Problem set for Advanced Algebra

- (1) Let R be a ring and M an abelian group. Show that there is a one-to-one correspondence between maps $f: R \times M \to M$ that make M into a left R-module and ring homomorphisms (always preserving the unit element) $g: R \to \operatorname{End}(M)$.
- (2) Let $f: M \to N$ be an R-module homomorphism. The following are equivalent:
 - (a) f is a monomorphism,
 - (b) for all R-modules P and all homomorphisms $g,h:P\to M$

$$fg = fh \Longrightarrow g = h,$$

- (c) for all R-modules P the homomorphism of abelian groups $\operatorname{Hom}_R(P,f): \operatorname{Hom}_R(P,M) \ni g \mapsto fg \in \operatorname{Hom}_R(P,N)$ is a monomorphism.
- (3) Are $\{(0,\ldots,a,\ldots,0)|a\in K_n\}$ and $\{(a,0,\ldots,0)|a\in K_n\}$ isomorphic as $M_n(K)$ -modules?
- (4) Show: $m: \mathbb{Z}/(18) \otimes_{\mathbb{Z}} \mathbb{Z}/(30) \ni \overline{x} \otimes \overline{y} \mapsto \overline{xy} \in \mathbb{Z}/(6)$ is a homomorphism and m is bijective.

Due date: Tuesday, 23.10.2001, 16:15 in Lecture Hall E06