC(C, f) is surjective.
Conversely assume that all MorC(C, f) are surjective. Choose C = B and let g ∈ MorC(B,A)
with MorC(B, f)(g) = 1B ∈ MorC(B,B). Then f ◦ g = 1B so that f is a split epimorphism.

�

So we have checked all items for the extension principle and a split epimorphism is the
covariant extension of the notion of surjective map in Set.
Epimorphisms in other categories may not be split. The function that includes the monoid of
non-negative integers (N,+) on addition in the monoid of all the integers (Z,+) on addition
certainly does not have a right inverse in the category of monoids, since it does not have a
right inverse in the category of sets. There are plenty of examples of epimorphisms of monoids
which are surjective which have no right inverse in the category of monoids, although of
course they do in the category of sets. One such epimorphism of monoids is the function
that takes the integers mod 4 on addition to the integers mod 2 on addition, with 0 and 2
going to 0 and 1 and 3 going to 1.
Unlike epis, which always split in the category of sets, monics in Set do not always split.
Every arrow out of the empty set is monic and, save for the identity of ∅ to itself, is not
split. On the other hand, every monic with nonempty source does split. We leave the details
to the reader.

2.6. Subobjects.
The concept of subobject is intended to generalize the concept of subset of a set, submonoid
of a monoid, subcategory of a category, and so on. This idea cannot be translated exactly
into categorical terms, since the usual concept of subset violates the strict typing rules of
category theory: to go from a subset to a set requires a change of type, so there is no feasible
way to say that the same element x is in both a set and a subset of the set. Because of
this, any categorical definition of subobject will not give exactly the concept of subset when
applied to the category of sets. However, the usual definition of subobject produces, in Set,
a concept that is naturally equivalent to the concept of subset. The definition, when applied
to sets, defines subset in terms of the inclusion function.
We need a preliminary idea. Let C/C be a comma category. We call an object f : A −→ C
monic if f is a monomorphism in C.

2.6.1. Proposition. If f : A −→ C and f ′ : A′ −→ C are monic, then there is at most one
morphism g : (A, f) −→ (A′, f ′) in C/C.

Proof. Given g, g′ : (A, f) −→ (A′, f ′). Then f ′ ◦ g = f = f ′ ◦ g′ in C. Since f ′ is a
monomorphism in C we get g = g′. �

2.6.2. Corollary. If there are morphisms g : (A, f) −→ (A′, f ′) and h : (A′, f ′) −→ (A, f),
then g is an isomorphism and h = g−1.

Proof. By the proposition we have h ◦ g = 1A : (A, f) −→ (A, f) and g ◦ h = 1A′ : (A′, f ′)
−→ (A′, f ′) so that g and h are mutually inverse morphisms. �
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2.6.3. Remark. Isomorphisms between objects (A, f) in C define an equivalence relation.

The equivalence classes are partially ordered by (A, f) ≤ (A′, f ′) iff there is a morphism
g : (A, f) −→ (A′, f ′).

2.6.4. Definition. In a category C, a subobject of an object C is an equivalence or isomor-
phism class of monics in C/C. The subobject is a proper subobject if it does not contain
1C : C −→ C.

Observe that it follows immediately from Proposition 2.5.9 that an initial object in a category
has no proper subobjects.

2.6.5. Remark. Let α : F −→ G be a natural transformation between models of G in D.
Suppose each component of α is a monomorphism in D. Then it is easy to prove that α is
a monomorphism in Mod(G,D). The converse is not true.

2.7. Products.
Another application of the extension principle relates to products. We first define the product
of two sets.

2.7.1. Definition. If A and B are sets, the Cartesian product A×B is the set of all ordered
pairs with first coordinate in A and second coordinate in B; in other words,

A×B = {(a, b)|a ∈ A and b ∈ B}.
The coordinates define functions pA = proj1 : A× B −→ A and proj2 = proj2 : A× B −→ B
called the coordinate functions, or the projections.

Now this definition does not satisfy the first property for the extension principle, a set X
isomorphic to A×B will in general not consist of pairs of elements. So the sets {0, 1, 2, 3, 4, 5}
and {0, 1, }×{0, 1, 2} are clearly isomorphic, because both have 6 elements, but the first set
does not consist of pairs. So here we have a set theoretic definition that refers to specific
properties of the elements.
All the more it is interesting to find out that there is an example for the extension principle
hidden behind their concept.

2.7.2. Proposition. Let A, B be sets. The Cartesian product A × B together with the
projections proj1 : A × B −→ A and proj2 : A × B −→ B satisfies the following universal
property:

(*) for every set T and every pair of maps f : T −→ A, g : T −→ B there is a unique map
(f, g) : T −→ A×B such that the diagram

A A×B�
proj1

B-
proj2

(f, g)

T

?

f
�

�
�

��	

g
@

@
@

@@R

commutes, i.e. proj1 ◦(f, g) = f and proj2 ◦(f, g) = g.

Proof. We first show the uniqueness of the map (f, g) : T −→ A× B: Given T , f , and g. If
h, k : T −→ A × B are maps such that proj1 ◦h = f = proj1 ◦k and proj2 ◦h = g = proj2 ◦k
then for any t ∈ T we have h(t) =: (a, b) ∈ A × B and k(t) =: (a′, b′) ∈ A × B. Then
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we get a = proj1(a, b) = (proj1 ◦h)(t) = f(t) = (proj1 ◦k)(t) = proj1(a
′, b′) = a′ and

b = proj2(a, b) = (proj2 ◦h)(t) = g(t) = (proj2 ◦k)(t) = proj2(a
′, b′) = b′, hence h(t) =

(a, b) = (a′, b′) = k(t) and h = k. This shows the uniqueness of the map h.
Existence: From the uniqueness proof we obtain a reasonable definition of (f, g). For t ∈ T
we define

(f, g)(t) := (f(t), g(t)).

This is a map from T toA×B. Since it satisfies (proj1 ◦(f, g))(t) = f(t) and (proj2 ◦(f, g))(t) =
g(t) we get proj1 ◦(f, g) = f and proj2 ◦(f, g) = g. �

Obviously any triple (P, p′A : P −→ A, p′B : P −→ B) isomorphic to (A × B, proj1, proj2)
satisfies the same universal property. In fact let h : P −→ A × B be an isomorphism such
that

P

A

p′A
����

B

p′B
HHHj

A×B
proj1 HHHY proj2���*

?

h

commutes. Let T be a set and let f : T −→ A, g : T −→ B be maps. Then the map
h−1 ◦ (f, g) : T −→ P satisfies p′A ◦ (h−1 ◦ (f, g)) = f and p′B ◦ (h−1 ◦ (f, g)) = g. It is an easy
exercise to show that this map is unique with this property. So the universal property given
in the theorem satisfies the first property of the extension principle.
In arbitrary categories we cannot construct the Cartesian product of two objects since there
are no elements and we thus cannot construct pairs of elements. So when we use the notation
A×B in an arbitrary category this cannot mean a set of pairs of elements. It will stand for
an arbitrary object with additional properties described by morphisms.
The extension principle 2.3.1 (2) provides the following definition.

2.7.3. Definition. Given objects A and B in a category C. An object A× B together with
morphisms pA : A×B −→ A and pB : A×B −→ B is called a (not the!) (categorical) product
of A and B, and the morphisms pA, pB are called projections, if for all objects T in C there
is an isomorphism of sets

MorC(T,A×B) ∼= MorC(T,A)×MorC(T,B)

(where MorC(T,A)×MorC(T,B)is the Cartesian product) such that the diagram

MorC(T,A×B)

MorC(T,A)

MorC(T, pA)
����������)

MorC(T,B)

MorC(T, pB)
PPPPPPPPPPq

MorC(T,A)×MorC(T,B)

pMorC(T,A)

PPPPPPPPPPi

pMorC(T,B)

����������1

?

h

commutes.
11.06.04

2.7.4. Proposition (Characterization of products by the universal mapping prop-
erty). Given objects A and B in a category C. An object A × B together with morphisms
pA : A×B −→ A and pB : A×B −→ B is a (categorical) product,
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(**) if and only if for each object T ∈ C and each pair of morphisms f : T −→ A, g : T
−→ B there is a unique morphism (f, g) : T −→ A×B such that the diagram

A A×B�
pA B-

pB

(f, g)

T

?

f
�

�
�

��	

g
@

@
@

@@R

commutes, i.e. pA ◦ (f, g) = f and pB ◦ (f, g) = g.

Proof. ⇐=: Let (A × B, pA, pB) be a product of A and B. Let T be an object in C and
let u ∈ MorC(T,A × B). Define f := pA ◦ u : T −→ A und g := pB ◦ u : T −→ B. Then
(f, g) ∈ MorC(T,A)×MorC(T,B). Now we define h(u) := (f, g) ∈ MorC(T,A)×MorC(T,B)
and get MorC(T, pA)(u) = pA ◦ u = f = pMorC(T,A) ◦ h(u) and MorC(T, pB)(u) = pB ◦ u = g =
pMorC(T,B) ◦ h(u).
It remains to show that h is bijective. We construct the inverse map as

k : MorC(T,A)×MorC(T,B) −→ MorC(T,A×B) k((f, g)) := u

where (f, g) ∈ MorC(T,A)×MorC(T,B). By the universal property of the product there is a
unique u : T −→ A×B such that pA ◦ u = f and pB ◦ u = g. We use this u for the definition
of the map h.
Let (f, g) ∈ MorC(T,A)×MorC(T,B). Then (h ◦ k)((f, g)) = h(u) = (pA ◦ u, pB ◦ u) = (f, g)
hence (i ◦ u) = 1MorC(T,A)×MorC(T,B).
Let u ∈ MorC(T,A×B). Then (k ◦ h)(u) = k((f, g)) = k((pA ◦ u, pB ◦ u)) = u′ where u′ : T
−→ A × B is the unique morphism such that pA ◦ u′ = pA ◦ f and pB ◦ u′ = pB ◦ u hence
u = u′ and (k ◦ h) = 1MorC(T,A×B).
=⇒: Given morphisms f : T −→ A and g : T −→ B. Then (f, g) is an element of MorC(T,A)×
MorC(T,B).
So there is a unique morphism u := h−1((f, g)) satisfying pMorC(T,A)◦h(u) = f and pMorC(T,B)◦
h(u) = g. Equivalently MorC(T, pA)(u) = f = pA ◦ u and MorC(T, pB)(u) = g = pB ◦ u with
a unique u. Thus (A×B, pA, pB) is a product of A and B. �

2.7.5. Proposition. The family of isomorphisms

hT : MorC(T,A×B) −→ MorC(T,A)×MorC(T,B)

such that

MorC(T,A×B)

MorC(T,A)

MorC(T, pA)
����������)

MorC(T,B)

MorC(T, pB)
PPPPPPPPPPq

MorC(T,A)×MorC(T,B)

pMorC(T,A)

PPPPPPPPPPi

pMorC(T,B)

����������1

?

hT

commute for all objects T in C, is a natural isomorphism in T , A, and B.

Proof. We show that the inverses

kT : MorC(T,A)×MorC(T,B) −→ MorC(T,A×B)
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as constructed in Proposition 2.7.4 form a natural transformation. So for t : T ′ −→ T we
have to show that the diagram

MorC(T,A)×MorC(T,B) MorC(T,A×B)-kT

MorC(T
′, A)×MorC(T

′, B) MorC(T
′, A×B)-kT ′

?
MorC(t, A)×MorC(t, B)

?
MorC(t, A×B)

commutes. Let (f, g) ∈ MorC(T,A) ×MorC(T,B). Then [f, g] := kT ((f, g)) is the unique
morphism satisfying pA ◦ [f, g] = f and pB ◦ [f, g] = g. The two sides of the square give two
morphisms [f ◦ t, g ◦ t] = (kT ◦MorC(t, A)×MorC(t, B))((f, g)) and [f, g] ◦ t = (MorC(f, A×
B) ◦ kT ′)((f, g)). We have to show that these are equal. Observe that a morphism u ∈
MorC(T

′, A× B) is uniquely determined by the morphisms pA ◦ u and pB ◦ u. We get from
pA ◦ [f, g] ◦ t = f ◦ t = pA ◦ [f ◦ t, g ◦ t] and pB ◦ [f, g] ◦ t = g ◦ t = pB ◦ [f ◦ t, g ◦ t] the result
[f, g] ◦ t = [f ◦ t, g ◦ t].
Now let a : A −→ A′ and b : B −→ B′ be given. Then the diagram

MorC(T,A)×MorC(T,B) MorC(T,A×B)-k

MorC(T,A
′)×MorC(T,B

′) MorC(T,A
′ ×B′)-k

?
MorC(T, a)×MorC(T, b)

?
MorC(T, a× b)

commutes since pA′ ◦ (MorC(T, a × b) ◦ k)((f, g)) = pA′ ◦ (a × b) ◦ [f, g]) = a ◦ pA ◦ [f, g] =
a◦f = p′A([a◦f, b◦f ]) = p′A◦(k◦(MorC(T, a)×MorC(T, b)))((f, g)) and pB′ ◦(MorC(T, a×b)◦
k)((f, g)) = pB′◦(a×b)◦[f, g]) = b◦pB◦[f, g] = b◦f = p′B([a◦f, b◦f ]) = p′B◦(k◦(MorC(T, a)×
MorC(T, b)))((f, g)) implies MorC(T, a× b) ◦ k = k ◦ (MorC(T, a)×MorC(T, b)). �

Before we show that the definition of a product satisfies the extension principle 2.3.1 (3) we
show a general uniqueness theorem.

2.7.6. Theorem. Let A and B be objects of a category C. If (P, pA, pB) and (P ′, p′A, p
′
B)

are products of A and B in C, then there is a unique isomorphism k : P ′ −→ P such that
pA ◦ k = p′A and pB ◦ k = p′B.

Proof. Since (P, pA, pB) satisfies the universal property (**) there is a unique morphism k : P ′

−→ P such that pA ◦ k = p′A and pB ◦ k = p′B. Symmetrically there is a unique morphism
h : P ′ −→ P such that p′A ◦ h = pA and p′B ◦ h = pB. Consider the following commutative
diagram:

P

A

pA

�
�

�
�

��	
P ′

p′A
���)

P
pA PPPi

P ′

p′A

@
@

@
@

@@I

B

pB

@
@

@
@

@@Rp′B
PPPq

pB���1

p′B

�
�

�
�

���

?
h

?
k

?
h

?

1P

?

1P ′
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Since pA ◦k ◦h = pA = pA ◦1P and pB ◦k ◦h = pB = pB ◦1P we get by uniqueness k ◦h = 1P .
Symmetrically we get h◦k = 1P ′ , thus h is an isomorphism with the required properties. �

We now have to show that the definition of a product satisfies the extension principle 2.3.1
(3).

2.7.7. Proposition. Given sets A and B. A set P together with two maps p′A : P −→ A and
p′B : P −→ B satisfies the universal property (*) of proposition 2.7.2 if and only if there is
an isomorphism h : P −→ A×B such that pA ◦ h = p′A and pB ◦ h = p′B.

Proof. By proposition 2.7.2 the Cartesian product A × B and the projections pA : A × B
−→ A and pB : A×B −→ B satisfy the universal property of proposition 2.7.4. Following the
proof of proposition 2.7.2 we have shown that (P, p′A, p

′
B) also satisfies the universal property

(*).
Conversely if a triple (P, p′A, p

′
B) satisfies the universal property (*) resp. (**) then by

theorem 2.7.6 P and A×B are isomorphic by h with pA ◦ h = p′A and pB ◦ h = p′B. �

So in the future we will assume that products are given by and satisfy property (**).
All propositions and theorems of this section of products are as well valid for products with
more than two factors, for products of arbitrary families of objects (Ai|i ∈ I).

2.7.8. Definition. Let (Ai|i ∈ I) be a family of objects in a category C. An object
∏

i∈I Ai
together with a family of morphisms (pj :

∏
i∈I Ai −→ Aj|j ∈ I) is called a product, the

morphisms pj :
∏

i∈I Ai −→ Aj are called projections, if for each object T ∈ C and each family
of morphisms (fi : T −→ Ai|i ∈ I) there is a unique morphism [fi|i ∈ I] : T −→

∏
i∈I Ai such

that for all j ∈ I the diagrams

∏
i∈I Ai Aj-

pj

T

?

[fi] fj

@
@

@
@@R

commute.

These products consist of an object and a family of projections and are denoted

(
∏
i∈I

Ai, (pj :
∏
i∈I

Ai −→ Aj|j ∈ I)).

We leave the details to the reader.
If a category C has a product for any two objects in C then it is clear that it has products
for any finite non-empty family of objects. If C has a product for any two objects in C and
a terminal object then it has products for any finite family of objects.

2.7.9. Definition. (1) A category C is called a category with finite products, if there is
a product in C for any finite family of objects (empty families included).

(2) A category C is called a category with products, if there is a product in C for any
family of objects (empty families included).

17.06.04
The dual notion of a product the notion of a coproduct.

2.7.10. Definition. Let (Ai|i ∈ I) be a family of objects in a category C. An object
∐

i∈I Ai
together with a family of morphisms (ιj : Aj −→

∐
i∈I Ai|j ∈ I) is called a coproduct, the

morphisms ιj : Aj −→
∐

i∈I Ai are called injections, if for each object T ∈ C and each family
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of morphisms (fi : Ai −→ T |i ∈ I) there is a unique morphism 〈fi|i ∈ I〉 :
∐

i∈I Ai −→ T such
that for all j ∈ I the diagrams

Aj
∐

i∈I Ai-
ιj

T
?

〈fi〉fj

@
@

@
@@R

commute.

2.7.11. Examples. (1) The Cartesian products of semigroups, monoids, groups, abelian
groups, modules, vector spaces, rings, algebras, Lie algebras with componentwise
operations are products.

(2) The Cartesian product of topological spaces with the product topology is a product.
Here and in the first example the more precise statement is that there exist products
and that the underlying functor to sets maps these products and their projections to
Cartesian products. So there is a product structure on the Cartesian products of the
underlying sets, but the product structure has to be determined in each case.

(3) In the category of fields there are in general no products.
(4) Let G and H be two graphs. The product G × H in the category of graphs and

homomorphisms is defined as follows: (G×H)0 = G0×H0. An arrow from (g, h) to
(g′;h′) is a pair (a, b) with a : g −→ g′ in G and b : h −→ h′ in H. The projections are
the usual first and second projections.

(5) We have already seen in 1.3.8 that any poset (partially ordered set) has a correspond-
ing category structure C(P ). Let P be a poset and x and y two objects of C(P ) (that
is, elements of P ). Let us see what, if anything, is their product. A product must be
an element z together with a pair of arrows z −→ x and z −→ y, which is just another
way of saying that z ≤ x and z ≤ y. The definition of product also requires that for
any w ∈ P , given an arrow w −→ x and one w −→ y, there is an arrow w −→ z.

This translates to w ≤ x and w ≤ y implies w ≤ z which, together with the fact
that z ≤ x and z ≤ y, characterizes z as the infimum of x and y, often denoted x∧ y.
Thus the existence of products in such a category is equivalent to the existence of
infimums.

In particular, we see that products generalize a well- known construction in posets.
Note that a poset that lacks infimums provides an easy example of a category without
products.

(6) The product of categories as defined in 1.4.12 is the product of the categories in Cat.
(7) The coproduct of vector spaces is the direct sum.
(8) The coproduct of two abelian groups in the category of abelian groups is the direct

sum or the product.
(9) The coproduct of two finite abelian groups (6= 0) in the category of groups is an

infinite nonabelian group.

2.7.12. Proposition. If A is an object in a category with a terminal object 1, then

1 A�
〈〉

A-1A

is a product diagram.
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Proof. A cone over A and 1 has to have this form, where f : B −→ A is any arrow.

1 A�
〈〉 A-

1A

T

?

f〈〉
�

�
�

��	

f
@

@
@

@@R

Clearly the only possible arrow in the middle is f . �

2.7.13. Definition and Remark. Our notation A×B means that A×B is the vertex of a
product cone with base the discrete diagram D with D(1) = A and D(2) = B. Then B ×A
denotes the product given by the diagram

B B × A�p1
A-p2

where we use p1 and p2 to avoid confusing them with the arrows proj1 and proj2 of the
product diagram. (Of course, this is an ad hoc solution. If one had to deal with this

situation a lot it would be necessary to introduce notation such as projA,B1 and projB,A1 .)
Then this is a product diagram:

A B × A�p2
B-p1

It follows from Theorem 2.7.6 that there is an isomorphism [p2, p1] : B×A −→ A×B (called
the switch morphism) that commutes with the projections. Its inverse is [proj2, proj1] : A×B
−→ B × A.

2.8. Equalizers.
If A and B are sets and f, g : A −→ B are functions, it is an important task to collect all
solutions a ∈ A of the equation

f(a) = g(a).

This is more general that solving an equation f(a) = 0 since B does not necessarily contain
some element 0.
Again we want to apply the extension principle in this case.

2.8.1. Definition. If A and B are sets and f, g : A −→ B are functions, the equalizer Eq(f, g)
is the subset Eq(f, g) ⊆ A consisting of all elements a ∈ A for which f(a) = g(a); in short,

Eq(f, g) = {a ∈ A|f(a) = g(a)}.

Together with the set Eq(f, g) there is the inclusion function j : Eq(f, g) −→ A.

To make this into a categorical concept and apply the extension principle, we first observe
that Eq(f, g) is a subset of A. So it has a property that cannot directly be transfered to
isomorphic sets. But there is a universal property connected with this notion that will give
us the correct concept.

2.8.2. Proposition. Let A and B be sets and f, g : A −→ B be functions. The equalizer
Eq(f, g) together with the inclusion map j : Eq(f, g) −→ A satisfies the following universal
property:

• f ◦ j = g ◦ j;
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• for every set T and every map h : T −→ A, such that f ◦ h = g ◦ h, there is a unique
map k : B −→ Eq(f, g) such that the diagram

Eq(f, g) A-j B
-f
-

g

T

k

�
�

�
��	 ?

h

commutes, i.e. j ◦ k = h.

Proof. We first show the uniqueness of the map k : T −→ Eq(f, g): Suppose that j : Eq(f, g)
−→ A is the inclusion function: j(a) = a for a ∈ Eq(f, g). Given T and h. If k, k′ : T −→
Eq(f, g) are maps such that j ◦k = h = j ◦k′ then for any t ∈ T we have k(t) =: a ∈ Eq(f, g)
and k′(t) =: a′ ∈ Eq(f, g). Then we get a = j(a) = (j ◦k)(t) = h(t) = (j ◦k′)(t) = j(a′) = a′,
hence k(t) = a = h(t) = a′ = k′(t) and k = k′. This shows the uniqueness of the map k.
Existence: From the uniqueness proof we obtain a reasonable definition of k. For t ∈ T we
define k(t) := h(t). This is a map from T to Eq(f, g) since h(t) satisfies f(h(t)) = (f ◦h)(t) =
(g ◦ h)(t) = g(h(t)). Then we get j ◦ k = h. �

Obviously any pair (E, ι) isomorphic to (Eq(f, g), j) satisfies the same universal property.
In fact given an isomorphism i : E −→ Eq(f, g) such that

Eq(f, g) A-j

E

i

�
�

�
��	 ?

ι

commutes. Let T be a set and h : T −→ A be a map such that f ◦ h = g ◦ h. Let k : T
−→ Eq(f, g) be the unique map that satisfies j ◦ k = h. Then the map i−1 ◦ k : T −→ E
satisfies ι◦ (i−1 ◦k) = j ◦ i◦ i−1 ◦k = j ◦k = h. It is an easy exercise to show that this map is
unique with this property. So the universal property given in the theorem satisfies the first
property of the extension principle. To define the extension of the property for arbitrary
categories we use again the special description of equalizers in sets as a subsets of A.
In arbitrary categories we cannot construct an equalizer of two morphisms since there are
no elements and we thus cannot construct the set of those elements on which the two maps
coincide. But the extension principle 2.3.1 (2) provides the following definition.

2.8.3. Definition. Let A and B be objects in a category C and f, g : A −→ B be morphisms.
An object Eq(f, g) together with a morphisms ι : Eq(f, g) −→ A is called a (categorical)
equalizer of f and g, if for all objects T in C there is an isomorphism of sets

i : MorC(T,Eq(f, g)) ∼= Eq(MorC(T, f),MorC(T, g))
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(where Eq(MorC(T, f),MorC(T, g)) is the set-theoretic equalizer from 2.8.1) such that the
diagram

Eq(MorC(T, f),MorC(T, g)) MorC(T,A)-
j

MorC(T,Eq(f, g))

?

MorC(T, ι)i

���
���

����

commutes.

Frequently, Eq(f, g) is referred to as an equalizer of f and g without referring to j. Never-
theless, j is a crucial part of the data. 18.06.04

2.8.4. Proposition (Characterization of equalizers by the universal mapping prop-
erty). Given objects A and B and morphisms f, g : A −→ B in a category C. An object
E together with a morphism ι : E −→ A is a (categorical) equalizer, if and only if for each
object T ∈ C and each morphism h : T −→ A such that such that f ◦ h = g ◦ h, there is a
unique map k : B −→ E such that the diagram

E A-ι
B

-f
-

g

T

k

�
�

�
��	 ?

h

commutes, i.e. ι ◦ k = h.

Proof. ⇐=: Let (E, ι) be an equalizer of f and g. Let T be an object in C and let k ∈
MorC(T,E). Define h := ι ◦ k : T −→ A. Then f ◦ h = f ◦ ι ◦ k = g ◦ ι ◦ k = g ◦ h
and thus MorC(T, f)(h) = MorC(T, g)(h) so that h ∈ Eq(MorC(T, f),MorC(T, g)). Now we
can define i(k) := h ∈ Eq(MorC(T, f),MorC(T, g)) and get MorC(T, ι)(k) = ι ◦ k = h ∈
Eq(MorC(T, f),MorC(T, g)).
It remains to show that i is bijective. We construct the inverse map

u : Eq(MorC(T, f),MorC(T, g)) −→ MorC(T,E) u(h) := k

where h ∈ Eq(MorC(T, f),MorC(T, g)) implies MorC(T, f)(h) = MorC(T, f)(h). By the uni-
versal property of the equalizer there is a unique k : T −→ L such that ι ◦ k = h. We use this
k for the definition of the map u.
Let h ∈ Eq(MorC(T, f),MorC(T, g)). Then (i ◦ u)(h) = i(k) = ι ◦ k = h hence (i ◦ u) =
1Eq(MorC(T,f),MorC(T,g)).
Let k ∈ MorC(T,E). Then (u ◦ i)(k) = u(h) = u(ι ◦ k) = k′ where k′ : T −→ E is the unique
morphism such that ι ◦ k′ = ι ◦ k hence k = k′ and (u ◦ i) = 1MorC(T,E).
=⇒: If h : T −→ A is a morphism in C such that f ◦ h = g ◦ h. Then h is an element
of Eq(MorC(T, f),MorC(T, g)), since MorC(T, f)(h) = MorC(T, g)(h). So there is a unique
morphism k := i−1(h) satisfying (j ◦ i)(k) = h or MorC(T, ι)(k) = h or ι ◦ k = h. Thus (E, ι)
is an equalizer of f and g. �

2.8.5. Proposition. The family of isomorphisms

iT : MorC(T,Eq(f, g)) −→ Eq(MorC(T, f),MorC(T, g))
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such that

Eq(MorC(T, f),MorC(T, g)) MorC(T,A)-
j

MorC(T,Eq(f, g))

?

MorC(T, ι)i

��
���

�����

commute for all objects T in C, is a natural isomorphism in T and morphisms of (f, g).

Proof. is similar to the proof of Proposition 2.7.5. �

2.8.6. Examples. (1) In Set, an equalizer E of the functions (x, y) 7→ x2 +y2 and (x, y) 7→ 1
from R× R to R is the circle x2 + y2 = 1. The arrow j : E −→ R× R is the inclusion.
(2) Given a graph G , the inclusion of the set of loops in the graph is an equalizer of the
source and target functions. This equalizer will be empty if the graph has no loops.

A theorem like 2.7.6 is true of equalizers as well.

2.8.7. Proposition. If j : E −→ A and j′ : E ′ −→ A are both equalizers of f, g : A −→ B,
then there is a unique isomorphism i : E −→ E ′ for which j′ ◦ i = j.

Proof. We give two proofs. The first uses the concept of universal element. Let C be the
category containing the equalizers given. Let F : Cop −→ Set be the functor for which
F(C) = {u : C −→ A|f ◦u = g◦u}, the set of arrows from C which equalize f and g. If h : D
−→ C let F(h)(u) = u ◦ h. This makes sense, because if u ∈ F (C), then f ◦ u ◦ h = g ◦ u ◦ h,
so u ◦ h ∈ F (D).
Note that this makes F a subfunctor of the contravariant hom functor Mor(-, A).
The definition of an equalizer of f and g can be restated this way: an equalizer of f and
g is an element j ∈ F(E) for some object E such that for any u ∈ F (C) there is a unique
arrow k : C −→ E such that F(k)(j) = u. This means j is a universal element of F , so by
Proposition 2.9.3, any two equalizers j ∈ F (E) and j′ ∈ F (E ′) are isomorphic by a unique
arrow i : E −→ E ′ such that F (i)(j′) = j. That is, j = j′ ◦ i, as required.
Here is a direct proof not using universal elements: the fact that f ◦ j′ = g ◦ j′ implies the
existence of a unique arrow h : E ′ −→ E such that j′ = j◦h. The fact that f ◦j = g◦j implies
the existence of a unique arrow h′ : E −→ E ′ such that j = j′ ◦ h′. Then j ◦ h ◦ h′ = j′ ◦ h′ =
j = j ◦ 1E and the uniqueness part of the definition of equalizer implies that h ◦h′ = 1E. By
symmetry, h′ ◦ h = 1E′ . �

We add some more properties of monomorphisms and equalizers.

2.8.8. Proposition. Let j : E −→ A be an equalizer of the pair of arrows f, g : A −→ B.
Then j is a monomorphism. Moreover, any two equalizers of f and g belong to the same
subobject of A.

Proof. To see that j is a monomorphism, suppose h, k : C −→ E with j ◦ h = j ◦ k = l. Then
f ◦ l = f ◦ j ◦ k = g ◦ j ◦ k so there is a unique arrow m : C −→ E with j ◦m = l. But both
h and k are such arrows and so h = k.
Now suppose j and j′ are equalizers of f and g. In the notation of Proposition 8.1.4, i and
i−1 are the arrows required by the definition of subobject in 3.3.12, since j′ ◦ i = j and
j ◦ i−1 = j′. �
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8.1.6 More generally, if f1, . . . , fn are arrows from A to B, then an object E together with an
arrow j : E −→ A is an equalizer of f1, . . . , fn if it has the property that an arbitrary arrow
h : C −→ A factors uniquely through j if and only if f1 ◦ h = . . . = fn ◦ h.
Having equalizers of parallel pairs implies having equalizers of all finite lists.

2.8.9. Definition. A monomorphism e : S −→ T in a category is regular if e is an equalizer
of a pair of arrows.

2.8.10. Proposition. An arrow in a category that is both an epimorphism and a regular
monomorphism is an isomorphism.

Proof. Let f : A −→ B be both an epimorphism and an equalizer of g, h : B −→ C. Since
g ◦ f = h ◦ f and f is epi, g = h. Then g ◦ 1B = h ◦ 1B so there is a k : B −→ A such that
f ◦ k = 1B. But then f ◦ k ◦ f = f = f ◦ 1A. But f being a monomorphism can be canceled
from the left to conclude that k ◦ f = 1A. �

2.8.11. Proposition. Every monomorphism in Set is regular.

Proof. A monomorphism in Set is an injective function (see Theorem 3.3.3), so let f : A
−→ B be an injective function. Let C be the set of all pairs {(b, i)|b ∈ B, i = 0, 1} and impose
an equivalence relation on these pairs forcing (b, 0) = (b, 1) if and only if there is an a ∈ A
with f(a) = b (and not forcing (b, i) = (c, j) if b and c are distinct). Since f is injective,
if such an a exists, there is only one. Let g : B −→ C by g(b) = (b, 0) and h : B −→ C by
h(b) = (b, 1). Then clearly g(b) = h(b) if and only if there is an a ∈ A with f(a) = b. Now
let k : D −→ B with g ◦ k = h ◦ k. It must be that for all x ∈ D, there is an a ∈ A, and only
one, such that k(x) = f(a). If we let l(x) = a, then l : D −→ A is the unique arrow with
f ◦ l = k. �

2.8.12. Proposition. (1) Every split monomorphism in C is a regular monomorphism.
(2) Every regular monomorphism in C is a monomorphism.

Proof. (1) Let f : A −→ B be s split monomorphism with left inverse g : B −→ A, such that
g ◦ f = 1A. We claim that (A, f) is an equalizer of (f ◦ g, 1B). We have (fg)f = f(gf) =
f1A = 1Bf . Now let h : T −→ B be a morphism with fgh = 1Bh = h. Then h = f(gh) so
that we have a factorization gh of h through f . To show uniqueness let u : T −→ A satisfy
h = fu. Then gh = gfu = 1Au = u. (2) holds by Proposition 2.8.8. �

2.8.13. Remark. Functors preserve split monomorphisms. In general they do not preserve
regular monomorphisms or monomorphisms.
The next definition can again be viewed as a generalization of a set theoretic notion. We
only give a direct definition.

2.8.14. Definition. Let f : A −→ B be a morphism in C. A triple (K, g : K −→ A, h : K
−→ A) is a kernel pair of f if

(1) f ◦ g = f ◦ h,
(2) for each triple (T, u : T −→ A, v : T −→ A) satisfying f ◦ u = f ◦ v there is a unique

k : T −→ K such that g ◦ k = u and h ◦ k = v, i.e. the following diagram commutes:

K A
-g
-

h

?

u
?

v

T

k
�

�
��	

B-f
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2.8.15. Proposition. (1) Let f : B −→ C be a morphism in C that has a kernel pair
g, h : A −→ B. If f is a coequalizer then f is a coequalizer of g and h.

(2) Let g, h : A −→ B be a pair of morphisms that has a coequalizer f : B −→ C. If
(A, g, h) is a kernel pair then it is a kernel pair of f .

Proof. (1) In the diagram

A B
-h
-

g
C-f

X

x
�

�
��	 ?

u
?

v

Y
?

k

C

y
�

�
��	

let (C, f) be the coequalizer of (u, v). Let (A, g, h) be a kernel pair of f . Then there is a
unique morphism x such that gx = u and hx = v.
Given k : B −→ Y with kg = kh. Then ku = kgx = khx = kv, so that there is a unique
y : C −→ Y such that yf = k. Thus f is a coequalizer of g and h.
(2) Let (A, g, h) be a kernel pair of k and let (C, f) be a coequalizer of (g, h). Then there is
a unique morphism y such that yf = k.
Given u, v : X −→ B with fu = fv. Then ku = yfu = yfv = kv, so that there is a unique
x : X −→ A such that gx = u and hx = v. Thus (A, g, h) is a kernel pair of f . �

24.06.04

2.8.16. Lemma. f : A −→ B is a monomorphism if and only if (A, 1A, 1A) is a kernel pair
for f .

Proof.
f monomorphism
⇐⇒ ∀u, v : T −→ A : fu = fv =⇒ u = v
⇐⇒ ∀u, v : T −→ A : fu = fv =⇒ ∃1k : T −→ A : 1Ak = u, 1Ak = v
⇐⇒ (A, 1A, 1A) kernel pair of f .

�

2.8.17. Corollary. If a functor preserves kernel pairs, the it preserves monomorphisms.

Proof. Let f : A −→ B be a monomorphism. Then (A,A , 1A) is a kernel pair for f . Thus
(F (A), 1F (A), 1F (A)) is a kernel pair of F (f), hence F (f) is a monomorphism. �

2.9. Universal elements.
There is a second important way of defining a representable functor. We will show its impact
with a number of examples.

2.9.1. Definition. Let F : C −→ Set be a covariant functor. A pair (A, x) with A ∈ C, x ∈
F(A) is called a universal (or generic) object for F , if for each B ∈ C and y ∈ F(B) there
exists a unique f ∈ MorC(A,B) such that F(f)(x) = y:

A

B
?

f

F(A)

F(B)
?

F(f)

3 x

3 y
?

?
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Let F : C −→ Set be a contravariant functor. A pair (A, x) with A ∈ C, x ∈ F(A) is called a
(co-)universal (or (co-)generic) object for F , if for each B ∈ C and y ∈ F(B) there exists a
unique f ∈ MorC(B,A) such that F(f)(x) = y:

A

B

6

f

F(A)

F(B)
?

F(f)

3 x

3 y
?

?

The following proposition is a version of the Yoneda Lemma and could also be derived from
it.

2.9.2. Proposition. F has a universal element (A, a) if and only if F is representable, i.e.
there is a natural isomorphism ϕ : F ∼= MorC(A,−) (with a = ϕ(A)−1(1A)).

Proof. =⇒ : The map

ϕ(B) : F(B) 3 y 7→ f ∈ MorC(A,B) with F(f)(a) = y

is bijective with the inverse map

ψ(B) : MorC(A,B) 3 f 7→ F(f)(a) ∈ F(B).

In fact we have y 7→ f 7→ F(f)(a) = y and f 7→ y := F(f)(a) 7→ g such that F(g)(a) = y
but then F(g)(a) = y = F(f)(a). By uniqueness we get f = g. Hence all ϕ(B) are bijective
with inverse map ψ(B). It is sufficient to show that ψ is a natural transformation.
Given g : B −→ C. Then the following diagram commutes

MorC(A,C) F(C)-
ψ(C)

MorC(A,B) F(B)-ψ(B)

?

MorC(A,g)

?

F(g)

since ψ(C) MorC(A, g)(f) = ψ(C)(gf) = F(gf)(a) = F(g)F(f)(a) = F(g)ψ(B)(f).
⇐: Let A be given. Let a := ϕ(A)−1(1A). For y ∈ F(B) we get y = ϕ(B)−1(f) =
ϕ(B)−1(f1A) = ϕ(B)−1 MorC(A, f)(1A) = F(f)ϕ(A)−1(1A) = F(f)(a) for a uniquely deter-
mined f ∈ MorC(A,B). �

2.9.3. Proposition. Let (A, x) and (B, y) be universal elements for F . Then there exists a
unique isomorphism h : A −→ B such that F(h)(x) = y.
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Proof. The proof follows from the following commutative diagram as in the proof of Theorem
2.7.6:

A

B
?

h

A
?

k

B
?

h

��

1A

@@R

��

1A

@@R

F(A)

F(B)
?

F(h)

F(A)
?

F(k)

F(B)
?

F(h)

@@

1F(A)

��	

@@

1F(B)

��	

x

y
?

?

?

?

x

y
?

?

�

2.9.4. Examples. (1) Let R be a ring. Let X ∈ Set be a set. F : R- Mod −→ Set,
F(M) := Map(X,M) is a covariant functor. A representing object for F is given by the free
R-module (RX, x : X −→ RX) with the property, that for all (M, y : X −→ M) there exists
a unique f ∈ MorR(RX,M) such that F(f)(x) = Map(X, f)(x) = fx = y

X RX-x

y

@
@

@
@@R
M.

?

f

(2) Given modules MR and RN (or vector spaces MK and KN). Define F : Ab −→ Set
by F(A) := BilR(M,N ;A). Then F is a covariant functor. A representing object for F
is given by the tensor product (M ⊗R N,⊗ : M × N −→ M ⊗R N) with the property
that for all (A, f : M × N −→ A) there exists a unique g ∈ Mor(M ⊗R N,A) such that
F(g)(⊗) = BilR(M,N ; g)(⊗) = g⊗ = f

M ×N M ⊗R N-⊗

f

@
@

@
@@R
A.
?

g

(3) Given a K-module V . Define F : K- Alg −→ Set by F(A) := Mor(V,A). Then F is
a covariant functor. A representing object for F is given by the tensor algebra (T (V ), ι :
V −→ T (V )) with the property that for all (A, f : V −→ A) there exists a unique g ∈
MorAlg(T (V ), A) such that F(g)(ι) = Mor(V, g)(ι) = gι = f

V T (V )-ι

f

@
@

@
@@R
A.
?

g
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(4) Given a K-module V . Define F : K- cAlg −→ Set by F(A) := Mor(V,A). Then F is a
covariant functor. A representing object for F is given by the symmetric algebra (S(V ), ι :
V −→ S(V )) with the property that for all (A, f : V −→ A) there exists a unique g ∈
MorcAlg(S(V ), A) such that F(g)(ι) = Mor(V, g)(ι) = gι = f

V S(V )-ι

f

@
@

@
@@R
A.
?

g

(5) Given a K-module V . Define F : K- Alg −→ Set by

F(A) := {f ∈ Mor(V,A)|∀v, v′ ∈ V : f(v)f(v′) = f(v′)f(v)}.
Then F is a covariant functor. A representing object for F is given by the symmetric
algebra (S(V ), ι : V −→ S(V )) with the property that for all (A, f : V −→ A) such that
f(v)f(v′) = f(v′)f(v) for all v, v′ ∈ V there exists a unique g ∈ MorAlg(S(V ), A) such that
F(g)(ι) = Mor(V, g)(ι) = gι = f

V S(V )-ι

f

@
@

@
@@R
A.
?

g

(6) Given a K-module V . Define F : K- Alg −→ Set by

F(A) := {f ∈ Mor(V,A)|∀v ∈ V : f(v)2 = 0}.
Then F is a covariant functor. A representing object for F is given by the exterior algebra
(E(V ), ι : V −→ E(V )) with the property that for all (A, f : V −→ A) such that f(v)2 = 0
for all v ∈ V there exists a unique g ∈ MorAlg(E(V ), A) such that F(g)(ι) = Mor(V, g)(ι) =
gι = f

V E(V )-ι

f

@
@

@
@@R
A.
?

g

(7) Let K be a commutative ring. Let X ∈ Set be a set. F : K- cAlg −→ Set, F(A) :=
Map(X,A) is a covariant functor. A representing object for F is given by the polynomial
ring (K[X], ι : X −→ K[X]) with the property, that for all (A, f : X −→ A) there exists a
unique g ∈ MorcAlg(K[X], A) such that F(g)(ι) = Map(X, g)(x) = gι = f

X K[X]-ι

f

@
@

@
@@R
A.
?

g

(8) Let K be a commutative ring. Let X ∈ Set be a set. F : K- Alg −→ Set, F(A) :=
Map(X,A) is a covariant functor. A representing object for F is given by the noncommuta-
tive polynomial ring (K〈X〉, ι : X −→ K〈X〉) with the property, that for all (A, f : X −→ A)
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there exists a unique g ∈ MorAlg(K〈X〉, A) such that F(g)(ι) = Map(X, g)(x) = gι = f

X K〈X〉-ι

f

@
@

@
@@R
A.
?

g

(9) Let S be a set. A function f : R −→ S is called of period 2π if f(x + 2π) = f(x) for all
x ∈ R. Define F : Set −→ Set by F(S) = {f : R −→ S|f is of period 2π}. Obviously F
is a functor. We want a ”‘universal function of period 2π”’. Let S1 := R/2πZ be the unit
circle and w : R −→ S1 be the ”‘wrapping”’ of R onto S1. Each periodic function f : R −→ S

can be written uniquely as R w−→ S1 f−→ S. This means w ∈ F(S1) and for each f ∈ F(S)
there is a unique map f : S1 −→ S such that F(f)(w) = f ◦w = f . So (S1, w) is a universal
element for F :

R S1-w

f

@
@

@
@@R
S.
?

f

(10) Let F be as in (9). Let J := {x ∈ R|0 ≤ x < 2π} and t : R −→ J be given by
t(y) := x ⇐⇒ y − x = 2πn for some n ∈ Z. Obviously t is a function of period 2π. For a

function f : R −→ S of period 2π there is a unique f̃ : J −→ S such that F(f̃)(t) = f ∈ F(S).
Thus (J, t) is a universal element for F :

R J-t

f

@
@

@
@@R
S.
?

f̃

By Proposition 2.9.3 we get (S1, w) ∼= (J, t).
25.06.04

2.9.5. Proposition. Let D be a category. Given a representable functor FX : C −→ Set
for each X ∈ D. Given a natural transformation Fg : FY −→ FX for each g : X −→ Y
(contravariant!) such that F depends functorially on X, i.e. F1X

= 1FX
,Fhg = FgFh. Then

the representing objects (AX , aX) for FX depend functorially on X, i.e. for each g : X −→ Y
there is a unique morphism Ag : AX −→ AY (with FX(Ag)(aX) = Fg(AY )(aY )) and the
following identities hold A1X

= 1AX
, Ahg = AhAg. So we get a covariant functor D 3 X

−→ AX ∈ C.

Proof. Choose a representing object (AX , aX) for FX for each X ∈ D (by the axiom of
choice). Then there is a unique morphism Ag : AX −→ AY with

FX(Ag)(aX) = Fg(AY )(aY ) ∈ FX(AY ),

for each g : X −→ Y because Fg(AY ) : FY (AY ) −→ FX(AY ) is given. We have FX(A1)(aX) =
F1(AX)(aX) = aX = FX(1)(aX) hence A1 = 1, and FX(Ahg)(aX) = Fhg(AZ)(aZ) =
Fg(AZ)Fh(AZ)(aZ) = Fg(AZ)FY (Ah)(aY ) = FX(Ah)Fg(AY )(aY ) = FX(Ah)FX(Ag)(aX) =
FX(AhAg)(aX) hence AhAg = Ahg for g : X −→ Y and h : Y −→ Z in D. �
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2.9.6. Corollary. (1) Map(X,M) ∼= MorR(RX,M) is a natural transformation in M (and
in X!). In particular Set 3 X 7→ RX ∈ R-Mod is a functor.
(2) BilR(M,N ;A) ∼= Mor(M ⊗R N,A) is a natural transformation in A (and in (M,N) ∈
Mod -R×R-Mod). In particular Mod -R×R-Mod 3M,N 7→M ⊗r N ∈ Ab is a functor.
(3) R-Mod -S × S-Mod -T 3 (M,N) 7→M ⊗S N ∈ R-Mod -T is a functor.

2.10. The Yoneda Lemma.
If F : C −→ D and G : C −→ D are functors then we denote with Nat(F,G) the set of natural
transformations from F to G. Actually this is an illegal set, it may be too large. In our
applications, however, it will be isomorphic to a set so that we don’t run into problems. If
C is a small category then there are no problems either, since each natural transformation is
a family of morphisms indexed by a set.

2.10.1. Theorem. (Yoneda Lemma) Let C be a category. Given a covariant functor F : C
−→ Set and an object A ∈ C. Then the map

π : Nat(MorC(A, -),F) 3 φ 7→ φ(A)(1A) ∈ F(A)

is bijective with the inverse map

π−1 : F(A) 3 a 7→ ha ∈ Nat(MorC(A, -),F),

where ha(B)(f) = F(f)(a).

Proof. For φ ∈ Nat(MorC(A, -),F) we have a map φ(A) : MorC(A,A) −→ F(A), hence π
with π(φ) := φ(A)(1A) is a well defined map. For π−1 we have to check that ha is a natural
transformation. Given f : B −→ C in C. Then the diagram

F(B) F(C)-
F(f)

MorC(A,B) MorC(A,C)-Mor(A,f)

?

ha(B)

?

ha(C)

is commutative. In fact if g ∈ MorC(A,B) then ha(C) MorC(A, f)(g) = ha(C)(fg) =
F(fg)(a) = F(f)F(g)(a) = F(f)ha(B)(g). Thus π−1 is well defined.
Let π−1(a) = ha. Then ππ−1(a) = ha(A)(1A) = F(1A)(a) = a. Let π(φ) = φ(A)(1A) = a.
Then π−1π(φ) = ha and ha(B)(f) = F(f)(a) = F(f)(φ(A)(1A)) = φ(B) MorC(A, f)(1A) =
φ(B)(f), hence ha = φ. �

2.10.2. Corollary. Given A,B ∈ C. Then the following hold
(1) MorC(A,B) 3 f 7→ MorC(f, -) ∈ Nat(MorC(B, -),MorC(A, -)) is a bijective map.
(2) Under the bijective map from (1) the isomorphisms in MorC(A,B) correspond to natural
isomorphisms in Nat(MorC(B, -),MorC(A, -)).
(3) For contravariant functors F : C −→ Set we have Nat(MorC(-, A),F) ∼= F(A).
(4) MorC(A,B) 3 f 7→ MorC(-, f) ∈ Nat(MorC(-, A),MorC(-, B)) is a bijective map that
defines a one-to-one correspondence between the isomorphisms in MorC(A,B) and the natural
isomorphisms in Nat(MorC(-, A),MorC(-, B)).

Proof. (1) follows from the Yoneda Lemma with F = MorC(A, -).
(2) Observe that hf (C)(g) = MorC(A, g)(f) = gf = MorC(f, C)(g) hence hf = MorC(f, -).
Since we have MorC(f, -) MorC(g, -) = MorC(gf, -) and MorC(f, -) = idMorC(A,-) if and only if
f = 1A we get the one-to-one correspondence between the isomorphisms from (1).
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(3) and (4) follow by dualizing. �

2.10.3. Remark. The map π is a natural transformation in the arguments A and F . More
precisely: if f : A −→ B and φ : F −→ G are given then the following diagrams commute

Nat(MorC(A, -),G) G(A)-
π

Nat(MorC(A, -),F) F(A)-π

?

Nat(Mor(A,-),φ)

?

φ(A)

Nat(MorC(B, -),F) F(B).-
π

Nat(MorC(A, -),F) F(A)-π

?

Nat(Mor(f,-),F)

?

F(f)

This can be easily checked. Indeed we have for ψ : MorC(A, -) −→ F

πNat(MorC(A, -), φ)(ψ) = π(φψ) = (φψ)(A)(1A) = φ(A)ψ(A)(1A) = φ(A)π(ψ)

and

πNat(MorC(f, -),F)(ψ) = π(ψMorC(f, -)) = (ψMorC(f, -))(B)(1B) = ψ(B)(f)
= ψ(B) MorC(A, f)(1A) = F(f)ψ(A)(1A) = F(f)π(ψ).

2.10.4. Remark. By the previous corollary the representing object A is uniquely determined
up to isomorphism by the isomorphism class of the functor MorC(A, -).

2.10.5. Proposition. Let G : C × D −→ Set be a covariant bifunctor such that the functor
G(C, -) : D −→ Set is representable for all C ∈ C. Then there exists a contravariant functor
F : C −→ D such that G ∼= MorD(F-, -) holds. Furthermore F is uniquely determined by G
up to isomorphism.

Proof. For each C ∈ C choose an object F(C) ∈ D and an isomorphism ξC : G(C, -) ∼=
MorD(F(C), -). Given f : C −→ C ′ in C then let F(f) : F(C ′) −→ F(C) be the uniquely
determined morphism (by the Yoneda Lemma) in D such that the diagram

G(C ′, -) MorD(F(C ′), -)-
ξC′

G(C, -) MorD(F(C), -)-ξC

?

G(f,-)

?

Mor(F(f),-)

commutes. Because of the uniqueness of F(f) and because of the functoriality of G it is
easy to see that F(fg) = F(g)F(f) and F(1C) = 1F(C) hold and that F is a contravariant
functor.
If F ′ : C −→ D is given with G ∼= MorD(F ′-, -) then φ : MorD(F -, -) ∼= MorD(F ′-, -). Hence
by the Yoneda Lemma ψ(C) : F(C) ∼= F ′(C) is an isomorphism for all C ∈ C. With these
isomorphisms induced by φ the diagram
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MorD(F ′(C ′), -) MorD(F(C ′), -)-
Mor(ψ(C′),-)

MorD(F ′(C), -) MorD(F(C), -)-Mor(ψ(C),-)

?

Mor(F ′(f),-)

?

Mor(F(f),-)

commutes. Hence the diagram

F(C) F ′(C)-
ψ(C)

F(C ′) F ′(C ′)-ψ(C′)

?

F ′(f)

?

F(f)

commutes. Thus ψ : F −→ F ′ is a natural isomorphism. �

2.10.6. Remark. The Yoneda Lemma says in principle that we can recover (all properties
of) an object A from the contravariant functor MorC(-, A). Corollary 2.10.2 says that we can
also recover a morphism f from the natural transformation MorC(-, f). More importantly
any natural transformation ϕ : MorC(-, A) −→ MorC(-, B) is of the form ϕ = MorC(-, f) for
some f : A −→ B. So we get the following Theorem.

2.10.7. Theorem (The Yoneda Embedding). Let C be a (small) category. Then the
functor h : C −→ Func(Cop,Set) with h(A) = MorC(-, A) and h(f) = MorC(-, f) is full and
faithful. In particular C is equivalent to a full subcategory of Func(Cop,Set).

2.10.8. Theorem (Cayley). Every group G is isomorphic to a group of permutations.

Sketch of Proof.
1. First, define the Cayley representation G of G to be the following group of permutations:
the underlying set of G is just G, and for each g ∈ G, we have the permutation g, defined
for all h ∈ G by: g(h) = g · h. Now check that g = h implies g = h.
2. Next define homomorphisms i : G −→ G by i(g) = g, and j : G −→ G by j(g) = g.
3. Finally show that i ◦ j = 1G and j ◦ i = 1G. �

2.10.9. Remark. Warning: Note the two different levels of isomorphisms that occur in the
proof of Cayley’s theorem. There are permutations of the set of elements of G, which are
isomorphisms in Set, and there is the isomorphism between G and G, which is in the category
Groups of groups and group homomorphisms.
Cayley’s theorem says that any abstract group can be represented as a “concrete” one, i.e.
a group of permutations of a set. The theorem can be generalized to show that any category
can be represented as one that is “concrete”, i.e. a category of sets and functions.

2.10.10. Theorem. Every category C is isomorphic to one in which the objects are sets and
the arrows are functions. (One should really require here that C is small.)

Sketch of Proof. Define the Cayley representation of C to be the following concrete category:

• objects are sets of the form:

C = {f ∈ C| cod(f) = C}
for all C ∈ C,
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• arrows are functions

g : C −→ D,

for g : C −→ D in C, defined by g(f) = g ◦ f .

�

2.11. Algebraic Structures.

Algebraic structures are defined by operations, i.e. by composition maps from products of
a set to the set itself, together with additional equations. These operations lead to natural
transformations. Again monoids are the first interesting example.
We consider the category Mon of monoids and the underlying functor U : Mon −→ Set.
First we translate the definition of a monoid into a category theoretical version.

2.11.1. Definition. Let C be a category with finite products. A monoid in C is a triple
(M,mult, eM) where

(1) M is an object in C,
(2) mult : M ×M −→M is a morphism in C,
(3) eM : 1 −→M is a morphism in C with 1 a terminal object.

such that the following diagrams commute:

M ×M ×M M ×M-M ×mult

M ×M M-mult?
mult×M

?
mult

and
∼= M ∼= M × 1 M ×M-1M × eM

M ×M M-mult

1×M

?
eM × 1M

?
mult1M

XXXXXXXXXXXXXz

We note that the unit element is replaced by a variable element eM : 1 −→ A. In the category
Set of sets a terminal object is a one-point set (or singleton). An element in m ∈M defines
a unique map mM : 1 −→ M , in fact M and M(1) are isomorphic sets. In case of the unit
element m = e this leads to eM : {∗} −→M with eM(∗) = e ∈M . So in the case of sets this
map makes the last diagram commutative.01.07.04
The conditions for a (homo-)morphism of monoids f : M −→ N translate to commutative
diagrams

(15)

M ×M M-mult

N ×N N-mult?
f × f

?
f

and

1 M-eM

1 N-eN?
11 = f 0

?
f

It is easy to see that the composition of morphisms of monoids is again a morphism of
monoids. One also has that the identity morphism 1M in C is a morphism of monoids for all
monoids (M,mult, eM) in C.
So we can define the category of monoids MonC in an arbitrary category C.
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All other algebraic structures as long as they are defined by operations and equations (equa-
tionally defined algebraic structures) can be treated in the same way. Examples abound:
semigroups, groups, abelian groups, rings, vector spaces over a (set-theoretic) field K, K-
algebras, R-modules, Lie algebras, Jordan algebras, semirings, etc.
An easy example of an algebraic structure is the case of unary operations u : S −→ S as
discussed in 1.7.21. These operations play an important role in the study of endomorphisms
of vector spaces, i.e. of square matrices.

2.11.2. Remark (Vector spaces).
The case of K-vector spaces and R-modules contains an interesting variant. Since K will
not be an object in C in general the question arises how to define the action of K on vector
spaces. This is done by considering each element α ∈ K as an endomorphism for the vector
space object V in C, so each α ∈ K induces α· : V −→ V in C. The relevant equations for a
vector space are then written as equations of morphisms. For this purpose we first consider
the structure of an abelian group on V .

2.11.3. Definition. Let C be a category with finite products. A group in a category C is a
quadruple (V,+, 0,−) where

(1) V is an object in C,
(2) + : V × V −→ V is a morphism, the addition,
(3) 0 : 1 −→ V is a morphism, the neutral elements,
(4) − : V −→ V is a morphism, the inverse,

such that

V × V × V V × V-V ×+

V × V V-
+

?
+× V

?
+

∼= V ∼= V × 1 V × V-1V × 0

V × V V-+

1× V

?
0× 1V

?
+1V

XXXXXXXXXXXXXz

V 1-
〈〉

1 V-0

V × V V × V-
1V ×−

?
[1V , 1V ]

6
+

and

V 1-
〈〉

1 V-0

V × V V × V-
−× 1V

?
[1V , 1V ]

6
+

A group is called abelian or commutative if in addition the following diagram commutes

V × V V × V-
[p2, p1]

V

+
@

@
@@R

+
�

�
��	

where [p2, p1] is the switch morphism of 2.7.13.
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This definition allows us to define groups in many categories. Examples are groups in Top,
called topological groups, groups in the category of analytical manifolds, called analytical
groups, groups in the dual category of the category of commutative algebras, called commu-
tative Hopf algebras. We denote the category of groups resp. abelian groups in C by Gr−C
resp. Ab−C.

2.11.4. Lemma. Let V = (V,+, 0,−) be an Abelian group in C. Then MorAb−C(V, V ) is a
ring with unit.

Proof. The addition is given by

f + g := (V
[1V ,1V ]−→ V × V f×g−→ V × V +−→ V ).

The morphism [1V , 1V ] is usually abbreviated by ∆. It makes the following diagram com-
mutative:

V V × V-∆

V × V V × V × V-
1V ×∆

?
∆

?
∆× 1V

i.e. it is coassociative. Then

(f + g) + h = + ◦ ((f + g)× h) ◦∆
= + ◦ ((+ ◦ (f × g) ◦∆)× h) ◦∆
= + ◦ (+× 1V ) ◦ (f × g × h) ◦ (∆× 1V ) ◦∆
= + ◦ (1V ×+) ◦ (f × g × h) ◦ (1V ×∆) ◦∆
= f + (g + h).

Since we will prove a more general result in ??? we leave it to the reader to check that V
〈〉−→

1
0−→ V is the neutral element for the addition on MorAb−C(V, V ) and that V

f−→ V
−−→ V

is the additive inverse of f .
The multiplication on MorAb−C(V, V ) is defined to be the composition of morphisms, so it
is associative with unit element.
The multiplication is distributive since

f ◦ (g + h) = f ◦+ ◦ (g × h) ◦∆
= + ◦ (f × f) ◦ (g × h) ◦∆
= + ◦ ((f ◦ g)× (f ◦ h)) ◦∆
= (f ◦ g) + (f ◦ h),

by the fact that f is a morphism of abelian groups, and

(f + g) ◦ h) = + ◦ (f × g) ◦∆ ◦ h
= + ◦ (f × g) ◦ (h× h) ◦∆
= + ◦ ((f ◦ h)× (g ◦ h)) ◦∆
= (f ◦ h) + (g ◦ h),

by an easy property of ∆. �

So a K-vector space in C can be defined as follows:

2.11.5. Definition. Let K be a field. A vector space in a category C with finite products con-
sists of an abelian group V ∈ C together with a ring homomorphism · : K −→ MorAb−C(V, V ).
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So we get a unary operation for each element α ∈ K. This example shows that there may
be infinitely many different operations on an algebraic structure in C.

There is another point of view that produces many natural transformations. Again we use
the example of monoids. Observe first that there is an underlying functor U : MonC −→ C
like in the case of sets and ordinary monoids. Then the diagrams 15 can be rewritten as

U(M)× U(M) U(M)-mult

U(N)× U(N) U(N)-mult?
U(f)× U(f)

?
U(f)

and

1 U(M)-eM

1 U(N)-eN
?

11 = f 0

?
U(f)

These diagrams commute for any choice of monoid morphism f : M −→ N . They show that
mult and e are natural transformations. mult is a natural transformation from the functor
U×U : MonC −→ C to the underlying functor U : MonC −→ C. It is easy the check that U×U
is a functor in one variable. The interpretation of the second diagram is a bit more subtle.
As first functor we use the one point functor E : MonC −→ C with E((M,mult, e)) := 1 for
any monoid in C and E(f) := 11, the identity. Then it is clear that e : 1 −→ M defines also
a natural transformation e : E −→ U .
Again any operation of any equationally defined algebraic structure can be considered as a
natural transformation.
We close this section with a theorem that leads us back to the extension principle.

2.11.6. Theorem. Let C be a category with finite products. An object G in C is a group
if and only if the contravariant functor MorC(-, G) : C −→ Set can be factored through the
category of groups, i.e. there is a contravariant functor G : C −→ Gr from C to the category
Gr of groups such that MorC(-, G) = U ◦ G, where U : Gr −→ Set is the underlying functor.

The construction given in the following proof will show more, namely that there is a bijection
between the group structures on G and the different possible factorizations G.
The statement of the Theorem also holds for any other equationally defined algebraic struc-
tures.
A given factorization G of MorC(-, G) can also be viewed as a group structure for G, so we see
another example of the extension principle. This variant of a definition for a group structure
can also be given without any finite products, so that it is in fact more general than the
definition, we have given for a group in a category.

Proof. The Yoneda Lemma defines a bijection between the set of morphisms f : X −→ Y and
the set of natural transformations f(-) : X(-) −→ Y (-) by f(Z) = MorC(Z, f). In particular
we have mX = MorC(X,m) = m(X). The diagram

G(-)×G(-)×G(-) G(-)×G(-)-m-×1

G(-)×G(-) G(-)-m-?

1×m-

?

m-

commutes if and only if MorC(-,m(m × 1)) = MorC(-,m)(MorC(-,m) × 1) = m-(m- × 1) =
m-(1 ×m-) = MorC(-,m)(1 ×MorC(-,m)) = MorC(-,m(1 ×m)) if and only if m(m × 1) =
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m(1×m) if and only if the diagram

G×G×G G×G-m×1

G×G G-m
?

1×m

?

m

commutes. In a similar way one shows the equivalence of the other diagram(s). �
02.07.04

2.11.7. Remark. Let C be a category with finite products. A morphism f : G −→ G′ in C is
a homomorphism of groups if and only if

G×G G-m

G′ ×G′ G′-m′?

f×f

?

f

commutes.

2.11.8. Definition. A cogroup (comonoid) G in C is a group (monoid) in Cop, i.e. an object
G ∈ Ob C = Ob Cop together with a natural transformation m(X) : G(X)×G(X) −→ G(X)
where G(X) = MorCop(X,G) = MorC(G,X), such that (G(X),m(X)) is a group (monoid)
for each X ∈ C.
2.11.9. Remark. Let C be a category with finite (categorical) coproducts. An object G in
C carries the structure m : G(-) × G(-) −→ G(-) of a cogroup in C if and only if there are
morphisms ∆ : G −→ GqG, ε : G −→ I, and S : G −→ G such that the diagrams

GqG GqGqG-∆q1

G GqG-∆

?

1q∆

?

∆

GqG I qG ∼= G ∼= Gq I-εq1

G GqG-∆

?

1qε

?

∆ 1

Q
Q

Q
Q

Q
QQs

G I- G-ε

GqG GqG-1qS
Sq1

?

∆

6

∇

commute where ∇ is dual to the morphism ∆ defined in [?] ??. The multiplications are
related by ∆X = MorC(∆, X) = ∆(X).
Let C be a category with finite coproducts and let G and G′ be cogroups in C. Then a
homomorphism of groups f : G′ −→ G is a morphism f : G −→ G′ in C such that the diagram

G G×G-∆

G′ G′ ×G′-∆′ ?

f×f

?

f

commutes. An analogous result holds for comonoids.
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2.11.10. Remark. Obviously similar observations and statements can be made for other
algebraic structures in a category C. So one can introduce vector spaces and covector spaces,
monoids and comonoids, rings and corings in a category C. The structures can be described
by morphisms in C if C is a category with finite (co-)products.

2.11.11. Proposition. Let G ∈ C be a group with multiplication a ∗ b, unit e, and inverse
a−1 in G(X). Then the morphisms m : G×G −→ G, u : E −→ G, and S : G −→ G are given
by

m = p1 ∗ p2, u = eE, S = id−1
G .

Proof. By the Yoneda Lemma 2.10.1 these morphisms can be constructed from the natural
transformation as follows. Under MorC(G×G,G×G) = G×G(G×G) ∼= G(G×G)×G(G×
G)

∗−→ G(G×G) = MorC(G×G,G) the identity idG×G = (p1, p2) is mapped to m = p1 ∗ p2.
Under MorC(E,E) = E(E) −→ G(E) = MorC(E,G) the identity of E is mapped to the
neutral element u = eE. Under MorC(G,G) = G(G) −→ G(G) = MorC(G,G) the identity is
mapped to its ∗-inverse S = id−1

G . �

2.11.12. Corollary. Let G ∈ C be a cogroup with multiplication a∗ b, unit e, and inverse a−1

in G(X). Then the morphisms ∆ : G −→ GqG, ε : G −→ I, and S : G −→ G are given by

∆ = ι1 ∗ ι2, ε = eI , S = id−1
G .

2.12. Limits.
Equalizers and products are special cases of the general notion of a (categorical) limit. Limits
can also be described as a generalization of a set theoretic construction with the extension
principle. We will, however, use the short way and give a direct definition and cover the
relation to limits on sets by an extra proposition.

2.12.1. Definition. (1) Let D be a (shape) graph and F : D −→ C be a diagram. A limit or
projective limit of F consists of

• an object lim←−F in C together with
• a family of morphisms (pA : lim←−F −→ F (A)| for all vertices A ∈ D) called projections,

with commuting triangles

F (A) F (B)-
F (f)

lim←−F

pA
�

�
��	

pB
@

@
@@R

for all edges f : A −→ B in D,

if the following universal property is satisfied:

(*) for each
– object T in C and each
– family of morphisms (fA : T −→ F (A)| for all vertices A ∈ D), with commuting

triangles

F (A) F (B)-
F (f)

T

fA
�

�
��	

fB
@

@
@@R
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for all edges f : A −→ B in D,
there is a unique morphism g : T −→ lim←−F such that the triangles

T lim←−F-g

F (A)

fA
@

@
@@R

pA
�

�
��	

commute for all vertices A ∈ D.

(2) If there is a limit for each diagram F : D −→ C of shape D then C is called D-complete.
We also say that C has limits of shape D.
(3) If there is a limit for all diagrams F : D −→ C in C (for all D), then C is called complete.

2.12.2. Remark. Limits are unique up to isomorphism. This can be proved essentially
the same way as the uniqueness of products up to isomorphism (Proposition 2.7.6) or the
uniqueness of equalizers up to isomorphism (Proposition 2.8.7). It is indeed a special case of
the uniqueness of a universal element (Proposition 2.9.3). The connection with a universal
element will be given by the next theorem.

2.12.3. Examples. (1) Let D be an empty graph. Then a limit of a diagram consists of an
object E, such that for each object T there is a unique morphism g : T −→ E. This is the
definition of a terminal object E.
(2) Let D be a set of two vertices without any edges. Then a diagram consists of two objects
A and B. A limit consists of an object A × B and two morphisms pA : A × B −→ B and
pB : A×B −→ B. The universal property says that for each object T and any two morphisms
fA : T −→ A and fB : T −→ A×B there is a unique morphism (f, g) : T −→ A×B such that
pA ◦ (fA, fB) = fA and pB ◦ (fA, fB) = fB. So this gives the definition of a product of two
objects.
If D has an arbitray set I of vertices and an empty set of edges, then a limit of F : D −→ C
is the product

∏
i∈I Ai with Ai := F (i).08.07.04

(3) Let D consist of two vertices 1 and two and two edges

1 2.
-i
-

j

Then a limit of a diagram

A B
-f
-

g
consists of an object K := lim←−F and two morphisms ι : K −→ A and λ : KtoB such that
f ◦ ι = λ = g ◦ ι which is universal. Obviously λ is uniquely determined by ι, so it is
superfluous and we have the additional equation

f ◦ ι = g ◦ ι.
So in this case we obtain the notion of an equalizer.
(4) Let

D =

2 3.-
j

1

?
i
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A limit of the diagram

B C-
g

A

?
f

consists of an object A×CB := lim←−F and two morphisms pA : A×CB −→ A and pB : A×CB
−→ B such that the diagram

B C-
g

?
f

A×C B A-pA

?

pB

The third morphism pC : A ×C B −→ C is given by the property pC = f ◦ pA = g ◦ pB,
so it is uniquely determined. The triple (A×C B, pA, pB) satisfies the fowwlowing universal
property. Given an object T in C and two morphisms qA : T −→ A and qB : T −→ B such
that f ◦ qA = g ◦ qB (again we need not give the third morphism qC = f ◦ qA = g ◦ qB) then
there is a unique morphism q : T −→ A×C B such that

B C-
g

?
f

A×C B A-
pA

?

pB

T

q
@

@
@@R

qA
H

HHH
HHHj

qB

A
A
A
A
A
A
A
AU

commutes. This limit (A×C B, pA, pB) is called a fibre product or a pullback.
(5) The limit F : D −→ Set of a shape graph D with vertex set V = V (D) and edge set
E = E(D) can be described as follows. The set lim←−F is

lim←−F = { (ai) | for all i ∈ V : ai ∈ F (i) and for all (u : i −→ j) ∈ E : F (u)(ai) = aj}.
The projections pi : lim←−F −→ F (i) are defined by pi((aj)) := ai.

2.12.4. Proposition (Characterization of limits). Let F : D −→ C be a diagram. An
object L together with a family of morphisms (pA : L −→ F (A)) for all A ∈ D is a limit of
F : D −→ C if and only if

• for all objects T in C there is an isomorphism of sets

i : MorC(T, L) ∼= lim←−(MorC(T, F ) : D −→ Set)

such that the tringles

lim←−(MorC(T, F )) MorC(T,A)-
p̃A

MorC(T, L)

?

MorC(T, pA)i

�
���

���
���

commute for all A ∈ D.
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Frequently, lim←−F is referred to as a limit of F : D −→ C without referring to (pA). Neverthe-
less, (pA) is a crucial part of the data.

Proof. =⇒: Let (L, (pA)) be a limit of F : D −→ C. Let T be an object in C and let f ∈
MorC(T, L). Define fA := pA ◦ f : T −→ A. Then MorC(T, F )(u)(fA) = MorC(T, F (u))(pA ◦
f) = F (u) ◦ pA ◦ f = pB ◦ f = fB for all (u : A −→ B) ∈ D so that (fA) ∈ lim←−(MorC(T, F ).
Now we can define i(f) := (fA) ∈ lim←−(MorC(T, F ) and get MorC(T, pA)(f) = pA ◦ f = fA =
p̃A ◦ i(f).

It remains to show that i is bijective. We construct the inverse map as

u : lim←−(MorC(T, F )) −→ MorC(T, L) u((fA)) := f

where (fA) ∈ lim←−(MorC(T, F )) implies MorC(T, F )(u)(fA) = fB = F (u) ◦ fA for all (u : A
−→ B) ∈ D. By the universal property of the limit there is a unique f : T −→ L such that
pA ◦ f = fA. We use this f for the definition of the map u.

Let (fA) ∈ lim←−(MorC(T, F )). Then (i ◦ u)((fA)) = i(f) = (pA ◦ f) = (fA) hence (i ◦ u) =
1lim←−(MorC(T,F )).

Let f ∈ MorC(T, L). Then (u ◦ i)(f) = u((fA)) = u((pA) ◦ f) = f ′ where f ′ : T −→ L is the
unique morphism such that pA◦f ′ = pA◦f for all A ∈ D hence f = f ′ and (u◦i) = 1MorC(T,L).

⇐=: If (fA : T −→ F (A) | A ∈ D) is a family of morphisms such that F (u) ◦ fA = fB for all
(u : A −→ B) ∈ D. Then (fA) is an element of lim←−(MorC(T, F )), since MorC(T, F )(u)(fa) =
F (u) ◦ fA = fB for all (u : A −→ B) ∈ D. It is the unique element with p̃A((fA)) = fA for all
A ∈ D.
So there is a unique morphism f := i−1((fA)) satisfying p̃A◦i(f) = fA or MorC(T, pA)(f) = fA
or pA ◦ f = fA for all A ∈ D. Thus (L, (pA)) is a limit of F . �

2.12.5. Proposition. The family of isomorphisms

iT : MorC(T, lim←−F ) −→ lim←−(MorC(T, F )

such that the tringles

lim←−(MorC(T, F )) MorC(T,A)-
p̃A

MorC(T, lim←−F )

?

MorC(T, pA)i

�
���

���
���

commute for all objects T in C, is a natural isomorphism in T and morphisms of diagrams
F .

Proof. is similar to the proof of Proposition 2.7.5. �

2.12.6. Remark. Thus the most important properties of the extension principle are now
verified. Observe that Proposition 2.12.4 implies

MorC(T, lim←−F ) ∼= lim←−MorC(T, F ).
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The dual notion of a limit is a colimit or direct limit. You can define it as the limit in the
dual category Cop of C. Then for colimits the following isomorphism holds:

MorC(lim−→F, T ) ∼= lim←−MorC(F, T ).

These isomorphisms can be interpreted as

• a covariant representable functor preserves limits;
• a contravariant representable functor maps colimits to limits.

2.12.7. Example. Let (Vi|i ∈ I) be a family of vector spaces. Then

HomK(W,
∏
i∈I

Vi) ∼=
∏
i∈I

HomK(W,Vi)

and
HomK(

⊕
i∈I

Vi,W ) ∼=
∏
i∈I

HomK(Vi,W )

2.12.8. Theorem. Let F : D −→ C be a diagram in a category C. If (L, (pA)) and (L′, (p′A))
are limits of F , then there is a unique isomorphism h : L −→ L′ such that p′A ◦ h = pA for all
A ∈ D.

Proof. Since (L′, (p′A)) satisfies the universal property of a limit there is a unique morphism
h : L −→ L′ such that p′A ◦ h = pA for all A ∈ D. Symmetrically there is a unique morphism
k : L′ −→ L such that pA ◦ k = p′A for all A ∈ D. Consider the following commutative
diagram:

L

A

pA

�
�

�
�

��	
L′

p′A
���)

L
pA PPPi

L′

p′A

@
@

@
@

@@I

?
h

?
k

?
h

?

1L

?

1L′

Since pA ◦k ◦h = pA = pA ◦1L for all A ∈ D we get by uniqueness k ◦h = 1L. Symmetrically
we get h ◦ k = 1L′ , thus h is an isomorphism with the required properties. �

09.07.04
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3. Adjoint functors and monads

3.1. Adjoint functors.

3.1.1. Definition. Let C and D be categories. Let F : C −→ D and G : D −→ C be covariant
functors. F is called left adjoint to G and G is called right adjoint to F if there is a natural
isomorphism (natural in C ∈ C and D ∈ D)

ϕ(C,D) : MorD(FC,D) ∼= MorC(C,GD)

or simply

MorD(F -, -) ∼= MorC(-, G-) : Cop ×D −→ Set .

3.1.2. Proposition. Let F : C −→ D be left adjoint to G : D −→ C. Then G determines F
uniquely up to a natural isomorphism.

Proof. Assume that also F ′ : C −→ D is left adjoint to G. Then we have natural isomorphisms

MorD(F -, -) ∼= MorC(-, G-) ∼= MorD(F ′-, -).

By the Yoneda Lemma and Proposition 2.10.5 we get F ∼= F ′. �

3.1.3. Corollary. Let Fi : C −→ D be left adjoint to Gi : D −→ C for i = 1, 2. Let α : G1

−→ G2 be a natural transformation. Then there is a unique natural transformation β : F2

−→ F1 such that the diagram

MorD(F1-, -) MorC(-, G1-)-
ϕ1(-, -)

MorD(F2-, -) MorC(-, G2-)-
ϕ2(-, -)

?
MorD(β-, -)

?
MorC(-, α-)

Proof. Given A,B ∈ D. Then there is a unique morphism β(A) : F2A −→ F1A such that the
following diagram commutes

MorD(F1A, -) MorC(A,G1-)-
ϕ1(A, -)

MorD(F2A, -) MorC(A,G2-)-
ϕ2(A, -)

?
MorD(β(A), -)

?
MorC(A,α-)
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We have to show that β : F2 −→ F1 is a natural transformation. Let f : A −→ B be a
morphism in D. Then

MorD(F1B, -) MorC(B,G1-)-
ϕ1(B, -)

MorD(F2B, -) MorC(B,G2-)-
ϕ2(B, -)

?

MorD(β(B), -)

?
MorC(B,α-)

MorD(F1A, -) MorC(A,G1-)-
ϕ1(A, -)

MorD(F2A, -) MorC(A,G2-)-
ϕ2(A, -)

?

?
MorD(β(A), -)

?

MorC(A,α-)

MorD(F1f, -)
Q

Q
Q

QQs
MorC(f,G1-)

Q
Q

Q
QQs

MorD(F2f, -)
Q

Q
Q

QQs
MorC(f,G2-)

Q
Q

Q
QQs

�

There is an equivalent definition of adjoint functors that we want to give now. First we need
some preparation.

3.1.4. Lemma. Let F : C −→ D and G : D −→ C be functors. Then the map

Nat(IdC, GF ) 3 Φ 7→ G- ◦ Φ- ∈ Nat(MorD(F -, -),MorC(-, G-))

is bijective with inverse map

Nat(MorD(F -, -),MorC(-, G-)) 3 ϕ 7→ ϕ(-, F -)(1F-) ∈ Nat(IdC, GF ).

Given ϕ : MorD(F -, -) −→ MorC(-, G-) as a family ϕ(C,D) : MorD(FC,D) −→ MorC(C,GD).
Take D := FC. Then we get Φ(C) := ϕ(C,FC)(1FC) : C −→ GFC. We show that Φ : IdC
−→ GF is a natural transformation.
For f : C −→ C ′ the diagram commutes:

MorD(FC, FC) MorD(FC, FC ′)-
MorD(FC, Ff)

MorD(FC ′, FC ′)�
MorD(Ff, FC ′)

MorC(C,GFC) MorC(C,GFC
′)-

MorC(C,GFf)
MorC(C

′, GFC ′)�
MorC(f,GFC

′)?
ϕ(C,FC)

?
ϕ(C,FC ′)

?
ϕ(C ′, FC ′)

Hence we get

Φ(C ′) ◦ f = (MorC(f,GFC
′) ◦ ϕ(C ′, FC ′))(1FC′)

= (ϕ(C,FC ′) ◦MorD(Ff, FC ′))(1FC′)
= ϕ(C,FC ′)(Ff)
= (ϕ(C,FC ′) ◦MorD(FC, Ff))(1FC)
= (MorC(C,GFf) ◦ ϕ(C,FC))(1FC)
= GFf ◦ Φ(C).

Conversely let Φ : IdC −→ GF be a natural transformation and let

ϕ(C,D)(f) := Gf ◦ Φ(C) = (MorC(Φ(C), GD) ◦G)(f) : C
Φ(C)−→ GFC

Gf−→ GD
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for f : FC −→ D. We show that ϕ : MorD(F --) −→ MorC(-, G-) is a natural transformation.
Given g : C −→ C ′ then

MorD(FC ′, D) MorD(FC,D)-
MorD(Fg,D)

MorC(C
′, GD) MorC(C,GD)-

MorC(g,GD)?
ϕ(C ′, D)

?
ϕ(C,D)

commutes since

(ϕ(C,D) ◦MorD(Fg,D))(f) = ϕ(C,D)(f ◦ Fg)
= G(f ◦ Fg) ◦ Φ(C)
= Gf ◦GFg ◦ Φ(C)
= Gf ◦ Φ(C ′) ◦ g
= MorC(g,GD)(Gf ◦ Φ(C ′)
= (MorC(g,GD) ◦ ϕ(C ′, D))(f).

Now let g : D −→ D′ be given. The the diagram

MorD(FC,D) MorD(FC,D′)-
MorD(FC, g)

MorC(C,GD) MorC(C,GD
′)-

MorC(C,Gg)?
ϕ(C,D)

?
ϕ(C,D′)

commutes since

3.2. Monads or Triples.
We now describe a structure based on an endofunctor which has turned out to be an impor-
tant technical tool in studying toposes and related topics. It is an abstraction of the concept
of adjoint and in a sense an abstraction of universal algebra (see the remarks in fine print at
the end of 10.2.3 below).

3.2.1. Definition. Let A be a category and R : A −→ A be an endofunctor. An R-algebra
is a pair (A, a) where a : RA −→ A is an arrow of A . A homomorphism between R-algebras
(A, a) and (B, b) is an arrow f : A −→ B of A such that

RA A-a

RB B-
b

?
Rf

?
f

commutes. This construction gives a category (R : A) of R-algebras.

3.2.2. Definition. A monad T = (T, η, µ) on a category A consists of a functor T : A −→ A,
together with two natural transformations η : id −→ T and µ : T 2 −→ T for which the
following diagrams commute

T T 2-ηT
T�Tη

T

=
@

@
@@R

=
�

�
��	?

µ

T 3 T 2-Tµ

T 2 T-
µ

?
µT

?

µ



Factorizations of a monad 87

Here, ηT and Tη are defined as in 1.7.56and 1.7.57.The transformation η is the unit of the
monad and µ is the multiplication. The left diagram constitutes the (left and right) unary
identities and the right one the associative identity. The reason for these names comes from
the analogy between monads and monoids. This will be made clear in 3.2.4.Another widely
used name for monad is ‘triple’.
An adjoint pair gives rise to a monad on the domain of the left adjoint.

3.2.3. Proposition. Let U : B −→ A and F : A −→ B be functors such that F is left adjoint to
U with η : id −→ UF and ε : FU −→ id the unit and counit, respectively. Then (UF, η, UεF )
is a monad on A.

Note that UεF : UFUF −→ UF , as required for the multiplication of a monad with functor
UF .
Conversely, every monad arises in that way out of some (generally many) adjoint pair. See
Section 3.3 for two ways of constructing such adjoints.

3.2.4. Example. Let M be a monoid. The representation monad T = (T, η, µ) on the
category of sets is given by letting T (S) = M × S for a set S. ηS : S −→ T (S) = M × S
takes an element s ∈ S to the pair (1, s). We define µS by (µS)(m1,m2, s) = (m1m2, s) for
s ∈ S, m1,m2 ∈M . Thus the unit and multiplication of the monad arise directly from that
of the monoid. The unitary and associativity equations can easily be shown to follow from
the corresponding equations for the monoid.
The standard way of getting this monad from an adjoint pair is by using the underlying and
free functors on M -sets (see 4.2.1???). If S and T are M -sets, then a function f : S −→ T is
said to be M-equivariant if f(ms) = mf(s) for m ∈ M , s ∈ S. For a fixed monoid M , the
M -sets and the M -equivariant functions form a category, called the category of M-sets.
The free M -set generated by the set S is the set M × S with action given by m′(m, s) =
(m′m, s). Using Theorem 9.3.5???, one can show immediately that this determines a functor
left adjoint to the underlying set functor on the category of M -sets. The monad associated
to this adjoint pair is the one described above.

3.2.5. Example. Let T : Set −→ Set be the functor which takes a set A to the Kleene closure
A∗ and a function f : A −→ B to the function f ∗ : A∗ −→ B∗ defined in Section 2.5.7???. Let
ηA : A −→ A take an element a to the one-element string (a), and let µA : A∗∗ −→ A∗ be
the flattening operation taking a string (s1, s2, . . . , sn) of strings to the concatenated string
s1s2 . . . sn in A∗ obtained in effect by erasing inner brackets: thus ((a, b), (c, d, e), (), (a, a))
goes to (a, b)(c, d, e)()(a, a) = (a, b, c, d, e, a, a).
In particular, µA((a, b)) = (a, b). Then η : id −→ T and µ : T ◦ T −→ T are natural
transformations, and (T, η, µ) is a monad.

3.2.6. Definition. A comonad G = (G, ε, δ) in a category A is a monad in Aop. Thus G is
an endofunctor of A and ε : G −→ id and δ : G −→ G2 are natural transformations such that

G G2�
εG G-

Gε

G

=
@

@
@@R

=
�

�
��	 ?

δ

G G2-δ

G2 G3-
Gδ

?
δ

?
δG

3.3. Factorizations of a monad.
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3.3.1. Remark. Let T = (T, η, µ) be a monad on C . We describe here a construction which
exhibits the monad as coming from an adjoint. This construction, which is due to Kleisli
[1965], has proven to be quite useful in theoretical computer science.
We define a category K = K(T) which has the same objects as C. If A and B are objects of
C, then an arrow in K from A to B is an arrow A −→ TB in C . The composition of arrows
is as follows. If f : A −→ TB and g : B −→ TC are arrows in C, we let their composite in K
be the following composite in C :

A
f−→ TB

Tg−→ T 2C
µC−→ TC.

The identity of the object A is the arrow ηA : A −→ TA. It can be shown that this defines
a category. Moreover, there are functors U : K(T) −→ C and F : C −→ K(T) defined by
UA = TA and Uf = µB ◦ µTf , where B is the codomain of f , and FA = A and for g : A
−→ B, Fg = Tg ◦ ηA. Then F is left adjoint to U and T = U ◦ F .

Here is a second way, due to Eilenberg and Moore [1965] of factoring every monad as an
adjoint pair of functors. In mathematics, this construction has been much more interesting
than the Kleisli construction, but in computer science it has been quite the opposite.

3.3.2. Definition. Let T = (T, η, µ) be a monad on A. A T -algebra (A, a) is called a
T-algebra if the following two diagrams commute:

T 2A TA-µA

TA A-a
?

Ta
?

a

A TA-ηA

=
@

@
@@R
A
?

a

An arrow (homomorphism) between T-algebras is the same as an arrow between the corre-
sponding T -algebras. With these definitions, the T-algebras form a category traditionally
denoted AT and called the category of T-algebras.
There is an obvious underlying functor U : AT −→ A with U(A, a) = A and Uf = f . This
latter makes sense because an arrow of AT is an arrow of A with special properties. There
is also a functor F : A −→ AT given by FA = (TA, µA) and Ff = Tf . Some details have to
be checked, these are included in the following.

3.3.3. Proposition. The function F above is a functor left adjoint to U . The monad asso-
ciated to the adjoint pair FU is precisely T .

By a theorem of Linton’s, every equationally defined category of one-sorted algebraic
structures is in fact equivalent to the category of Eilenberg-Moore algebras for some
monad in Set ([Barr and Wells, 1985], Theorem 5 of Section 4.3). In fact, the converse
is true if infinitary operations are allowed (but then a hypothesis has to be added
on the direct part of the theorem that there is only a set of operations of any given
arity).

3.3.4. Example. Let (T, η, u) be the monad in Set defined in 10.1.6. An algebra for this
monad is a monoid: specifically, if ff : T (A) −→ A is an algebra, then the definition ab =
ff(a, b) makes A a monoid, and up to isomorphisms every monoid arises this way. Moreover,
algebra homomorphisms are monoid homomorphisms, and every monoid homomorphism
arises this way. The proof requires lengthy but not difficult verifications.
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The Kleisli category of a monad T = (T, η, µ) is equivalent to the full subcategory of free
T-algebras. Its definition makes it clear that the arrows are substitutions.

3.3.5. Example. As an example, consider the list monad of 10.1.6???. An arrow f : A −→ B
(here A and B are sets) of the Kleisli category is a set function A −→ TB, so that it associates
a string of elements of B to each element of A. Suppose A = {a, b} and B = {c, d, e}, and
that f(a) = cddc and f(b) = ec. Then Tf : TA −→ TTB takes, for example, the string abba
to (cddc)(ec)(ec)(cddc), the result of substituting cddc for a and ec for b in abba. Then µ
takes that string to cddcececcddc. It is instructive in this situation to think of µ as carrying
out a computation. In this case the computation is carried out using the (only) monoid
operation, since in fact the algebras for this monad are monoids. Thus one can think of
the objects of the Kleisli category as computations. This is more compelling if one uses a
monad arising from algebraic structures such as rings that abstract some of the properties
of numerical addition and multiplication, then the objects of the free algebra are polynomial
expressions and µ evaluates the polynomial.

3.4. Algebraic Categories.

3.5. More facts about adjoint functors.

3.5.1. Theorem. Let F : C −→ D be a covariant functor that has a left adjoint. Then F
preserves limits.

Idea of proof. Let D : I −→ C be a diagram. Consider the isomorphisms

MorD(T, F lim←−D) ∼= MorC(GT, lim←−D) ∼= lim←−Mor(GT,D) ∼=
∼= lim←−Mor(T, FD) ∼= Mor(T, lim←−FD)

which implies F lim←−D
∼= lim←−FD. �

3.5.2. Definition. Let F : C −→ D be a functor. Let D ∈ D. A set LD of objects in C is
called a solution set of D with respect to F , if for each C ∈ C and for each morphism D
−→ F (C) there is an object C ′ ∈ LD and morphisms f : C ′ −→ C and D −→ F (C ′) such that
the triangle

D F (C ′)-

@
@

@
@@R
F (C)

?

F (f)

commutes.

3.5.3. Theorem. Let C be a complete, locally small category and let F : C −→ D be a
(covariant) functor. Assume that C has a cogenerator.
F has a left adjoint if and only if

• F preserves limits and
• F has solutions sets.

3.5.4. Definition. An object C ∈ C is called a cogenerator, if for any two morphisms f, g : A
−→ B with f 6= g there is a morphism h : B −→ C such that h ◦ f 6= h ◦ g.
3.5.5. Theorem. Let C be a complete, locally small category and let F : C −→ D be a
(covariant) functor. Assume that C has a cogenerator.
F has a left adjoint if and only if F preserves limits.
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