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1. Vortrag: Die Initialtopologie

Definition 1. Ein topologischer Raum ist eine Menge X zusammen mit einem Sy-
stem T von Teilmengen von X, das die folgenden Eigenschaften hat:

(1) ∅ ∈ T und X ∈ T ,

(2) Ist (Oi)i∈I eine Familie von Elementen von T , so ist
⋃
i∈I Oi ∈ T ,

(3) Sind O und O′ in T , so ist auch O ∩O′ in T .

Das System T heißt die Topologie von X. Die Elemente von T heißen offene Men-
gen.

Beispiel 1. (1) Die reellen Zahlen R sind ein topologischer Raum mit der fol-
genden Topologie: Eine Teilmenge O von R heißt offen, wenn gilt:

∀x ∈ O ∃ε > 0 ∀y ∈ R : |y − x| < ε⇒ y ∈ O

in Worten: um jeden Punkt x ∈ O gibt es eine offene ε-Kugel (ε-Intervall)
Kε(x), die ganz in O liegt.

(2) Jede Menge X kann durch die diskrete Topologie zu einem topologischen
Raum gemacht werden: Bei der diskreten Topologie besteht das System T
aus allen Teilmengen von X, d. h. jede Menge ist offen.

(3) T = {∅, X}.

Definition 2. A subset A of a topological space X is called closed if its complement
X \A is open.

Definition 3. Seien X und Y zwei topologische Räume mit den Topologien TX und
TY . Eine Abbildung f : X → Y heißt stetig, wenn gilt:

∀O ∈ TY : f−1(O) ∈ TX ,

d. h. wenn Urbilder offener Mengen offen sind.

Satz 1. Sei X eine Menge. (Xi)i∈I sei eine Familie von topologischen Räumen, die
jeweils die Topologie Ti tragen. Für jedes i ∈ I sei eine Abbildung fi : X → Xi

gegeben. Dann gibt es genau eine Topologie T auf X, genannt die Initialtopologie,
die die folgenden beiden Eigenschaften besitzt:

(1) Für jedes i ∈ I ist fi stetig.

(2) (Universelle Eigenschaft der Initialtopologie)
Ist Y ein topologischer Raum und f : Y → X eine Abbildung, so ist f
genau dann stetig, wenn für jedes i ∈ I die Komposition fi ◦ f stetig ist.
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Proof. Wir betrachten das folgende Diagramm

Y X-
f

Xi

@
@R ?

fi

und zeigen in mehreren Schritten:

(1) (Eindeutigkeit)
Seien T und T ′ zwei Topologien auf X, die die beiden genannten Eigen-
schaften erfüllen. Wir betrachten die identische Abbildung

idX : (X, T )→ (X, T ′)
Weil T die Eigenschaft 1 hat, ist

fi ◦ idX : (x, T )→ Xi

stetig. Wiel T ′ die Eigenschaft 2 hat, ist

idX : (X, T )→ (X, T ′)
stetig. Nach Definition der Stetigkeit ist also fürO ∈ T ′ das Urbild id−1

X (O) ∈
T . Insgesamt folgt: T ′ ⊂ T . Vertauschen von T und T ′ liefert: T = T ′.

(2) Wir wenden uns jetzt der Frage nach der Existenz zu. Wir definieren T wie
folgt: Eine Teilmenge O von X heiße offen, wenn es für jeden Punkt x ∈ O
endlich viele offene Mengen Oi1 ⊂ Xi1 , . . . , Oin ⊂ Xin gibt, so daß gilt:

x ∈
n⋂
j=1

f−1
ij

(Oij ) ⊂ O

Wir prüfen zunachst, daß T eine Topologie ist. Eigenschaft 1.1.1 ist offen-
sichtlich, ebenso Eigenschaft 1.1.2.

Sind O und O′ aus T und ist x ∈ O ∩ O′, so gibt es Oi1 , . . . , Oin mit
x ∈

⋂n
j=1 f

−1
ij

(Oij ) ⊂ O und O′k1 , . . . , O
′
kn

mit x ∈
⋂n
l=1 f

−1
kl

(O′kl
) ⊂ O′,

wobei Oij ⊂ Xij offen und O′kl
⊂ Xkl

offen ist. Daraus folgt:

x ∈
n⋂
j=1

f−1
ij

(Oij ) ∩
m⋂
l=1

f−1
kl

(O′kl
) ⊂ O ∩O′

Damit ist auch Eigenschaft 1.1.3 erfüllt.

Alternativ kann man den Durchschnitt aller Topologien T := ∩Ti auf X
nehmen, für die alle fi stetig sind.

(3) Wir zeigen nun, daß die in Schritt 2 definierte Topologie T die beiden be-
haupteten Eigenschaften hat. Ist O ⊂ Xi offen, so ist f−1

i (O) ∈ T , fi ist also
stetig. Ist f : Y → X eine Abbildung, für die fi ◦f (für alle i ∈ I) stetig ist,
und ist O ⊂ X offen, so ist zu zeigen, daß f−1(O) offen ist. Ist y ∈ f−1(O),
also f(y) ∈ O, so gibt es offene Mengen Oi1 , . . . , Oin in Xi1 , . . . , Xin , so
daß f(y) ∈

⋂m
j=1 f

−1
ij

(Oij ) ⊂ O, also y ∈
⋂n
j=1 f

−1(f−1
ij

(Oij )) ⊂ f−1(O).
Da fij ◦ f stetig ist, ist f−1(f−1

ij
(Oij )) = (fij ◦ f)−1(Oij ) offen. Also ist

f−1(O) offen.

�
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Beispiel 2. SeiX ein topologischer Raum mit der Topologie T und U eine Teilmenge
von X. Die Initialtopologie bezüglich der Inklusionsabbildung ι : U → X,x 7→ x
ist eine Topologie auf U , die die Relativtopologie genannt wird. Sie kann auch so
beschrieben werden: Eine Teilmenge U ′ von U ist offen in der Relativtopologie,
wenn es eine offene Menge X ′ ∈ T von X gibt mit U ′ = U ∩X ′, d. h. wenn sie der
Durchschnitt von U und einer offenen Menge von X ist.

Beispiel 3. Seien (Xi)i∈I topologische Räume, jeweils mit den Topologien Ti. Die
Initialtopologie des cartesischen Produktes

∏
i∈I
Xi bezüglich der Projektionen

πj :
∏
i∈I
Xi → Xj , (xi)i∈I 7→ xj

heißt die Produkttopologie auf
∏
i∈I
Xi. So trägt etwa der Rn = R × . . . × R die

Produkttopologien der Topologien aus Beispiel 1.2.1. Die Stetigkeit der Diagonal-
abbildung

d : R→ R2, x 7→ (x, x)

folgt also wegen der universellen Eigenschaft der Initialtopologie daraus, daß die
Kompositionen π1 ◦ d : R → R, π2 ◦ d : R → R mit den Projektionen πi : R2 →
R, (x1, x2) 7→ xi jeweils die identische Abbildung ergeben, die stetig ist.

Eine stetige Kurve im Rn ist die stetige Abbildung f : R −→ Rn, die durch die
stetigen Abbildungen fi : R −→ R, i = 1, . . . , n mit pi ◦ f = fi gegeben ist.

Definition 4. Sei I eine Menge, ≤ eine Relation auf I. I heißt durch ≤ gerichtet,
wenn gilt:

(1) ∀i ∈ I : i ≤ i

(2) ∀i, j, k ∈ I : i ≤ j und j ≤ k → i ≤ k

(3) ∀i, j ∈ I∃k ∈ I : i ≤ k und j ≤ k

Wir schreiben i < j, falls i ≤ j, aber nicht j ≤ i gilt.

Beispiel 4. Die natürlichen Zahlen sind gerichtet, z. B. gibt es zu den natürlichen
Zahlen 2 und 3 die Zahl 5, für die gilt: 2 ≤ 5 und 3 ≤ 5. Die Menge aller endlichen
Teilmengen einer Menge X ist durch die Inklusion gerichtet, denn sind Y und Z
endliche Teilmengen von X, so erfüllt die Vereinigung Y ∪ Z:

Y ≤ Y ∪ Z und Z ≤ Y ∪ Z

Definition 5. Sei I eine durch ≤ gerichtete Menge. Für jedes i ∈ I sei ein topo-
logischer Raum Xi mit der Topologie Ti gegeben. Weiter sei für je zwei Elemente
i, j ∈ I mit i ≤ j eine stetige Abbildung

fij : Xj → Xi

gegeben, so daß gilt:

(1) ∀i ∈ I : fii = idXi

(2) ∀i, j, k ∈ I : i ≤ j ≤ k → fik = fij ◦ fjk
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Der projektive Limes der Familie (Xi)i∈I ist die Menge:

lim
←− i∈I

Xi = {(xi)i∈I ∈
∏
i∈I
Xi|∀i, j ∈ I : i ≤ j → fij(xj) = xi}

Offenbar gilt:
∏
i∈I
Xi ⊃ lim

←− i∈I
Xi Der projektive Limes ist ein topologischer Raum

mit der Relativtopologie der Produkttopologie. Seine Elemente heißen Fäden. Wir
bezeichnen mit πj die Abbildung

πj : lim
←− i∈I

Xi → Xj , (xi)i∈I 7→ xj

Satz 2. ( Universelle Eigenschaft des projektiven Limes)

(1) ∀i, j ∈ I : i ≤ j → πi = fij ◦ πj
(2) Ist X ein topologischer Raum und ist für jedes i ∈ I eine stetige Abbildung

fi : X → Xi

gegeben, so daß gilt:

∀i, j ∈ I : i ≤ j → fi = fij ◦ fj ,
so gibt es genau eine stetige Abbildung f : X → lim

←− i∈I
Xi, für die gilt:

∀i ∈ I : fi = πi ◦ f

Proof. Die erste Aussage folgt direkt aus der Definition. Die zweite Aussage erhält
man, indem man für f setzt:

f : X → lim
←− i∈I

Xi, x 7→ (f(xi))i∈I

Die Stetigkeit von f folgt aus der universellen Eigenschaft der Initialtopologie. Die
Eindeutigkeit ist klar.

X lim
←− i∈I

Xi-f

fj
@
@
@
@R

fi

H
HHH

HHHHj
Xj Xi-fij

πj
�
�
�
��

πi
A
A
A
AU

�

Beispiel 5. Sei X ein topologischer Raum und sei I ein System von Teilmengen von
X, das mit zwei Elementen auch deren Durchschnitt enthält. I ist dann gerichtet
durch die umgekehrte Inklusion: Sind A,B ∈ I, so setze:

A ≤ B :⇔ A ⊃ B
Für A ∈ I sei XA = A, die Menge selbst, und für A ≤ B sei fAB : XB →
XA die Inklusionsabbildung. Der projektive Limes dieser Familie ist einfach ihr
Durchschnitt, d. h. die Abbildung⋂

A∈I
A→ lim

←−A∈I
XA, x 7→ (x)A∈I

ist ein Homöomorphismus, d. h. eine bijektive stetige Abbildung, deren Umkehrab-
bildung ebenfalls stetig ist.
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Beispiel 6. Sei p eine Primzahl. Die natürlichen Zahlen N = {1,2,3, . . . } sind mit
der gewöhnlichen Ordnung gerichtet. Für n ∈ N sei Xn := Z/pnZ, versehen mit der
diskreten Topologie. Für n ≤ m sei

fnm : Z/pmZ→ Z/pnZ

die kanonische Abbildung. Der projektive Limes lim
←−n∈NZ/pnZ heißt die Menge der

ganzen p-adischen Zahlen.

2. Linear topological vector spaces

Definition 6. (1) A group G together with a topology T is called a topological
group if the following properties are satisfied:

(a) The map
G×G→ G, (g, g′) 7→ gg′

is continuous. Here G×G is endowed with the product topology.

(b) The map
G→ G, g 7→ g−1

is continuous.

(2) A ring R together with a topology T is called a topological ring if the
following properties are satisfied:

(a) R is a topological group with respect to addition.

(b) The map
R×R→ R, (r, s) 7→ rs

is continuous. Here R×R is again endowed with the product topology.

(3) Suppose that R is a topological ring. A module M over R together with
a topology T is called a topological module if the following properties are
satisfied:

(a) M is a topological group with respect to addition.

(b) The map
R×M →M, (r,m) 7→ rm

is continuous. Here R×M is again endowed with the product topology.

Definition 7. (1) A field K together with a topology T is called a topological
field if the following properties are satisfied:

(a) K is a topological ring.

(b) The map
K \ {0} → K \ {0}, λ 7→ λ−1

is continuous. Here K \ {0} is endowed with the relative topology.

(2) A topological vector space is a topological module over a topological field.

Proposition 1. (1) Every field becomes a topological field if it is endowed with
the discrete topology.
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(2) If K is (in this sense) discrete and if V is a vector space over K, then the
following assertions are equivalent:

(a) The map
K × V → V, (λ, v) 7→ λv

is continuous.

(b) For every λ ∈ K the mapping

V → V, v 7→ λv

is continuous.

Proof. Products and subsets of discrete topological spaces are - together with the
product topology resp. the relative topology - again discrete. Mappings from dis-
crete topological spaces to any other topological spaces are always contionuous.
This implies the first assertion.

Suppose that λ ∈ K. The mapping V → K × V, v 7→ (λ, v) is continuous by the
universal property of the product topology. The mapping K × V → V, (λ, v) 7→
λv is continuous by assumption. Therefore the composition of these mappings is
continuous, as we have asserted.

For the other direction, suppose that O ∈ V is open. We have to show that {(λ, v) ∈
K × V |λv ∈ O} is open. Since we know that {v ∈ V |λv ∈ O}, we have that

{λ} × {v ∈ V |λv ∈ O}{(λ, v) ∈ K × V |λv ∈ O}
is open, as we can see from the construction of the product topology. Therefore, we
have that ⋃

λ∈K

{(λ, v) ∈ K × V |λv ∈ O}

is open, as we had to show. �

Definition 8. A linear topological vector space is a topological vector space over a
discrete field satisfying the following condition: For every neighbourhood U of the
origin there is another neighbourhood U ′ of the origin which is contained in U and
is a subspace of V . (Here and below ’subspace’ means ’subvector space’. Recall that
a neighbourhood of a point in a topological space is a set which contains an open
set which in turn contains the point.)

Proposition 2. Suppose that V is a linear topological vector space. Then the follo-
wing assertions are equivalent:

(1) V is Hausdorff, that is, two distinct points have disjoint neighbourhoods.

(2) The intersection of all neighbourhoods of the origin is {0}.

Proof. We denote the set of all neighbourhoods of the origin by U(′). If there were
v ∈

⋂
U∈U(′) U , v 6= 0, then we would have neighbourhoods Uv of v and U0 of 0

such that Uv ∩ U0 = ∅ by the Hausdorff axiom. But this is a contradiction.

For the other implication, suppose that v and w are two distinct points. By assump-
tion there is a neighbourhood U of the origin which does not contain v − w. Since
V is linear topological, we can assume that U is a subspace. v+U and w+U then
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are neighbourhoods of v resp. w. We have (v + U) ∩ (w + U) = ∅, because if there
would be an element x ∈ (v + U) ∩ (w + U), i. e. x = v + u1 = w + u2, u1, u2 ∈ U ,
we would have v − w = u2 − u1 ∈ U , a contradiction. �

Definition 9. (1) Suppose that X is a set and that F is a system of subsets of
X. F is called a filter basis if it is not void, no element of F is void and has
the following property:

∀A,B ∈ F∃C ∈ F : C ⊂ A ∩B

(2) If X is a topological space and x ∈ X, a system F of neighbourhoods of x
is called a basis of the neighbourhood system if for every neighbourhood U
of x there is an element A ∈ F such that A ⊂ U .

Proposition 3. Suppose that V is a vector space and that F is a filter basis consisting
of subspaces of V . Then there is a unique topology T on V having the following
properties:

(1) F is a basis of the neighborhood system of the origin.

(2) V is a linear topological vector space.

Proof. (1) We first show the existence of such a topology. We call a subset O
open if we have:

∀v ∈ O∃U ∈ Fv + U ⊂ O

The first two axioms in the definition of a topology are obviously satisfied.
We show the third axiom: If O and O′ are open and if v ∈ O∩O′, we select
U ∈ F and U ′ ∈ F satisfying v + U ⊂ O and v + U ′ ⊂ O′. Since F is a
filter basis, there exists U ′′ ∈ F satisfying U ′′ ⊂ U ∩ U ′. We then have:

v + U ′′ ⊂ (v + U) ∩ (v + U ′) ⊂ O ∩O′

Therefore O ∩ O′ is open. We now have shown that we have defined a
topology in this way.

(2) It is obvious that F is a basis of the neighbourhood system of the origin
with respect to this topology. We show now that V has become a linear
topological vector space. We first check the continuity of the addition. If O
is an open set and v+w ∈ O, we have some U ∈ F satisfying v+w+U ⊂ O.
(v + U) × (w + U) then is an open set in V × V which maps to O under
addition. Therefore, addition is continuous. Suppose now that we are given
λ ∈ K and thatO is an open set containing λv for some v ∈ V . We then have
some element U ∈ F satisfying λv + U ⊂ O. The mapping w 7→ λw then
maps the open set v+U to O. The assertion now follows from Proposition
2.3.

(3) We shall now prove the uniqueness. If T ′ is another toplogy which possesses
the stated properties, and if O ∈ T ′, v ∈ O, we have that −v + O is a
neighbourhood of the origin. Therefore there is U ∈ F with U ⊂ −v + O.
But this implies v+U ⊂ O, i. e. O ∈ T . We therefore have shown: T ′ ⊂ T .



8 Yorck Sommerhäuser

If we have O ∈ T and v ∈ O, there exists U ∈ F satisfying v + U ⊂ O.
Since U is a T ′-neighbourhood of the origin, v+U is a T ′- neighbourhood
of v. Therefore O is a T ′-neighbourhood of v. This implies: O ∈ T ′.

�

Proposition 4. Every finite dimensional linear topological Hausdorff space is dis-
crete.

Proof. Let dimV = n. Suppose that U1 is a subspace of V which is a neighbourhood
of the origin. If U1 6= {0}, we have by 2.5.2 a second subspace of this kind satisfying
U1 ∩ U2 $ U1, and in case that U1 ∩ U2 6= {0}, there is another such subspace
U3 such that U1 ∩ U2 ⊃ U1 ∩ U2 ∩ U3. After at most n + 1 steps, this procedure
terminates and we have: U1 ∩ . . . ∩ Un+1 = {0}. Therefore {0} is a neighborhood
of the origin, and therefore it is open. Therefpre, for every vector v ∈ V , the set
{v} = v + {0} is open. �

Proposition 5. Suppose that V is a linear topological vector space. If U is a subspace
which is a neighborhood of the origin, then U is open and closed.

Proof. If u ∈ U , then we have u+U = U , and therefore U is a neighbourhood of u.
Therefore, U is a neighbourhood of all of its points, and therefore open. On the other
hand, if u /∈ U , we have (u+ U) ∩ U = ∅, because if there were u′′ ∈ (u+ U) ∩ U ,
that is u′′ = u + u′, u′ ∈ U , we would have u = u′′ − u′ ∈ U , a contradiction.
Therefore, the complement of U contains with every point a whole neighbourhood
of this point, and therefore it is open. �

Proposition 6. Suppose that V is a linear topological vector space and that U is a
subspace of V . Then the closure U of U is again a subspace.

Proof. If we are given λ, µ ∈ K and v, w ∈ U , then for every open subspace W of
V there exist elements v′, w′ ∈ U such that v′ ∈ v + U,w′ ∈ w + U . We then have
λv′ + µw′ ∈ (λv + µw) + U , and therefore λv + µw ∈ U . �

Proposition 7. Suppose that V is a Hausdorff linear topological vector space. Sup-
pose that v ∈ V and that D is the intersection of all simultaneously open and closed
sets that contain v. Then we have: D = {v}.

Proof. If U is a neighbourhood of the origin which is a subspace, it is by 2.9 open
and closed. v + U then is a open and closed set which contains v. Since by 2.5 the
intersection of all such U is equal to {0}, the intersection of all v + U is equal to
{v}. But this intersection contains D. �

Remark 1. It can be deduced from the preceding proposition that V is totally
disconnected in the sense that the connected component of every point consists
only of this point. (Cf. [14], Satz 4.18, p. 47). A different example of a totally
disconnected space are the rational numbers Q.

Proposition 8. Suppose that V is a vector space and that (Vi)i∈I is a family of
linear topological vector spaces. We assume that for every i ∈ I there is given a
linear map

fi : V → Vi
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Then V is a linear topological vector space with respect to the corresponding initial
topology.

Proof. We first show the continuity of the addition

+ : V × V → V, (v, w) 7→ v + w

By the universal property of the initial topology, it suffices to prove the continuity
of the mappings

V × V → V, (v, w) 7→ fi(v + w)

But this is just the composition of the continuous mappings

V × V → Vi × Vi, (v, w) 7→ (fi(v), fi(w))

and
Vi × Vi → Vi, (v, w) 7→ v + w

We further have to show by 2.3 that for a given λ ∈ K the mapping

V → V, v 7→ λv

is continuous. Again by the universal property of the initial topology it is sufficient
to prove that the mapping

V → Vi, v 7→ (fi(λv)

is continuous. But this is just the composition of fi and the continuous mapping

Vi → Vi, v 7→ λv

We have shown that V is a topological vector space. It remains to show that V pos-
sesses a basis of the neighbourhood system of the origin that consists of subspaces.
If U is a neighbourhood of the origin, then by construction of the initial topology
in the proof of 1.5 there exist open sets Oi1 , . . . , Oin in Vi1 , . . . , Vin satisfying:

0 ∈
n⋂
j=1

f−1
ij

(Oij ) ⊂ U.

We then have 0 = fij (0) ∈ Oij , and therefore there is an open subspace Uij of Vij ,
such that Uij ∈ Oij . This implies

0 ∈
n⋂
j=1

f−1
ij

(Uij ) ⊂ U,

and obviously
⋂n
j=1 f

−1
ij

(Uij ) is a subspace of V . �

Remark 2. In particular, it follows from the preceding proposition that a subspace
of a linear topological vector space becomes a linear topological vector space via the
relative topology, and that a product of linear topological vector spaces together
with the product topology is a linear topological vector space.

Suppose that I is a set which is directed by ≤. Suppose further that for every i ∈ I
we are given a linear topological vector space Vi and for any two elements i, j ∈ I
satisfying i ≤ j a continuous linear map

fij : Vj → Vi
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such that 1.10.1 and 1.10.2 are satisfied. The projective limit

lim
←− i∈I

Vi = {(vi)i∈I ∈
∏
i∈I
Vi|∀i, j ∈ I : i ≤ j → fij(vj) = vi}

obviously is a subspace of the product. We now have by the preceding proposition
that it is a linear topological vector space via the relative topology of the product
topology.

3. Duality theory

Proposition 9. (1) If f : V → V is a linear map between topological vector
spaces, then f is continuous if and only if it is continuous at the origin.

(2) If f : V → K is a linear functional on the linear topological vector space
V , it is continuous if and only if it vanishes on some open subspace.

Proof. Suppose that f is continuous at the origin. We show that f is continuous
at v ∈ V . For this purpose we write f as the composition of the three mappings
f = h ◦ f ◦ g where we define:

g : V → V , v′ 7→ v′ − v
h : W →W,w 7→ f(v) + w

g and h are continuous at every point in particular g is continuous at v, f is
continuous at 0 = g(v) amd h is continuous at 0 = f(0). Therefore h ◦ f ◦ g is
continuous at v.

(Recall that f : X → Y is called continuous at x if for every neighbourhood U of
f(x) f−1(U) is a neighbourhood of x.)

To prove the second statement, we observe that if f is continuous, then kerf =
f−1({0}) is open, since K is discrete. On the other hand, if U is an open subspace
on which f vanishes, then for every neighbourhood U ′ of the origin in K f−1(U ′)
is a neighbourhood of the origin in V , since it contains U . �

Definition 10. Suppose that 〈·, ·〉 : V ×W → K is a nondegenerate bilinear form.
For W̃ ⊆W define:

W̃⊥ = {v ∈ V |∀w ∈ W̃ : 〈v, w〉 = 0}

or equivalently the induced map ϕ : V −→ Hom(W,K) induces W̃ ; {f |f(W̃ ) =
0} = W̃×, W̃⊥ = ϕ−1(W̃×). The set {W̃⊥|W̃ is a finite dimensional subspace of
W} is a filter basis (Why?). The topology induced by this filter basis (cf. 2.7) is
called the finite topology of V .

Obviously the evaluation map

〈·, ·〉 : V ∗ × V → K, (f, v) 7→ f(v)

is a nondegenerate bilinear form. V ∗, and also V , therefore carry finite topologies.

Definition 11. Suppose that V is a linear topological vector space. We denote the
set of continuous linear functionals by V ′. V ′ is a subspace of the dual vector space
V ∗. (Why?)
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Theorem 1. (Separation theorem) Suppose that V is a linear topological vector
space and U is a closed subspace. If v /∈ U , there is a continuous linear functional
f ∈ V ′ satisfying f(v) = 1 and f(u) = 0 for all u ∈ U .

Proof. Since U is closed, V \U is open. Since v ∈ V \U , there is an open subspace
W such that v + W ⊂ V \ U . Then we have v /∈ U + W , since if we could write
v = u + w, u ∈ U,w ∈ W , we would have v − w = u ∈ (v + W ) ∩ U . We know
from linear algebra that there is a linear functional f ∈ V ∗ that satisfies f(v) =
1, f(U +W ) = 0. Therefore we have in particular that f(W ) = 0, and this implies
that f is continuous by 3.1. �

Theorem 2. (Extension theorem) Suppose that V is a linear topological vector space
and that U is a subspace of V . If f : U → K is a continuous linear functional, then
f can be extended to the whole vector space, that is, there is a continuous linear
functional g ∈ V ′ satisfying f(u) = g(u) for all u ∈ U .

Proof. If f = 0, define g = 0. If f 6= 0, there is u0 such that f(u0) = 1. We then
have: U = Ku0 ⊕ ker(f). Since f is continuous and K is discrete, f−1({1}) is an
open neighbourhood of u0 and therefore we have by the construction of the relative
topology (cf. 1.6) an open subspace W of V such that (u0 +W )∩U ⊂ f−1({1}). We
see that u0 /∈W +ker(f), because if we could write u0 = w+v, w ∈W, v ∈ ker(f),
we could conclude that v = u0−w ∈ u0+W ⊂ f−1({1}) and therefore 0 = f(v) = 1.
W+ker(f) =

⋃
v∈ker(f) v+W is an open subspace which is therefore closed. By the

Trennungssatz we conclude that there is a continuous linear form g ∈ V ′ satisfying
g(u0) = 1, but g(W + ker(f)) = 0. If u ∈ U , we write u = αu0 + x, x ∈ ker(f).
Then we have f(u) = α = g(u). �

Proposition 10. Suppose that 〈·, ·〉 : V ×W → K is a nondegenerate bilinear form.
Suppose that w1, . . . , wn ∈ W are linearly independent vectors. Then there are
vectors v1, . . . , vn ∈ V satisfying:

∀i, j ≤ n : 〈vi, wj〉 = δij

Proof. We argue by induction on n, the case n = 1 being obvious. By the induction
hypothesis, we can find vectors v1, . . . , vn−1 such that we have:

∀i, j ≤ n− 1 : 〈v′i, wj〉 = δij

For v ∈ V form

v −
n−1∑
i=1

〈v, wi〉v′i

We have 〈v −
∑n−1
i=1 〈v, wi〉v′i, wj〉 = 0 for j = 1, . . . , n. On the other hand, there

is v ∈ V such that 〈v −
∑n−1
i=1 〈v, wi〉v′i, wn〉 6= 0, because if we would have for all
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vectors v ∈ V :

0 = 〈v −
n−1∑
i=1

〈v, wi〉v′i, wn〉

= 〈v, wn〉 −
n−1∑
i=1

〈v, wi〉〈v′i, wn〉

= 〈v, wn −
n−1∑
i=1

〈v′i, wn〉wi〉

we could conclude by the nondegeneracy the bilinear form that we have wn −∑n−1
i=1 〈v′i, wn〉wi = 0 which contradicts the linear independence of w1, . . . , wn. We

now select v ∈ V such that v ∈ V such that 〈v −
∑n−1
i=1 〈v, wi〉v′i, wn〉 = 1. Define

vn = v −
n−1∑
i=1

〈v, wi〉v′i

and for i = 1, . . . n− 1:
vi := v′i − 〈v′i, wn〉vn

It is then easy to see that these vectors have the required property. �

Proposition 11. Suppose that 〈·, ·〉 : V ×W → K is a nondegenerate bilinear form.
Suppose that V carries the finite topology induced by W . Then the mapping

W → V ′, w 7→ (v 7→ 〈v, w〉)

is a bijection.

Proof. First we show that the map is well defined, that is, that for w ∈W the linear
functional V → K, v 7→ 〈v, w〉 is continuous with respect to the finite topology. But
this map vanishes on (Kw)⊥ and therefore is continuous by 3.1. We now prove sur-
jectivity. Suppose that f : V → K is continuous with respect to the finite topology.
By 3.1 and 3.2 there is a finite dimensional subspace W̃ = Span(w1, . . . , wn) such
that f(W̃⊥) = {0}. We can assume that w1, . . . , wn constitute a basis of W̃ . By
3.6 there are vectors v1, . . . , vn such that 〈vi, wj〉 = δij . Define w :=

∑n
i=1 f(vi)wi.

The surjectivity follows if we can prove:

∀v ∈ V : f(v) = 〈v, w〉

But for all v ∈ V we have that v −
∑n
i=1〈v, wi〉vi ∈ W̃⊥ and therefore

f(v −
n∑
i=1

〈v, wi〉vi) = 0

which means f(v) =
∑n
i=1〈v, wi〉f(vi) = 〈v, w〉 The injectivity is clear. �

Proposition 12. Suppose that V is a vector space. Endow the dual vector space V ∗

with the finite topology. Then the mapping

V → (V ∗)′, v 7→ (f 7→ f(v))

is a bijection.
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Proof. This follows by applying the preceding proposition 3.7 to the bilinear form

V ∗ × V → K, (f, v) 7→ f(v)

�

Proposition 13. Suppose that 〈·, ·〉 : V ×W → K is a nondegenerate bilinear form.
Suppose that V carries the finite topology. Then we have for every subspace U of
V :

Ū = U⊥⊥

Proof. This proceeds in steps.

(1) We first show that we have Ū ⊂ U⊥⊥. If W̃ is any subspace of W , then
W̃⊥ is closed, because if v /∈ W̃⊥, we have w ∈ W̃ such that 〈v, w〉 6= 0.
(Kw)⊥ is closed by 3.2 and 2.9, and because

v ∈ V \ (Kw)⊥ ⊂ V \ W̃⊥

we see that V \ W̃⊥ is open.

In particular, we see that U⊥⊥ is closed, and since U ⊂= U⊥⊥, we have
that Ū ⊂ U⊥⊥

(2) We now prove U⊥⊥ ⊂ Ū . For this purpose, it is sufficient to prove that every
neighbourhood of an element u ∈ U⊥⊥ which is of the form u+W̃⊥ for some
finite dimensional subspace W̃ of W contains an element of U . We select
a basis w1, . . . , wm of W̃ ∩ U⊥ which we complete to a basis w1, . . . , wn
of the whole subspace W̃ . The equivalence classes w̄m+1, . . . , w̄n in W/U⊥

are linearly independent. Since the bilinear form

U × (W/U⊥)→ K, (v, w̄) 7→ 〈v, w〉
is well defined and nondegenerate, we can apply 3.6 to obtain vectors
um+1, . . . , un ∈ U satisfying 〈ui, wj〉 = δij for i, j = m + 1, . . . , n. We
now set:

u′ :=
n∑

i=m+1

〈u,wi〉ui

Then we have: 〈u′, wj〉 = 〈u,wj〉 for j = m + 1, . . . , n. Since we have
w1, . . . , wm ∈ U⊥, u ∈ U⊥⊥ and u′ ∈ U , it follows that 〈u,wj〉 = 0 =
〈u′, wj〉 for j = 1, . . . ,m. This implies 〈u,w〉 = 〈u′, w〉 for w ∈ W̃ , i. e.
u′ − u ∈ W̃⊥, which means that u′ ∈ u+ W̃⊥

�

4. Linearly compact vector spaces

Proposition 14. Suppose that 〈·, ·〉 : V ×W → Kis a nondegenerate bilinear form.
The finite topology induced by W on V is the initial topology with respect to the
mappings

ηw : V → K, v 7→ ηw(v) := 〈v, w〉, w ∈W.
(Instead of using all w ∈ W one can restrict this to the mappings ηwi for some
basis (wi) of W and obtains the same topology.)
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Proof. It is sufficient to prove that the finite topology satisfies the universal property
of the initial topology, since this property determines the initial topology uniquely.
Observe first that ηw is continuous by 3.1, since it vanishes on the open subspace
(Kw)⊥. Now suppose that X is a topological space and that f : X → V is a
mapping for that every map ηw ◦ f is continuous. We have to show that f is
continuous. If O ⊂ V is open and x ∈ f−1(O), we have f(x) ∈ O and therefore
there is a finite dimensional subspace W̃ of W satisfying f(x) + W̃⊥ ⊂ O. Choose
a basis w1, . . . , wn of W̃ . Since K is discrete and ηw ◦ f is continuous, we have that

U :=
n⋂
i=1

(ηwi ◦ f)−1({ηwi(f(x))})

is an open subspace of X which obviously contains x. Our assertion will be proved if
we can show that U ⊂ f−1(O). If we are given y ∈ U , we have for i = 1, . . . , n that
ηwi

(f(y)) = ηwi
(f(x)), that is 〈f(y), wi〉 = 〈f(x), wi〉. This implies f(y) − f(x) ∈

W̃⊥, therfore f(y) ∈ f(x) + W̃⊥, therefore y ∈ f−1(O). �

Proposition 15. Suppose that V is a linear topological vector space with respect
to the topology T . The space V ′ induces on V the finite topology Te. We have:
Te ⊂ T .

Proof. It is sufficient to prove that we have U⊥ ∈ T for every finite dimensional
subspace U of V ′. Suppose that f1, . . . , fn is a basis of U . Then we have:

U⊥ =
n⋂
i=1

kerfi

and kerfi = f−1({0}) is open, since fi is continuous and K is discrete. �

Proposition 16. Suppose that V is a linear topological vector space with respect to
the topology T . Denote the finite topology on V that is induced by V ′ by Te. Let
U ⊂ V be a subspace. Then the following assertions are equivalent:

(1) U is closed with respect to T .

(2) U is closed with respect to Te.

(3) U = U⊥⊥, where the orthogonal complements are formed with respect to
the bilinear form

V ′ × V → K, (f, v) 7→ f(v).

(Observe that this does not mean T = Te, U is a subspace.

Proof. The second statement obviously implies the first, because we have:

U Te − closed ⇒ V \ U ∈ Te ⇒ (4.2 :) V \ U ∈ T ⇒ U T − closed

We now show that the first statement implies the third. It is obvious that we have
U ⊂ U⊥⊥. If there were u ∈ U⊥⊥ that is not contained in U , then we could conclude
from the Trennungssatz that there is f ∈ U⊥ satisfying f(v) = 1, a contradiction.
It follows from 3.9 that the third statement implies the second. �
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Definition 12. Suppose that V is a linear topological vector space. We shall say
that V is linearly compact if for any family (Ai)i∈I of closed affine subspaces of
V that satisfies

⋂
i∈I Ai = ∅ there are already finitely many indices i1, . . . , in ∈ I

such that
⋂n
j=1Aij = ∅.

(Recall that an affine subspace of V is a subset of the form v+U for some element
v ∈ V and some subspace U of V .)

Remark 3. Recall that an arbitrary topological space X is compact if for any
family (Ai)i∈I of closed subsets of X that satisfies

⋂
i∈I Ai = ∅ there are already

finitely many indices i1, . . . , in ∈ I such that
⋂n
j=1Aij = ∅. This is because the

complements of the sets Ai form an open covering of X.

Proposition 17. Suppose that V is linear compact vector space and that U is a
closed subspace. Then U is linear compact with respect to the relative topology.

Proof. If (Ai)i∈I is a family of closed affine subspaces of U that satisfies
⋂
i∈I Ai = ∅,

we have that all the Ai are also closed in V because U is itself closed. Therefore,
we have by definition that there are finitely many indices i1, . . . , in ∈ I such that⋂n
j=1Aij = ∅. �

Proposition 18. Suppose that V and W are linear topological vector spaces and
that f : V → W is a surjective, continuous, linear mapping. Then if V is linearly
compact, W is also linearly compact.

Proof. If (Ai)i∈I is a family of closed affine subspaces of W that satisfies
⋂
i∈I Ai =

∅, then (f−1(Ai))i∈I is a family sharing the same properties (Why?). Therefore the-
re are finitely many indices i1, . . . , in ∈ I such that

⋂n
j=1 f

−1(Aij ) = ∅. Therefore,
we have

f−1(
n⋂
j=1

Aij ) =
n⋂
j=1

f−1(Aij ) = ∅,

which implies
⋂n
j=1Aij = ∅ since f is surjective. �

Proposition 19. A linear compact, discrete vector space is finite dimensional.

Proof. Suppose that (vi)i∈I is a basis of the vector space V under consideration.
Let us assume that V is infinite dimensional. We define:

Vi := Span{vj |j 6= i} and Ai := vi + Vi

Ai is closed since V is discrete. If v =
∑n
j=1 λjvij is an arbitrary vector in V , and

if i /∈ {i1, . . . , in}, we have v /∈ Ai. This implies
⋂
i∈I Ai = ∅. Since V is linearly

compact, there are finitely many indices k1, . . . , km ∈ I such that
⋂m
j=1Akj = ∅.

But we have that vk1 + . . .+ vkm
∈

⋂m
j=1Akj

, a contradiction. �

Proposition 20. Let V be linearly compact. Let U ⊂ V be an open subspace. Then
dimV/U <∞.

Proof. If this is false then choose (vi)i∈N in V such that (vi | linearly independent in
V/U). Let Vi = U+Span(vj |j 6= i). Then the Ai = vi+Vi are closed, since the Vi are
closed and since U is closed and open. We prove ∩i∈NAi = ∅. Assume v ∈ ∩i∈NAi.
Then v ∈ U ⊕ Span{vi|i ∈ I} hence v = u +

∑n
i=1, so v /∈ An+1, a contradiction.
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Since V is linearly compact we get Ai1 ∩ . . .∩Air = ∅. But
∑r
i=1 vi ∈ Ai1 ∩ . . .∩Air ,

a contradiction. �

Proposition 21. Suppose that (Vi)i∈I is a family of linearly compact vector spaces.
Then the cartesian product

∏
i∈I Vi is linearly compact.

Proof. We shall show more generally: If A is a set of affine subspaces of V :=
∏
i∈I Vi

such that the intersection of finitely many elements of A is not void, then also the
intersection of the closures of the elements of A is not void:⋂

A∈A

A 6= ∅

We shall proceed in steps.

(1) We consider the following set:

M := {A′|A ⊂ A′,A′ is a set of affine subspaces of V

such that finitely many elements of A′ have nonvoid intersection}
M is ordered by inclusion. If N is a totally ordered subset of M, then⋂

A′∈N A′ is an upper bound for N. By Zorn’s Lemma we conclude that M
contains a maximal element Amax. If we could show that⋂

A∈Amax

A 6= ∅

we could conclude that also
⋂
A∈AA 6= ∅ since it is obvious that⋂

A∈Amax

A ⊂
⋂
A∈A

A

Therefore we can and will assume in our further considerations that A
already is maximal. This implies that the set M contains only one element.

(2) Consider the set

{
n⋂
j=1

Aj |A1, . . . , An ∈ A}

This is a set of affine subspaces such that the intersection of finitely many
of its elements is nonvoid and that contains A. By the maximality of A this
set is equal to A. This simply means that A contains finite intersections of
its elements, that is,

⋂n
j=1Aj ∈ A whenever A1, . . . , An ∈ A.

(3) Consider the projections

πi : V → Vi, (vj)j∈I 7→ vi

For A ∈ A, πi(A) is an affine subspace of Vi. Since the closure of an affine
subspace is again an affine subspace (cf. 2.14), and Vi is linearly compact,
we have: ⋂

A∈A

πi(A) 6= ∅

Therefore we can select for every i ∈ I some element vi ∈
⋂
A∈A πi(A).

Define v := (vi)i∈I . Now suppose that we are given a neighborhood of vi
of the form vi +U where U is an open subspace of Vi. This neighbourhood
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then intersects πi(A). π−1
i (vi + U) then is an affine subspace of V (cf. 4.7)

which intersects every A ∈ A. Therefore A∪{π−1
i (vi +U)} is a set of affine

subspaces of V with the property that the intersection of finitely many of
its elements is nonvoid. Since it obviously contains A, we conclude by the
maximality of A that it must be equal to A, that is, we have π−1

i (vi +
U) ∈ A. We can now conclude by the second step that for open subspaces
Ui1 , . . . , Uik of Vi1 , . . . , Vik we have:

n⋂
j=1

π−1
ij

(vij + Uij ) = v +
n⋂
j=1

π−1
ij

(Uij ) ∈ A,

and therefore this set also intersects every element of A. This implies v ∈ A
for every A ∈ A.

�

Proposition 22. Suppose that V is an arbitrary vector space. Endow the dual vector
space V ∗ with the finite topology. Then V ∗ is linearly compact.

Proof. First of all observe that the set of all mappings from V to K is nothing else
but the cartesian product KV =

∏
v∈V K and therefore can be endowed with

the product topology of the discrete topology on K. The projections onto the
components K are precisely the evaluation mappings. KV is linearly compact by
4.9, since K is linearly compact. Secondly, observe that V ∗ is a closed subset of
KV , since we have

V ∗ =
⋂

v,w∈V
{f ∈ KV |f(v) + f(w)− f(v + w) = 0}

∩
⋂

v∈V,λ∈K

{f ∈ KV |f(λv)− λf(v) = 0}

and this shows that V ∗ is the intersection of inverse images of the closed set {0} in
K under continuous mappings. We now can conclude by 4.6 that V ∗ together with
the relative topology of the product topology is a linearly compact space. But by
4.1, this is precisely the finite topology! �

Proposition 23. If (Vi)i∈I are linearly compact vector spaces, then
∏
i∈I Vi is linearly

compact.

5. The linearly compact topology

Proposition 24. Suppose that U is an open subspace of the linearly compact vector
space V . Then U has finite codimension.

Proof. Suppose that the codimension of U is infinite. Then there exists a sequence
(vi)i∈N such that the equivalence classes (v̄i)i∈N in V/U are linearly independent.
We define:

Vi := U + Span{vj |j 6= i} and Ai := vi + Vi

Vi - and therefore Ai - is closed by 2.9. If v =
∑n
j=1 λjvj , we have v /∈ An+1. This

implies
⋂
i∈N Ai = ∅. Since V is linearly compact, there exists n ∈ N such that⋂n

j=1Aj = ∅. But we have that v1 + . . .+ vn ∈
⋂n
j=1Aj , a contradiction. �
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Remark 4. If we set U = {0} in the above Proposition, we recover Proposition 4.8.

Proposition 25. Suppose that V is a Hausdorff lineartopological vector space. If U
is a subspace of V which is linearly compact with respect to the relative topology,
then it is closed.

Proof. It is sufficient to show: If v /∈ U , we have also v /∈ Ū . If v /∈ U , there is, for
every u ∈ U , an open subspace Vu that satisfies u /∈ v + Vu, since V is Hausdorff.
Let: Au = (v+Vu)∩U . By 2.9 we see that Au is closed in the relative topology. By
construction, we have that

⋂
u∈U Au = ∅. Since U is linearly compact, we conclude

that there are finitely many vectors u1, . . . , un ∈ U such that:

(v +
n⋂
i=1

Vui
) ∩ U =

n⋂
i=1

Aui
= ∅.

We therefore have constructed an open neighbourhood of v - namely v +
⋂n
i=1 Vui

- that does not contain any point of U . Therefore, we have v /∈ V̄ . �

Proposition 26. Suppose that V is a Hausdorff linearly compact vector space. We
endow the space V ′∗ with the finite topology induced by V ′. Then the canonical
map

θ : V → V ′∗, v 7→ (f 7→ f(v))

is a homeomorphism. Therefore every linearly compact Hausdorff space is linearly
homeomorphic to some dual space.

Proof. We shall proceed in steps.

(1) We first show that θ is continuous. By the universal property of the initial
topology, we argue by 1.2 and 4.1 that it is sufficient to prove the continuity
of the composition of θ and the mappings

V ′∗ → K,φ 7→ φ(f)

for f ∈ V ′. But this is obvious, since this composition is just f .

(2) We now prove that θ is an open map onto its image, that is, that the map

V → θ(V ), v 7→ θ(v)

is open, where of course θ(V ) is endowed with the relative topology. (Recall
that a mapping is called open if the image of every open set is open. If the
mapping is bijective, this is obviously equivalent to saying that the inverse
map is continuous.) In our case it is sufficient to show that the image of
every open subspace is open. (Why?) Now, if U is some open subspace of
V , then we can conclude by 5.1 that U has finite codimension. We therefore
can select linearly independent vectors v1, . . . , vn ∈ V such that

V = U ⊕ Span(v1, . . . , vn)

Since U is also closed by 2.9, the bilinear form

U⊥ × Span(v1, . . . , vn)→ K, (f, v) 7→ f(v)
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is nondegenerate by the Trennungssatz 3.4. We therefore can use 3.6 to get
continuous linear funtions f1, . . . , fn ∈ V ′ which on the one hand vanish
on U and on the other hand satisfy fi(vj) = δij . This implies that

θ(U) = θ(V ) ∩ {φ ∈ V ′∗|∀i ≤ n : φ(fi) = 0},

since if we have θ(v) ∈ {φ ∈ V ′∗|∀i ≤ n : φ(fi) = 0} for some v =
u+

∑n
i=1 λivi, u ∈ U , we have λi = fi(v) = 0 and therefore v = u ∈ U . This

shows that θ(U) is open in the relative topology, since we have represented
it as the intersection of θ(V ) and the open set {φ ∈ V ′∗|∀i ≤ n : φ(fi) = 0}.

(3) We now that θ is surjective. We have that θ(V ) is linearly compact by 4.7.
Since V ′∗ is Hausdorff, θ(V ) is closed by 5.3. We therefore can conclude from
4.3 that θ(V ) = θ(V )⊥⊥, where we are forming the orthogonal complements
with respect to the bilinear form

V ′∗′ × V ′∗ → K, (ψ, φ) 7→ ψ(φ)

But since the canonical map V ′ → V ′∗′ is a bijection by 3.8, it amounts to
the same thing to form orthogonal complements with respect to the bilinear
form

V ′ × V ′∗ → K, (f, φ) 7→ φ(f)

But now it is obvious that θ(V )⊥ = {0}, and therefore we have

θ(V ) = θ(V )⊥⊥ = V ”∗,

and θ is surjective.

(4) We now prove that θ is injective. Since V is Hausdorff, we conclude from
2.5 and 2.9 that {0} is a closed subspace. Therefore, if v ∈ V is nonzero,
we can find by the Trennungssatz 3.4 a continuous linear function f that
satisfies f(v) = 1. But if we would have θ(v) = 0, then we would also have
θ(v)(f) = f(v) = 0.

�

Proposition 27. Suppose that V is a linear topological vector space and that U is
an open subspace. Let: U⊥ := {f ∈ V ∗|∀u ∈ U : f(u) = 0}. Then we have:

(1) U⊥ ⊂ V ′

(2) U⊥ is linearly compact with respect to the relative topology of the finite
topology.

Proof. The first assertion follows from 3.1. To prove the second assertion, we con-
sider the mapping

ψ : U⊥ → (V/U)∗, f 7→ (v̄ 7→ f(v))

which is a bijection with the inverse

ψ−1 : (V/U)∗ → U⊥, f 7→ (v 7→ f(v̄))

We show that these mappings are continuous if (V/U)∗ is endowed with the finite
topology. Since the finite topology is the initial topology with respect to the eva-
luation mappings, the continuity of ψ follows from the continuity of the mappings
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U⊥ → K, f 7→ f(v) and the continuity of ψ−1 follows from the continuity of

(V/U)∗ → K, f 7→ f(v̄)

Since (V/U)∗ is linearly compact by 4.10, U⊥ must be linearly compact, too. �

Proposition 28. Suppose that V is a linear topological vector space. Then the set

{U⊥|U is a linearly compact subspace of V }

is a filter basis of V ′.

Proof. If U and W are linearly compact subspaces of V , then U+W is also linearly
compact, since it is the image of the linearly compact space U × W under the
continuous linear mapping

U ×W → U +W, (u,w) 7→ u+ w

We then have: (U +W )⊥ ⊂ U⊥ ∩W⊥. �

Definition 13. The topology on V ′ which is by 5.7 uniquely determined by the
requirement that the set

{U⊥|U is a linearly compact subspace of V }

is a basis of the neighbourhood system of the origin is called the linearly compact
topology.

Proposition 29. Suppose that V is a linear topological vector space. Endow V ′ with
the finite topology and V ′′ with the linearly compact topology. Define Tlk to be the
initial topology on V with respect to the canonical mapping

θ : V → V ′′, v 7→ (f 7→ f(v))

Then we have for the original topology T of V : T ⊂ Tlk.

Proof. It is sufficient to prove that if U is a T -open subspace of V , then it is also
Tlk-open. Now we have by 5.5 that U⊥ ⊂ V ′ is linearly compact, and therefore
U⊥⊥ is open. We therefore have that

U⊥⊥ = θ−1(U⊥⊥) ⊂ V

is Tlk-open. But since U is also T -closed by 2.9, we have by 4.3 that U = U⊥⊥. �

Proposition 30. Suppose that V is a linearly compact vector space. Then the linearly
compact topology on V ′ is discrete.

Proof. Since V is linearly compact, V ⊥ = {0} is open. �

Remark 5. We have just completed the last cornerstone in our treatment of duality
theory. Let us try a summary. As we already knew from linear algebra, taking
the dual space twice does not lead us back to the original space in the infinite
dimensional case. The original space rather occurs as a subspace of the bidual
space, and the question is: Which subspace is this? In section 3, we have proposed
the following answer to this question: The dual space comes with a natural topology,
namely the finite topology, and the elements of the bidual space that belong to the
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original space are precisely those which are continuous with respect to this topology.
In other words, the canonical mapping

V → V ∗′

is a bijection.

Now, we found us in the situation that we were told that we should not only
watch out for vector spaces, but should also look for natural topologies that come
along with these spaces, for example, the dual vector space and its finite topology.
In section 4, we found out where the process of constructing the dual vector space
actually had taken us: We found that every dual vector space is linearly compact and
Hausdorff with respect to the finite topology. But shortly afterwards we observed
that dual vector spaces are actually characterized by their property of being linearly
compact. We observed this in the following way: In order to find our way back from
the dual vector space to the original vector space, we should take the space of
continuous linear functions. On the other hand, if we start out with a linearly
compact vector space, take the space of continuous linear functions, and then take
again the dual vector space, we also get back the original space which is therefore
realized as the dual of some vector space.

We therefore had found a complete duality between all vector spaces on the one
hand and all linearly compact vector spaces on the other hand. However, there
was some asymmetry left: In one of the two paths between these two, we had to
consider topologies, but not in the other one. But finally, we learned that this is
not completely true: Every vector space comes with a particularly simple topology,
namely the discrete topology, and taking the dual vector space is just taking the
space of continuous linear mappings with respect to that topology. And on the
other path there is also a natural topology on the space of all continuous linear
mappings, namely the linearly compact topology, which gives us back our original
discrete topology when applied to the dual of some vector space, because this dual
is linearly compact.

6. Completeness

Definition 14. Let X be a set. A system U of subsets of X×X is called a uniformity
if it has the following properties:

(1) ∀U ∈ U : ∆ ⊂ U , where ∆ = {(x, x)|x ∈ X} is the diagonal of X.

(2) ∀U ∈ U : U−1 ∈ U , where we define U−1 := {(x, y)|(y, x) ∈ U}

(3) Weak triangle inequality: ∀U ∈ U ∃V ∈ U : V ◦ V ⊂ U , where for two
subsets V,W ⊂ X ×X we define

V ◦W := {(x, z) ∈ X ×X|∃y ∈ X : (x, y) ∈W and (y, z) ∈ V }

(4) ∀U, V ∈ U : U ∩ V ∈ U

(5) ∀U ∈ U ∀V ⊂ X ×X : U ⊂ V ⇒ V ∈ U

A uniform space is a set together with a uniformity.
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Example 1. Suppose that X is a metric space. For ε > 0 define:

∆ε = {(x, y) ∈ X ×X|d(x, y) < ε}

Then the set
U := {U ⊂ X ×X|∃ε > 0 : ∆ε ⊂ U}

is a uniformity, called the metric uniformity. Here the axioms 14.1, 14.2, 14.4 and
14.5 are obvious. The weak triangle inequality follows from the triangle inequality:
If ∆ε ⊂ U , define V := ∆ε/2 ∈ U . For (x, z) ∈ V ◦V , we then have y ∈ X such that
d(x, y) < ε

2 , d(y, z) < ε
2 and therefore

d(x, z) ≤ d(x, y) + d(y, z) < ε.

Therefore, we have (x, z) ∈ U .

Example 2. Suppose that V is a topological vector space. For W ⊂ V define:

∆W := {(v, w) ∈ V × V |w − v ∈W}

Then the set

U := {U ⊂ V × V |There is a neighbourhood of the origin such that ∆W ⊂ U}

is a uniformity on V : Axiom 14.1 is obvious. If ∆W ⊂ U , we have ∆−W ⊂ U−1,
therefore 14.2 holds. We have ∆W∩W ′ ⊂ ∆W ∩∆W ′ , therefore 14.4 holds. 14.5 is
obvious. We now prove the weak triangle inequality: If W is a neighbourhood of the
origin, then by the continuity of the addition we have two other neighbourhoods
W ′,W ′′ of the origin such that W ′+W ′′ ⊂W . We therefore see that ∆W ′ ◦∆W ′′ ⊂
∆W .

Proposition 31. Suppose that X is a uniform space with uniformity U . Define:

T := {O ⊂ X | ∀x ∈ O ∃U ∈ U : U [x] ⊂ O}

where we set U [x] := {y ∈ X | (x, y) ∈ U}. Then T is a topology on U , called the
uniform topology.

Proof. This is obvious. (Why?) �

Remark 6. If V is a topological vector space, then the uniform topology that arises
from the topology in Example 2 is the original topology. (Why?)

Proposition 32. A uniform space is Hausdorff if and only if the intersection of all
members of the uniformity is the diagonal.

Proof. Assume first that the uniform space X is Hausdorff. If (x, y) /∈ ∆, i. e.
x 6= y, choose disjoint neighbourhoods U ∈ U(x) and V ∈ U(y). By definition of
the uniform topology, there are U ′, V ′ ∈ U such that U ′[x] ⊂ U and V ′[y] ⊂ V . We
then have, for example, (x, y) /∈ U ′.

Conversely, if
⋂
U∈U U = ∆ and x 6= y, we can choose U ∈ U such that (x, y) /∈ U .

By assumption we can find V ∈ U such that V ◦ V ⊂ U . If z ∈ V [x] ∩ V −1[y], i. e.
(x, z) ∈ V , (z, y) ∈ V , we have (x, y) ∈ V ◦V ⊂ U , a contradiction. Therefore, V [x]
and V −1[y] are disjoint neighbourhoods of x and y. (Why?) �
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Definition 15. Suppose that X is a topological space. A net in X is a map from a
directed set I to X. A net is also called a Moore-Smith sequence, in case of I = N
simply a sequence. We say that a net x : I → X converges to p ∈ X if we have:

∀U ∈ U(p) ∃i0 ∈ I ∀i ≥ i0 : xi ∈ U

Definition 16. Suppose that X is a topological space. A filter in X is a system F
of subsets of X that satisfies the following properties:

(1) ∅ /∈ F , X ∈ F

(2) ∀F1, F2 ∈ F : F∞ ∩ F∈ ∈ F

(3) ∀F ∈ F ∀F ′ ⊂ X : F ⊂ F ′ ⇒ F ′ ∈ F

We say that a filter F converges to p ∈ X if U(p) ⊂ F .

Remark 7. If B is a filter basis, then

F(B) := {F ⊂ X | ∃B ∈ B : B ⊂ F}
is a filter, called the filter generated by B. If F is a filter and B is a filter basis with
F = F(B), then B is called a filter basis of F .

If F is a filter in X and f : X → Y is a map, then

B = {f(F ) | F ∈ F}
is a filter basis. The filter f(F) := F(B) is called the image filter of F .

Proposition 33. If X is a topological space and (xi)i∈I is a net in X, then

F := {F ⊂ X | ∃〉′ ∈ I ∀〉 ≥ 〉′ : §〉 ∈ F}
is a filter in X, called the associated filter of the net. (xi)i∈I converges to p ∈ X if
and only if F converges to p.

Proof. The axioms 16.1 and 16.3 are obvious. If we have F1, F2 ∈ F , choose i0, j0 ∈
I such that

∀i ≥ i0 : xi ∈ F1 and ∀j ≥ j0 : xj ∈ F2

Since I is directed, we can choose k0 ∈ I such that k0 ≥ i0 and k0 ≥ j0. We then
have: ∀i ≥ k0 : xi ∈ F1 ∩ F2. �

Proposition 34. Suppose that X is a topological space and that F is a filter in X.
F is directed by reverse inclusion. Every map from F to X therefore is a net. For
p ∈ X, the following assertions are equivalent:

(1) F converges to p.

(2) For every net f : F → X with the property:

∀F ∈ F : {(F) ∈ F
we have: f converges to p.

Proof.
(1.⇒ 2.) We have to prove:

∀U ∈ U(p) ∃F0 ∈ F ∀F ∈ F : F ⊂ F′ ⇒ {(F) ∈ U
If U ∈ U(p) ⊂ F is given, define F0 = U .
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(1. ⇒ 2.) Suppose that U ∈ U(p). We have to prove: U ∈ F . Suppose that this is
not the case. Then we have F 6⊂ U for all F ∈ F . Therefore, for every F ∈ F we
can choose a point xF ∈ F \ U . Since the net (xF )F∈F satisfies the assumption, it
converges to p. This means:

∃F0 ∈ F ∀F ∈ F : F ⊂ F′ ⇒ §F ∈ U
If we choose such an F0, we can conclude in particular that xF0 ∈ U , a contradiction.

�

Proposition 35. In a Hausdorff topological space, a net or a filter converges to at
most one point.

Proof. If F is a filter which converges to x and y, and if x 6= y, we can choose
neighbourhoods U resp. V of x resp. y such that U ∩ V = ∅. We then have U ∈ F
and V ∈ F , and therefore ∅ = U ∩ V ∈ F , a contradiction.

If (xi)i∈I is a net that converges to x and to y, choose neighbourhoods U resp. V
of x resp. y satisfying U ∩ V = ∅ if x 6= y. By definition, we have i0 ∈ I such that
xi ∈ U for i ≥ i0, and j0 ∈ I such that xj ∈ V for j ≥ j0. Since I is directed, there
exists k ∈ I such that k ≥ i0 and k ≥ j0, and therefore we have xk ∈ U ∩V = ∅. �

Definition 17. Suppose that X is a uniform space with uniformity U .

(1) A net (xi)i∈I is called a Cauchy net if:

∀U ∈ U ∃i0 ∈ I ∀i, j ≥ i0 : (xi, xj) ∈ U

(2) A filter F in X is called a Cauchy filter if:

∀U ∈ U ∃F ∈ F : F × F ⊂ U

Proposition 36. Suppose that X is a uniform space with uniformity U .

(1) A net (xi)i∈I is a Cauchy net if and only if the associated filter is a Cauchy
filter.

(2) If F is a Cauchy filter, then every net f : F → X with the property:

∀F ∈ F : {(F) ∈ F
is a Cauchy net.

Proof. (1) Suppose that (xi)i∈I is a Cauchy net. If U ∈ U , choose i0 ∈ I such that
we have (xi, xj) ∈ U for all i, j ≥ i0. For F := {xi | i ≥ i0} we then have F×F ⊂ U .
Conversely, if the associated filter is a Cauchy filter, we select for a given U ∈ U
some F ∈ F with F × F ⊂ U , and for this F some i0 ∈ I such that xi ∈ F for all
i ≥ i0. Then it is obvious that we have:

∀i, j ≥ i0 : (xi, xj) ∈ U

(2) Suppose that F is a Cauchy filter. If f is a net with the stated property, choose
for every given U ∈ U some F0 ∈ F that satisfies F0 × F0 ⊂ U . If then F, F ′ are
two elements of F with F, F ′ ⊂ F0, we have (f(F ), f(F ′)) ∈ F × F ′ ⊂ U . �

Proposition 37. Suppose that X is a uniform space with uniformity U . Then the
following assertions are equivalent:
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(1) Every Cauchy net converges.

(2) Every Cauchy filter converges.

Uniform spaces with this property are called complete.

Proof. The implication (1. ⇒ 2.) follows from Proposition 34 and Proposition 36.
The implication (2.⇒ 1.) follows from Proposition 33 and Proposition 36. �
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7. Completion

Version 2

Definition 18. Suppose that X and Y are uniform spaces with uniformities U and
V respectively. A mapping f : X → Y is called uniformly continuous if we have:

∀ V ∈ V : f−1
2 (V ) ∈ U ,

where f2 denotes the map f2 : X ×X → Y × Y, (x, x′) 7→ (f(x), f(x′)). Compare
thi with

∀ε ∃δ ∀x, y : |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Proposition 38. Uniformly continuous mappings are continuous.

Proof. If W is a neighbourhood of f(x), select V ∈ V such that V [f(x)] ⊂W , and
define U := f−1

2 (v) ∈ U . Then we have f(U [x]) ⊂W . �

Proposition 39. Suppose that X is a uniform space with uniformity U .

(1) If U ∈ U , we have
◦
U ∈ U . Therefore, there is an open V ∈ U such that

V ⊂ U .

(2) If U ∈ U , there is a closed V ∈ U such that V ⊂ U .

Proposition 40. Suppose that X and Y are uniform spaces with uniformities U
resp. V. Suppose that D is a dense subset of X. Let f : D → Y be a map that is
uniformly continuous with respect to the relative uniformity

UD := {U ∩ (D ×D)|U ∈ U}.
If Y is Hausdorff and complete, then there is a uniformly continuous extension of
f to X.

Proof. A map is the same as its graph:

f = {(x, f(x))|x ∈ D} ⊂ D × Y ⊂ X × Y
Consider the closure f̄ of f in X × Y . We proceed in steps:

(1) We first prove:

∀W ∈ V ∃U ∈ U ∀(x, y), (u, v) ∈ f̄ : (x, u) ∈ U ⇒ (y, v) ∈W
Suppose we are given W ∈ V. We select V ∈ V such that V ◦ V ⊂ W .
By perhaps making V smaller we can assume by Proposition 39 that V is
closed, and similarly we can assume that V = V −1. (Why ?) Choose U ∈ U
such that f2(U ∩ (D × D)) ⊂ V × V . By Proposition 39 we can assume
that U is open and satisfies U = U−1 by perhaps making U smaller. Now
suppose we are given (x, y), (u, v) ∈ f̄ such that (x, u) ∈ U . U [x] and U [u]
are open (why ?), therefore U [x] ∩ U [u] is an open neighbourhood of u.
Since D is dense, we have z ∈ D such that z ∈ U [x]∩U [u]. Since U = U−1

we have (x, z) ∈ U and (z, u) ∈ U .

For all V ′ ∈ V we have that U [z]×V ′[y] is a neighbourhood of (x, y). Since
(x, y) ∈ f̄ , we have x′ ∈ D such that (x′, f(x′)) ∈ U [z] × V ′[y], therefore
V ′[y] ∩ f(D ∩ U [z]) is not empty. We conclude:

y ∈ f(D ∩ U [z]) ⊂ V [f(z)] = V [f(z)],
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therefore we have (y, f(z)) ∈ V . Similarly, we can show (u, f(z)) ∈ V =
V −1, also (y, v) ∈ V ◦ V ⊂W .

(2) We prove now that f̄ is a map. If we have (x, y), (x, v) ∈ f̄ , select W,W ′ ∈ V
such that W [y] ∩W ′[v] = ∅ if y 6= v. Determine for W,W ′ ∈ V U,U ′ ∈ U
according to step 1. Since (x, x) ∈ U, (x, x) ∈ U ′ we have (y, v) ∈W, (y, v) ∈
W ′. Therefore, we have v ∈W [y] ∩W ′[v], a contradiction.

(3) Next, we prove that f̄ is defined on the whole space X. Let x ∈ X. For
every neighbourhood U of x choose a point dU ∈ D ∩ U. Define:

N : U(x)→ Y, U 7→ f(dU )

N is a net in Y . We prove that N is a Cauchy net: If V ∈ V, we select U ∈ U
such that f2(U ∩ (D×D)) ⊂ V . Determine Ũ ∈ U such that Ũ−1 = Ũ and
Ũ ◦ Ũ ⊂ U . Then, if we are given neighbourhoods U ′, U ′′ of x such that
U ′, U ′′ ⊂ Ũ [x], we have dU ′ , dU ′′ ∈ Ũ [x], therefore (x, dU ′′), (dU ′ , x) ∈ Ũ ,
therefore (dU ′ , dU ′′) ∈ U , therefore (N(u′), N(u′′)) = f2(dU ′ , dU ′′) ∈ V .

Since Y is complete, the net N converges to a point y ∈ Y . Since the net
(dU , f(dU ))U∈U(x) converges to (x, y), we have (x, y) ∈ f̄ , i. e. f̄(x) = y.

(4) The fact that f̄ is uniformly continuous follows from step 1.

�

Proposition 41. Suppose that X is a uniform space with uniformity U , and that F
is a Cauchy filter in X. Then there is a Cauchy filter F′ ⊂ F which is the smallest
one in the sense that if G is another Cauchy filter that satisfies G ⊂ F , then F′ ⊂ G.

Proof. For U ∈ U and M ⊂ X, we define

U [M ] = {y ∈ X|∃x ∈M : (x, y) ∈ U} =
⋃
x∈M

U [x]

Now we define: F′ := {V ⊂ X |∃U ∈ U∃M ∈ F : U [M] ⊂ V}.

(1) We first prove that F′ is a Cauchy filter. Obviously, F′ is a filter. If U ∈ U ,
select V ∈ U such that V = V −1 and V ◦ V ◦ V ⊂ U . Choose M ∈ F that
satisfies M ×M ⊂ V . We prove: V [M ]× V [M ] ⊂ U . If y, z ∈ V [M ], there
are u, v ∈M such that (y, u) ∈ V, (v, z) ∈ V . Since (u, v) ∈ V we have:

(y, z) = (v, z) ◦ (u, v) ◦ (y, u) ∈ V ◦ V ◦ V ⊂ U

(2) We prove that F′ ⊂ F . If V ∈ F′, we have U ∈ U ,M ∈ F such that
U [M ] ⊂ V , therefore M ⊂ V , therefore V ∈ F .

(3) Suppose that G is a Cauchy filter satisfying G ⊂ F . To prove F′ ⊂ G, it is
sufficient to prove U [M ] ∈ G for U ∈ U and M ∈ F . Choose N ∈ G such
that N ×N ⊂ U . Since N ∈ F we have M ∩N 6= ∅. If x ∈M ∩N , we have
{x} ×N ⊂ U , therefore N ⊂ U [x] ⊂ U [M ], therefore U [M ] ∈ G.

�

Remark 8. If we have in Proposition 41 F = {M ⊂ X|§ ∈ M} for some fixed x ∈ X
(This is a Cauchy filter!), then the construction shows that we have F′ = U(§), the
neighbourhood system of x.
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Proposition 42. Suppose that X is a uniform space with uniformity U . Suppose
that D ⊂ X is dense in X. We suppose that for every Cauchy filter F in D the
filter

FX := {M ⊂ X|∃F ∈ F : F ⊂M}
converges. Then X is complete.

Proof. Suppose that F is a Cauchy filter in X. As in Proposition 41 define F′ :=
{M ⊂ X|∃U ∈ U∃F ∈ F : U [F ] ⊂ M}. Every M ∈ F′ contains a point of D,
because if U ∈ U , F ∈ F satisfy U [F ] ⊂M , we can assume by Proposition 39 that
U and therefore U [F ] =

⋃
x∈F U [x] is open. In U [F ], and therefore in M , there is

a point of D. This implies that

FD := {M ⊂ D|∃F ∈ F′ :M = F ∩ D}

is a filter in D which is obviously a Cauchy filter. By assumption the filter (FD)X
converges to x ∈ X. We prove now that F′ converges to x, too. If U is a neighbour-
hood of x, there is by Proposition 39 a closed element V ∈ U such that V [x] ⊂ U .
Since we have V [x] ∈ (FD)X , we can choose F ∈ F′ such that F ∩D ⊂ V [x]. As at
the beginning of the proof we can find an open U ′ ∈ U and some F ′ ∈ F such that
U ′[F ′] ⊂ F . Since U ′[F ′] is open, we have:

U ′[F ′] ⊂ U ′[F ′] ∩D ⊂ F ∩D ⊂ V [x] = V [x]

This implies U ∈ F′, therefore U ∈ F . This means that F converges to x. �

Theorem 3. Suppose that X is a uniform space. Then there exists a Hausdorff
complete uniform space X̂, called the Hausdorff completion of X, and a uniformly
continuous mapping ι : X → X̂ that has the following universal property:

If f : X → Y is a second uniformly continuous map to a Hausdorff complete uniform
space Y , then there exists a unique uniformly continuous map f̂ : X̂ → Y satisfying
f = f̂ ◦ ι. Furthermore, we have:

(1) ι(X) is dense in X̂.

(2) X is Hausdorff iff ι is injective.

Proof. We define X̂ to be the set of all minimal Cauchy filters in X. If U denotes
the uniformity of X, define for U ∈ U :

Û = {(F ,G) ∈ X̂ × X̂ |∃F ∈ F ∩ G/ : F × F ⊂ U}

Furthermore, define:

Û = {V ⊂ X̂ × X̂|∃U ∈ U : Û ⊂ V }

The proof will be carried out in steps.

(1) We prove first that Û is a uniformity.

• Axiom 6.1: For U ∈ U and for a minimal Cauchy filter F , there is
F ∈ F such that F × F ⊂ U . Therefore, we have (F ,F) ∈ Û .

• Axiom 6.2: Obviously, we have: Û = (̂U−1) = (Û)−1
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• Axiom 6.3: Suppose that U ∈ U . Take V ∈ U such that V ◦ V ⊂ U .
We prove: V̂ ◦ V̂ ⊂ Û . If (F ,H) ∈ V̂ ◦ V̂, then there is G ∈ X̂ such that
(F ,G) ∈ V̂, (G,H) ∈ V̂. Therefore, there is M ∈ F ∩ G,N ∈ G ∩ H
such that M ×M ⊂ V,N × N ⊂ V . We have M ∩ N ∈ G, therefore
M ∩N 6= ∅. Choose x ∈M ∩N . If (y, z) ∈ (M ∪N)× (M ∪N) then
we have (y, x) ∈ V, (x, z) ∈ V and therefore (y, z) ∈ V ◦ V ⊂ U . This
implies M ∪N ∈ F ∩H, where (M ∪N)× (M ∪N) ⊂ U , and therefore
we have (F ,H) ∈ Û .

• Axiom 6.4: Obviously, we have for U, V ∈ U : ̂(U ∩ V ) ⊂ Û ∩ V̂

• Axiom 6.5: Obvious.

(2) We now prove that X̂ is Hausdorff. Suppose that we have F ,G ∈ X̂ such
that (F ,G) ∈ Û for all U ∈ U . By Proposition 6.32 it is sufficient to prove
F = G. Define:

H = {M ⊂ X|∃F ∈ F ∃G ∈ G : F ∪ G ⊂M}

H is a filter, since if we have F, F ′ ∈ F ,G,G′ ∈ G, we have (F ∩ F ′) ∪ (G ∩
G′) ⊂ (F ∪G) ∩ (F ′ ∪G′). H is also a Cauchy filter, because for all U ∈ U
there is M ∈ F ∩ G such that M ×M ⊂ U , and we have M ∈ H. Since
H ⊂ F ,H ⊂ G it follows from minimality: F = H = G.

(3) We define:
ι : X → X̂, x 7→ U(x)

ι is well defined by remark 8. We prove that ι is uniformly continuous.
Suppose that U ∈ Û . Determine V ∈ U such that V = V −1 and V ◦ V ◦
V ⊂ U . It is sufficient to prove that ι2(V ) ⊂ Û . If (x, y) ∈ V , we define
F := V [x]∪ V [y] ∈ U(x)∩U(y). We have F ×F ⊂ U , since one of the four
possibilities:

(x, x′) ∈ V, (x, y′) ∈ V (x, x′) ∈ V, (y, y′) ∈ V
(y, x′) ∈ V, (x, y′) ∈ V (y, x′) ∈ V, (y, y′) ∈ V

that we have: (U(x),U(y)) ∈ Û .

(4) We prove that ι(X) is dense in X̂. Suppose that F ∈ X̂ . It is sufficient to
prove that for U ∈ U the set Û [F ] intersects the set ι(X). Select F ∈ F
satisfying F × F ∈ U . From the construction of minimal Cauchy filters in
Proposition 41 we conclude that F contains some inner point x. Then we
have F ∈ F ∩ U(§), therefore (F ,U(§)) ∈ Û , therefore ι(x) = U(x) ∈ Û [F ].

(5) We prove: ∀U ∈ U : ι−1
2 (Û) ⊂ U . This follows from the implications:

(x, y) ∈ ι−1
2 (Û) ⇒ (U(x),U(y)) ∈ Û ⇒ ∃O ∈ U(x) ∩ U(y) : O × O ⊂ U ⇒

(x, y) ∈ U .

(6) Suppose that F is a Cauchy filter in ι(X). Then

F ′ := {M ⊂ X|∃F ∈ F : ι−∞(F) ⊂M}

is a filter in X, and also a Cauchy filter by step 5. By Proposition 41 there
is a minimal Cauchy filter F ′′ satisfying F ′′ ⊂ F ′. We consider the Cauchy
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filter
F ′′ := {M ⊂ ι(X )|∃F ∈ F ′′ : ι(F) ⊂M}

This filter leads to the following filter on the whole completion:

F ′′′ := {M ⊂ X̂ |∃F ∈ F ′′ : F ⊂M}
By Proposition 42 is suffices to prove that F ′′′ converges. Now we can say
that F ′′′ also is:

F ′′′ = {M ⊂ X̂ |∃F ∈ F ′′ : ι(F) ⊂M}
We prove that F ′′′ converges to F ′′ by proving that we have: ∀U ∈ U :
Û [F ′′ ] ∈ F ′′′, that is: ∀U ∈ U ∃F̃ ∈ F ′′ : ι(F̃) ⊂ Û [F ′′ ], that is: ∀U ∈
U ∃F̃ ∈ F ′′ ∀§ ∈ F̃ : (F ′′ ,U(§)) ∈ Û . Now, if U ∈ U , we can choose by
Proposition 39 some open V ∈ U such that V = V −1 and V ◦ V ◦ V ⊂ U .
Since F ′ is a Cauchy filter, there is F ′ ∈ F ′ satisfying F ′×F ′ ⊂ V . Define:
F̃ := V [F ′] ∈ F ′′ . F̃ is open. If (x, y) ∈ F̃ × F̃ , we have x′, y′ ∈ F ′ such that
(x′, x) ∈ V, (y′, y) ∈ V . Since we have also (x′, y′) ∈ V , we have (x, y) ∈ U ,
therefore F̃ × F̃ ⊂ U . Since we have for x ∈ F̃ that F̃ ∈ U(x), we conclude:
(F ′′ ,U(§)) ∈ Û .

will be satisfied, and in any case we have (x′, y′) ∈ U . From this it follows

(7) We now prove the universal property of X̂. Suppose that f : X → Y is
a uniformly continuous mapping into a Hausdorff complete uniform space.
We define a map

f̂0 : ι(X)→ Y

as follows: For x ∈ X, U(x) is a Cauchy filter, therefore

FX := {M ⊂ Y|∃U ∈ U(§) : {(U) ⊂M}
is a Cauchy filter, too. By Proposition 6.35 FX converges to a unique point
that we denote by f̂0(ι(x)). This point is of course f(x). We prove that
f̂0 is uniformly continuous: Suppose that V is a member of the uniformity
of Y . Choose U ∈ U such that f2(U) ⊂ V . If we have (ι(x), ι(y)) ∈ Û ,
then we have by step 5 that (x, y) ∈ U and therefore (f̂0)2(ι(x), ι(y)) =
(f(x), f(y)) ∈ V . By Proposition 40, there is a unique extension f̂ of f̂0 to
the whole space X̂.

(8) In a Hausdorff space, we obviously have x = y if U(x) = U(y).

�

8. Completion of lineartopological vector spaces

Definition 19. Suppose that V is a lineartopological vector space. Define: I :=
{U |U is an open subspace of V }. I is directed with respect to reverse inclusion:

U ≤W :⇔W ⊂ U
A net N : I → V is called centered if we have:

∀ U,W ∈ I : W ⊂ U ⇒ N(u)−N(w) ∈ U

Proposition 43. Suppose that V is a lineartopological vector space.
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(1) Every centered net is a Cauchy net.

(2) V is complete if and only if every centered net converges.

Proof. To prove the first statement, we prove for every centered net:

∀U ∈ U(0) ∃U0 ∈ I ∀W,W ′ ∈ I : W ⊂ U0 and W ′ ⊂ U0 ⇒ (N(W ), N(W ′)) ∈ ∆U

If U ∈ U(0), choose U0 ∈ I such that U0 ∈ U . If W,W ′ are open subspaces satisfying
W ⊂ U0 and W ′ ⊂ U0, we have N(U0)−N(W ) ∈ U0, N(U0)−N(W ′) ∈ U0, and
therefore N(W ′)−N(W ) ∈ U0 ⊂ U .

To prove the second statement, suppose that N : J → V is a Cauchy net. For every
U ∈ I determine jU ∈ I such that:

∀i, j ≥ j0 : N(j)−N(i) ∈ U

and define M(U) := N(jU ). We prove that M is a centered net: If U,W ∈ I satisfy
W ⊂ U , determine j ∈ I such that j ≥ jU and j ≥ jW . Then we have for that
N(j)−N(jU ) ∈ U , N(j)−N(jW ) ∈ U , therefore

M(U)−M(W ) = (N(jU )−N(j))− (N(jW )−N(j)) ∈ U

Now we can conclude by assumption that M converges to some point v ∈ V . We
prove that N converges to v, too. It is sufficient to prove:

∀U ∈ I ∃i0 ∈ J ∀i ≥ i0 : N(i)− v ∈ U

If we are given U ∈ I, then we have for i ≥ jU that N(i) − N(jU ) ∈ U and also
that N(i)− v ∈ U . �

Definition 20. Suppose that V is a lineartopological vector space and that U is a
subspace of V . The set

{(W + U)/U |W is an open subspace of V }

is a filter basis. (Why?) The linear topology which is by Proposition 3 uniquely
determined by this set is called the linear quotient topology of V/U .

Proposition 44. Suppose that V is a lineartopological vector space and that U is a
subspace of V . Denote the canonical projection by π : V → V/U .

(1) π is open, i. e. π maps open sets to open sets, and continuous.

(2) If U is closed, then V/U is Hausdorff.

(3) If U is open, then V/U is discrete.

Proof. Observe first that π maps an open subspace W to the open subspace (W +
U)/U . Since we have π(v+W ) = v̄+π(W ) we see that π maps open affine subspaces
to open affine subspaces. Since every open set is the union of open affine subspaces,
π is open. The continuity follows from Proposition 9.

To prove the second statement, assume that V/U is not Hausdorff. Then we have
by Proposition 2 a vector v̄ ∈ (V/U) \ {0̄} such that

v̄ ∈
⋂

U⊂W⊂V, Wopen subspace

(W/U)
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Then we have v /∈ U , but v ∈W for all open subspaces W satisfying U ⊂W . If W
is an open subspace, then we have v ∈W +U , therefore (v+W )∩U 6= ∅, therefore
v ∈ Ū .

The last statement holds because in this case {0̄} = π(U) is open. �

Remark 9. We can conclude from Proposition 44 that the linear quotient topology
coincides with the ordinary quotient topology. (Cf. [6], Chap. 3, Theorem 8, p. 95.)

Proposition 45. Suppose that V is a lineartopological vector space. Denote the set
of all open subspace by I. I is directed by reverse inclusion. For U,W ∈ I define:

fUW : V/W → V/U, v̄ 7→ v̄

Define V̂ := lim
−→U∈IV/U , the projective limit of the family (V/U)U∈I , and define:

ι : V → V̂ , v 7→ (v̄)U∈I

Then we have:

(1) V̂ is Hausdorff.

(2) V̂ is complete.

(3) If f : V → X is a uniformly continuous map into a complete Hausdorff
uniform space X, then there is a uniquely determined uniformly continuous
map g : V̂ → X such that g ◦ ι = f .

Proof. (1) For U ∈ I denote by πU : V̂ → V/U the projection on the component
V/U . Suppose that v̂ ∈ V̂ is an element that is contained in every open
subspace of V̂ . By Proposition 2 it is sufficient to prove v̂ = 0. But, since
v̂ ∈ π−1

U ({0}), if v̂ = (v̄U )U∈I , we have v̄U = 0, and this means v̂ = 0. This
proves the first assertion.

(2) Denote the set of all open subspaces of V̂ by J . Suppose that N : J → V̂
is a centered net. For U ∈ I define:

v̄U := πU (N(π−1
U ({0})))

and v̂ := (v̄U )U∈I .

(3) We prove now: W,U ∈ I, W ⊂ U ⇒ π−1
W ({0}) ⊂ π−1

U ({0}). This is ea-
sy: If ŵ = (w̄X)X∈I ∈ π−1

W ({0}, we have w̄W = 0 and therefore w̄U =
fUW (w̄W ) = 0, which means that ŵ = (w̄X)X∈I ∈ π−1

U ({0}).

(4) We prove now: v̂ ∈ V̂ , that is, if U ⊂W , then fUW (v̄W ) = v̄U :

U ⊂W ⇒W ⊂ U ⇒ π−1
W ({0}) ⊂ π−1

U ({0})
⇒ N(π−1

W ({0}))−N(π−1
U ({0})) ∈ π−1

U ({0})
⇒ πU (N(π−1

W ({0})))− πU (N(π−1
U ({0}))) = 0

⇒ v̄ − fUW (v̄W ) = 0

(5) We prove now that N converges to v̂: For this, it is sufficient to prove that
πU ◦ N converges to v̄U , because the topology of the projective limit is
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the initial topology with respect to the projections (cf. [6], Chap. 3). We
therefore have to prove:

∀W ∈ I, U ⊂W ∃j0 ∈ J ∀j ≥ j0 : πU (N(j))− v̄U ∈W/U
Suppose we are given W ∈ I and U ⊂W . Define: j0 := π−1

U ({0}). If X ∈ J
satisfies X ⊂ π−1

U ({0}), then we have, since N is centered, that

N(π−1
U ({0}))−N(X) ∈ π−1

U ({0})
and therefore v̄U−πU (N(X)) = 0 ∈W/U . This proves the second assertion.

(6) We prove that ι(V ) is dense in V̂ . If v̂ = (v̄U )U∈I ∈ V̂ , then by construction
of the initial topology every neighbourhood of v̂ contains a neighbourhood
of the form

v̂ +
n⋂
i=1

π−1
Ui

(Wi/Ui),

where Wi is an open subspace of V that contains Ui. Now define: U :=⋂n
i=1 Ui and v := vU . We prove that:

ι(v) ∈ v̂ +
n⋂
i=1

π−1
Ui

(Wi/Ui)

But now, since U ⊂ Ui, we have:

πUi
(ι(v)− v̂) = v̄ − fUU (v̄U ) = 0 ∈Wi/Ui

(7) Define: A = {0} ⊂ V to be the closure of the origin inside V . We prove
that A = ker ι. Since ι is continuous by the universal property of the initial
topology and V̂ is Hausdorff, we see that {0} ⊂ V̂ is closed and therefore
ker ι is also closed, which implies A ⊂ ker ι. On the other hand, if ι(v) = 0,
we have that πU (ι(v)) = v̄ = 0 and therefore v ∈ U for all open subspaces
U ∈ I. That means 0 ∈ v + U for all U ∈ I, i. e. v ∈ {0}.

(8) We prove now that the map

V/A→ ι(V ), v 7→ ι(v)

is a linear homeomorphism. By the universal property of the initial topology,
for the proof of continuity it is sufficient to show that for U ∈ I the map
V/A → V/U, v̄ 7→ v̄ is continuous, and this is clear from Proposition 3.1
(cf. [6], Chap. 3, Theorem 9, p. 95). We prove next that the map is open.
For this, it is sufficient to prove for every U ∈ I:

ι(U) = ι(V ) ∩ π−1
U ({0})

The inclusion “⊂” is obvious. If ι(v) ∈ π−1
U ({0}), we have that πU (ι(v)) =

v̄ = 0, and therefore v ∈ U .

(9) If f : V → X is a uniformly continuous map to a complete Hausdorff
uniform space X, then f can be factorized over V/A, that is, the map

f̄ : V/A→ X, v̄ 7→ f(v)

is well defined. This is because if we have v ∈ V , we have v̄ = v+A = {v}.
Since X is a Hausdorff space, {f(v)} is a closed set, and by the continuity
of f we conclude that f−1({f(v)}) is also closed, which implies v + A ⊂
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f−1({f(v)}). f̄ is also uniformly continuous. (Why?) We can now conclude
from the last step that there is a unique uniformly continuous map

f ′ : ι(V )→ X

that satisfies f ′(ι(v)) = f(v) for every v ∈ V . Since ι(V ) is dense in V̂ , we
conclude from Proposition 6.19 that there is a unique uniformly continuous
extension

g : V̂ → X

of f ′, and this proves our theorem.

�

Remark 10. From Proposition 45 we can conclude that the projective limit consi-
dered above is uniformly equivalent to the Hausdorff completion of the preceding
section. (Why?) Here, we call a bijection between two uniform spaces a uniform
equivalence if the map itself and its inverse are uniformly continuous.

Definition 21. Suppose that V1, . . . , Vn are lineartopological vector spaces.

(1) By Proposition 2.7, there is a unique linear topology on
⊗n

i=1 Vi for which
the set

{
n∑
j=1

n⊗
i=1

Uij | Uij is an open subspace of Vi, Uij = Vi if i 6= j}

is a basis of the neighbourhood system of the origin of
⊗n

i=1 Vi. This topo-
logy is called the tensor product topology.

(2) The completion of the tensor product with respect to the tensor product
topology is called the completed tensor product, it is denoted by

⊗̂n

i=1Vi.

Remark 11. The set in Definition 21 really is a filter basis. since we have:
n∑
j=1

n⊗
i=1

(Uij ∩ U ′ij) ⊂ (
n∑
j=1

n⊗
i=1

Uij) ∩ (
n∑
j=1

n⊗
i=1

U ′ij)

Proposition 46. Linearly compact vector spaces are complete.

Proof. (1) Suppose that F is a Cauchy filter in V . For every open subspace U
of V determine FU ∈ F such that FU × FU ⊂ ∆U .

(2) If x ∈ FU , we have x + U = FU + U , because for every y + u ∈ FU + U
where y ∈ FU , u ∈ U , we have y − x ∈ U and therefore:

y + u = x+ (y − x) + u ∈ x+ U

(3) From the first step and Proposition 2.9 we conclude that FU +U is closed.
If U1, . . . , Un are open subspaces of V , define: U :=

⋂n
i=1 Ui, F := FU ∩⋂n

i=1 FUi
∈ F . Then we have F +U ⊂ FUi

+Ui for all i ≤ n, and therefore
FUi +Ui 6= ∅. Since V is linearly compact, we see that

⋂
U open subspace(FU +

U) 6= ∅. Select v ∈ V such that v ∈ FU +U for every open subspace U . We
claim that F converges to v. If U is an open subspace of V and x ∈ FU ,
we have x − v ∈ U , therefore x ∈ v + U , therefore FU ⊂ v + U , therefore
v + U ∈ F . This proves that every neighbourhood of v is contained in F .
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�

Proposition 47. Suppose that V and W are vector spaces. Then we have:

(V ⊗W )∗ ∼= V ∗⊗̂W ∗

Proof. (V ⊗W )∗ is Hausdorff and complete by Proposition 4.10 and Proposition
7.10. Consider the map:

ι : V ∗ ⊗W ∗ → (V ⊗W )∗, f ⊗ g 7→ (v ⊗ w 7→ f(v)g(w))

It is sufficient to prove that ι(V ∗ ⊗W ∗) is dense and that ι is a homeomorphism
onto its image. (Why?)

(1) We prove that ι(V ∗⊗W ∗) is dense in (V ⊗W )∗. Suppose that f ∈ (V ⊗W )∗

and that U ⊂ V ⊗W is a finite dimensional subspace. We have to prove
that

(f + U⊥) ∩ ι(V ∗ ⊗W ∗) 6= ∅

There are finite dimensional subspaces V1 ⊂ V , W1 ⊂ W such that U ⊂
V1 ⊗W1 (Why?). If v1, . . . , vn is a basis of V1, w1, . . . , wm a basis of W1,
there are by Proposition 3.6 f1, . . . , fn ∈ V ∗ and g1, . . . , gn ∈ W ∗ such
that:

fi(vj) = δij gi(wj) = δij

Consider g :=
∑n
i=1

∑m
j=1 f(vi ⊗ wj)fi ⊗ gj . Since we have:

(f − ι(g))(vk ⊗ wl) = f(vk ⊗ wl)−
∑
i,j

f(vi ⊗ wj)fi(vk)gj(wl) = 0

we have f − ι(g) ∈ (V1 ⊗W1)⊥ ⊂ U⊥, and therefore we see that ι(f) ∈
f + U⊥.

(2) We prove that ι is continuous. By the universal property of the initial
topology and due to the fact that every tensor is the sum of decomposable
tensors, is suffices by Proposition 4.1 that for v ∈ V , w ∈W the map

V ∗ ⊗W ∗ → K, f ⊗ g 7→ f(v)g(w)

is continuous. But since this map vanishes on the open subspace {v}⊥ ⊗
W ∗ + V ∗ ⊗ {w}⊥, it is continuous by Proposition 3.1.

(3) We prove: If O ⊂ V ∗ ⊗ W ∗ is open, then ι(O) is open in ι(V ). We can
assume by Proposition 2.9 that O is an open subspace, even more that
O = V ⊥1 ⊗W ∗ + V ∗ ⊗W⊥1 for two finite dimensional subspaces V1 ⊂ V ,
W1 ⊂W . Then we have:

ι(O) = ι(V ) ∩ (V1 ⊗W1)⊥

and therefore is open.

�
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9. Infinite Galois theory

Definition 22. Suppose that G is a topological group.

(1) G is called normaltopological if every neighbourhood of the unit element
contains a further neighbourhood which is a normal subgroup.

(2) G is called projectively finite if it is normaltopological, Hausdorff and com-
pact.

Proposition 48. Suppose that G is a group and that F is a filter basis consisting of
normal subgroups. Then there is a unique topology T on G such that:

(1) F is a basis of the neighbourhood system of the unit element.

(2) G is normaltopological.

Proof. (Cf. Proposition 2.7) We prove the uniqueness first. The neighbourhoods of
1 are precisely the sets that contain a set that belongs to F . The neighbourhood of
an arbitrary element g ∈ G are the g-translates of the neighbourhoods of the unit
element. Since a set is open if and only if it is the neighbourhood of all its points,
the topology T is unique. We now prove the existence. We shall call a set O ⊂ G
open if it satisfies:

∀g ∈ O ∃U ∈ F : gU ⊂ O
The axioms 1.1.1 and 1.1.2 are obvious. If O and O′ are open and if g ∈ O ∩ O′,
we can select U,U ′ ∈ F such that gU ∈ O and gU ′ ∈ U ′. Now, by the definition
of a filter basis there exists U ′′ ∈ F such that U ′′ ⊂ U ∩ U ′. Therefore we have
gU ′′ ⊂ O ∩O′ and O ∩O′ is open.

It remains to prove that G is a topological group. Suppose that G is an open set
and that we are given g, g′ ∈ G such that gg′ ∈ O. Select U ∈ F that satisfies
gg′U ∈ O. Then we have:

(gU)(g′U) = gg′(g′−1Ug′)U = gg′UU ⊂ gg′U ⊂ O
since U is a normal subgroup. Therefore, multiplication is continuous. If O is open
and g−1 ∈ O, determine U ∈ F satisfying g−1U ⊂ O. We then have:

(gU)−1 = U−1g−1 = Ug−1 = g−1gUg−1 = g−1U ⊂ O,
since U is a normal subgroup. Therefore, forming inverses is a continuous operation.

�

Definition 23. Suppose that K ⊂ L is a field extension.

(1) The Galois group of this field extension is defined as:

G(L/K) := {σ ∈ Aut(L) | ∀x ∈ K : σ(x) = x},
the set of field automorphisms that restrict to the identity in K.

(2) The extension K ⊂ L is called Galois if the following properties hold:

(a) K ⊂ L is algebraic, i. e. every element of L is the root of a polynomial
with coefficients in K.

(b) K ⊂ L is separable.
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(c) K ⊂ L is normal, i. e. every irreducible polynomial with coefficients in
K that has a root in L already splits over L.

Proposition 49. Suppose that K ⊂ L is a Galois extension. If E ⊂ L is a finite
subset, then there is an intermediate field K ⊂ P ⊂ L such that E ⊂ P and K ⊂ P
is a finite Galois extension.

Proof. If E = {e1, . . . , en}, denote the minimum polynomials of e1, . . . , en by
p1, . . . ,
pn. Define: p =

∏n
i=1 pi. p splits over L. We denote the roots of p in L by x1, . . . , xm.

P := K[x1, . . . , xm] is a finite Galois extension that contains E. �

Definition 24. Suppose that K ⊂ L is a Galois extension. The unique normaltopo-
logical topology on G(L/K) for which

F := {G(L/K) |K ⊂ P ⊂ L is an intermediate field such that

K ⊂ P is a finite Galois extension}

is a basis of the neighbourhood system of the identity is called the Krull topology
on G(L/K).

Remark 12. There are two points to note about this definition:

(1) F is a filter basis: If P and Q are intermediate fields that are finite dimen-
sional Galois over K, we select K-bases p1, . . . , pn of P and q1, . . . , qm of
Q. If R is an intermediate field which according to Proposition 49 is finite-
dimensional Galois over K and contains p1, . . . , pn and q1, . . . , qm, we have
P ⊂ R, Q ⊂ R and therefore G(L/R) ⊂ G(L/P ) ∩G(L/Q).

(2) If P is a finite Galois intermediate field, then G(L/P ) is a normal subgroup
of G(L/K): Suppose that x ∈ P and σ ∈ G(L/K). Denote by p ∈ K[t] the
minimum polynomial of x. Since K ⊂ L is Galois, we see that p ∈ P splits
into linear factors. Denote by x = x1, . . . , xn ∈ P the roots of p. Since σ(x)
is a root of p, we have σ(x) ∈ P . This proves σ(P ) ⊂ P , and this implies
easily that σ ◦ τ ◦ σ−1 ∈ G(L/P ) if τ ∈ G(L/P ).

Proposition 50. Suppose that K ⊂ L is a Galois extension. We regard L as a
topological space with the discrete topology. Then the Krull topology on G(L/K)
coincides with the relative topology of the product topology on LL = Map(L,L).

Proof. (Cf. Proposition 4.1) We prove first that the inclusion ι : G(L/K)→ LL is
continuous, where G(L/K) is endowed with the Krull topology and LL with the
product topology. By the universal property of the product topology it is sufficient
to prove that for every x ∈ L the evaluation

G(L/K)→ L, σ 7→ σ(x)

is continuous, which is equivalent to prove that the set

{σ ∈ G(L/K) | σ(x) = y}

is open. By Proposition 49 there is a intermediate field P which is finite-dimensional
Galois over K and contains x. If we have σ(x) = y, we see that the elements of
σG(L/K) also map x to y.
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On the other hand, we have to show that ι is an open map onto ι(G(L/K)). Suppose
that P is an intermediate field which is finite-dimensional Galois over K, and select
a K-basis p1, . . . , pn of P . The assertion follows if we can prove that we have for
σ ∈ G(L/P ):

σG(L/P ) = {τ ∈ G(L/K) | ∀i ≤ n : σ(pi) = τ(pi)}

Namely, the left hand side is a typical open set in the Krull topology, and the right
hand side is open in the relative topology. But the equality is obvious, because for
τ ∈ G(L/K) we have:

τ ∈ G(L/P )⇔ ∀i ≤ n : τ(pi) = pi

�

Theorem 4. Suppose that K ⊂ L is a Galois extension.

(1) G(L/K) is closed in LL.

(2) G(L/K) is projectively finite.

Proof. (1) In a first step we prove that a field homomorphism which leaves
K pointwise fixed is automatically surjective. If x ∈ L is given, we know
from Proposition 49 that there is an finite Galois intermediate field P that
contains x. As we have proved in Remark 12, σ maps P to P . Since the
restriction to P is a bijection, we see that x is contained in the image of σ.

(2) We now prove that G(L/K) is closed. By the preceding step, it is possible
to write G(L/K) in the form:

G(L/K) =
⋂

x,y∈L
{σ ∈ LL | σ(xy)− σ(x)σ(y) = 0}

=
⋂

x,y∈L
{σ ∈ LL | σ(x+ y)− σ(x)− σ(y) = 0}

=
⋂
x∈K
{σ ∈ LL | σ(x)− x = 0}

This represents G(L/K) as the intersection of closed sets. This is because
for example the first set is the preimage of the closed set {0} under the
continuous mapping

G(L/K)→ L, σ 7→ σ(xy)− σ(x)σ(y) = 0

(3) We prove that G(L/K) is projectively finite. G(L/K) is Hausdorff as a
subset of a product of Hausdorff spaces (cf. [6], p. 92) and normaltopological
by construction. It remains to show that G(L/K) is compact. For x ∈ X,
consider the orbit of x:

Bx := {σ(x) | σ ∈ G(L/K)}

We claim that the orbit is finite. Namely, if µ denotes the minimum poly-
nomial of x and x = x1, . . . , xn are the roots of µ, we see that σ(x) is again
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a root of µ, and therefore Bx ⊂ {x1, . . . , xn}. Now we know by Tychonow’s
theorem (cf. [6], Chap. 5, Theorem 13, p. 143) that the product∏

x∈L
Bx ⊂

∏
x∈L

L = LL

is a compact set. Since the inclusion

G(L/K)→
∏
x∈L

Bx, σ 7→ (σ(x))x∈L

shows that G(L/K) is a closed subset of a compact set, we see that G(L/K)
is itself compact.

�

Proposition 51. Suppose that K ⊂ L is a Galois extension and that K ⊂ P ⊂ L is
an intermediate field. Then P ⊂ L is a Galois extension.

Proof. It is obvious that L is algebraic over P . We prove that the extension P ⊂ L
is separable, i. e. that for every element x ∈ L the minimum polynomial µP over P
is separable. If µK denotes the minimum polynomial of x over K, then µK splits
over L because the extension K ⊂ L is normal:

µK =
n∏
i=1

(t− xi)

where x = x1. Since the extension K ⊂ L is separable, the roots x1, . . . , xn of µK
are all distinct. But since µP |µK , we see that the roots of µP form a subset of the
roots of µK and therefore are distinct, too.

Now we prove that the extension P ⊂ L is normal. Suppose that p ∈ P [t] is an
irreducible polynomial that has a root x in L. By Proposition 49 we know that
there is a finite Galois intermediate field K ⊂ Q ⊂ L that contains x as well as the
coefficients of p. Define R := P ∩Q. From the Galois theory of finite field extensions
we know that R ⊂ Q is Galois. Since p ∈ R[t] is still irreducible and has a root in
Q, it splits over Q and in particular over L. �

Theorem 5. Suppose that K ⊂ L is a Galois extension. Suppose that K ⊂ P ⊂ L
is an intermediate field and that

σ : P → L

is a field homomorphism which leaves K pointwise fixed. Then σ can be extended
to the whole field L, i. e. there is τ ∈ G(L/K) such that:

∀x ∈ P : σ(x) = τ(x)

Proof. We assume that this is known under the additional assumption that K ⊂ L
is finite (cf. [5], Theorem 7, p. 35). We look at the set:

M := {(Q, ρ) | P ⊂ Q ⊂ L is an intemediate field,

ρ : Q→ L is a field homomorphism with ρ|P = σ}
M is partially ordered by the ordering:

(Q, ρ) ≤ (Q′, ρ′) :⇔ Q ⊂ Q′ and ρ′|Q = ρ
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If ((Qi, ρi))i∈I is a totally ordered family in M, we see that Q :=
⋃
i∈I Qi is a

subfield of L and the unique map ρ : Q→ L that satisfies:

∀i ∈ I ∀x ∈ Qi : ρ(x) = ρi(x)

is a field homomorphism. We see that every totally ordered subfamily ofM has an
upper bound. Therefore we can conclude by Zorn’s Lemma thatM has a maximal
element (R, τ).

We claim that R = L. Assume this is false. Select x ∈ L \R. Denote the minimum
polynomial of x over K by µ, and let x = x1, . . . , xn be the roots of µ. If S = τ(R),
then R[x1, . . . , xn] is a splitting field of µ if µ is regarded as a polynomial with
coefficients in R, and S[x1, . . . , xn] is a splitting field of µ if µ is regarded as a
polynomial with coefficients in S. By the isomorphism theorem for splitting fields
(cf. [5], loc. cit.), there is an isomorphism

ω : R[x1, . . . , xn]→ S[x1, . . . , xn]

that extends τ . This contradicts the maximality of (R, τ). �

Theorem 6. (Fundamental theorem of infinite Galois theory)
Suppose that K ⊂ L is a Galois extension. Define:

G : = {H ⊂ G(L/K) |H is a closed subgroup}
K : = {P |K ⊂ P ⊂ L is an intermediate field}

Then the mappings

A : K → G, P 7→ A(P ) := G(L/P )

I : G → K, H 7→ Fix(H) := {x ∈ L | ∀σ ∈ H : σ(x) = x}

are bijections that are mutually inverse.

Proof. (1) We know from Proposition 51 that, for any intermediate field K ⊂
P ⊂ L, the extension P ⊂ L is again Galois. Therefore, we can conclude
by Theorem 4 that G(L/P ) is closed in LL and therefore in G(L/K). This
means that the mapping A is well defined.

(2) We prove that I◦A = idK. It is obvious that we have P ⊂ I(A(P )). Suppose
that there is x ∈ I(A(P ))\P . By Proposition 49 we can find an intermediate
field P ⊂ U ⊂ L such that P ⊂ U is a finite Galois extension and x ∈ U .
By the fundamental theorem of finite Galois theory we conclude that there
is σ ∈ G(U/P ) that satisfies σ(x) 6= x. By the extension theorem 5 there is
τ ∈ G(L/P ) that satisfies τ |U = σ, and therefore τ(x) 6= x.

(3) Finally, we prove that A ◦ I = idG . Suppose that H ⊂ G(L/K) is a closed
subgroup and define P := I(H). It is clear that H ⊂ A(P ). If σ ∈ A(P ),
we have to prove that σ ∈ H. Since H is closed, it is sufficient to prove
that σ ∈ H̄. That means that we have to prove that σG(L/Q) ∩H 6= ∅ for
every intermediate field K ⊂ Q ⊂ L which is finite Galois over K. From
Theorem 49 we conclude that there is an intermediate field P ⊂ R ⊂ L
which is finite Galois over P , since by Proposition 51 the extension P ⊂ L
is itself Galois. We prove the stronger assertion that σG(L/R) ∩H 6= ∅.
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As in Remark 12 we can see that τ ∈ G(L/P ) maps R to R. Therefore we
have a group homomorphism

H → G(R/P ), τ 7→ t|R
The image of this homomorphism is a subgroup U ⊂ G(R/P ) whose field
of fixpoints is P by the very definition of P . By the fundamental theorem
of finite Galois theory, this implies that U = G(R/P ), which means that
the restriction homomorphism is surjective, which in turn means that every
automorphism in G(R/P ) can be extended to a homomorphism contained
in H. In particular, this applies to σ|R, that is, we have τ ∈ H that satisfies:

∀z ∈ R : σ(x) = τ(x)

which means σ−1◦τ ∈ G(L/R) and therefore τ = σ(σ−1τ) ∈ σG(L/R)∩H.

�
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