Problem set for Quantum Groups and Noncommutative Geometry

- (21) Let H be a Hopf algebra. Then S is an antihomomorphism of algebras and coalgebras i.e. S "inverts the order of the multiplication and the comultiplication".
- (22) Let H and K be Hopf algebras and let $f: H \to K$ be a homomorphism of bialgebras. Then $fS_H = S_K f$, i.e. f is compatible with the antipode.
- (23) Let \mathbb{K} be a field. Show that an element $x \in \mathbb{K}G$ satisfies $\Delta(x) = x \otimes x$ and $\varepsilon(x) = 1$ if and only if $x = g \in G$.
- (24) (a) Show that the grouplike elements of a Hopf algebra form a group under multiplication of the Hopf algebra.
 - (b) Show that the set of primitive elements $P(H) = \{x \in H | \Delta(x) = x \otimes 1 + 1 \otimes x\}$ of a Hopf algebra H is a Lie subalgebra of H^L .

Due date: Tuesday, 04.06.2002, 16:15 in Lecture Hall E41